Trends in Flowering Phenology of Herbaceous Plants and Its Response to Precipitation and Snow Cover on the Qinghai—Tibetan Plateau from 1983 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Phenological and Meteorological Data
2.3. Temporal Trend Analysis of FFD and Precipitation Time Series
2.4. FFD Response to Precipitation and Snow Cover Change
3. Results
3.1. Trends of Temporal Changes in FFD and Precipitation
3.2. Response of FFD to Variation in CPP
3.3. Relationship between Precipitation and Temperature
3.4. Impact of Snow Cover Changes on FFD
4. Discussion
4.1. Positive Regression between Flowering Phenology and Precipitation for Early-Flowering Time Series
4.2. Impact of Precipitation on Flowering Phenology on the QTP
4.3. Impact of Snow Cover on Flowering Phenology on the QTP
4.4. Possible Causes of Divergent Flowering Phenology
4.5. Uncertainties and Implications of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Q.; Li, B.; Zhou, G.; Jiang, Y.; Yuan, Y. Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2020, 284, 107896. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Che, M.; Chen, B.; Innes, J.L.; Wang, G.; Dou, X.; Zhou, T.; Zhang, H.; Yan, J.; Xu, G.; Zhao, H. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 2014, 189–190, 81–90. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhu, W.; Chen, G.; Jiang, N.; Fan, D.; Zhang, D. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2016, 223, 194–202. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Duan, J.; Zhu, X.; Xu, G.; Luo, C.; Zhang, Z.; Meng, F.; Li, Y.; Du, M. Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan plateau. Agric. For. Meteorol. 2014, 189–190, 220–228. [Google Scholar] [CrossRef]
- Cong, N.; Shen, M.; Piao, S. Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. J. Plant Ecol. 2016, 10, 744–752. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Ji, S.N.; Classen, A.T.; Zhang, Z.H.; He, J.S. Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Br. Ecol. Soc. 2017, 31, 2147–2156. [Google Scholar]
- Wang, S.P.; Meng, F.D.; Duan, J.C.; Wang, Y.F.; Cui, X.Y.; Piao, S.L.; Niu, H.S.; Xu, G.P.; Luo, C.Y.; Zhang, Z.H.; et al. Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology 2014, 95, 3387–3398. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.Q.; Jiang, N.; Chen, G.S.; Zhang, D.H.; Zheng, Z.T.; Fan, D.Q. Divergent shifts and responses of plant autumn phe-nology to climate change on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2017, 239, 166–175. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, Z.; Jiang, N.; Zhang, D. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agric. For. Meteorol. 2018, 248, 177–184. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Wang, W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol. Lett. 2016, 12, 20150749. [Google Scholar] [CrossRef]
- Lang, A. Differentiation and Development; Springer: New York, NY, USA, 1965; pp. 1380–1536. [Google Scholar]
- Dagmar, S.; Colin, P.; Anthony, G.P. Assessing vulnerabilities to the effects of global change: An eight step approach. Mitig. Adapt. Strat. Glob. Chang. 2005, 10, 573–595. [Google Scholar]
- Lincoln, Z.T.; Eduardo, Z. Plant Physiology, 5th ed.; Oxford University Press: New York, NY, USA, 2015; pp. 719–754. [Google Scholar]
- Keller, F.; Körner, K. The role of photoperiodism in alpine plant development. Arct. Antarct. Alp. Res. 2003, 35, 361–368. [Google Scholar] [CrossRef]
- Pearson, K.D. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA. Int. J. Biometeorol. 2019, 63, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Z.; Reich, P.B.; Li, G.Y.; Sun, S.C. Shifting phenology and abundance under experimental warming alters trophic rela-tionships and plant reproductive capacity. Ecology 2011, 92, 1201–1207. [Google Scholar] [CrossRef]
- Meng, F.D.; Jiang, L.L.; Zhang, Z.H.; Cui, S.J.; Duan, J.C.; Wang, S.P.; Luo, C.Y.; Wang, Q.; Zhou, Y.; Li, X.E.; et al. Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology 2017, 98, 734–740. [Google Scholar] [CrossRef]
- Shen, M.G.; Piao, S.L.; Dorji, T.; Liu, Q.; Cong, N.; Chen, X.Q.; An, S.; Wang, S.P.; Wang, T.; Zhang, G.X. Plant phenological responses to climate change on the Tibetan Plateau: Research status and challenges. Natl. Sci. Rev. 2015, 2, 454–467. [Google Scholar] [CrossRef] [Green Version]
- Dorji, T.; Totland, Ø.; Moe, S.R.; Hopping, K.; Pan, J.; Klein, J.A. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob. Chang. Biol. 2013, 19, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhuang, Q.; He, J.-S.; Luo, T.; Shi, Y. Phenology shift from 1989 to 2008 on the Tibetan Plateau: An analysis with a process-based soil physical model and remote sensing data. Clim. Chang. 2013, 119, 435–449. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Jassens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Chang. Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñuelas, J.; Filella, I.; Zhang, X.Y.; Llorens, L.; Ogaya, R.; Lloret, F.; Comas, P.; Estiarte, M.; Terradas, J. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 2004, 161, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M.; Wolkovich, E.M.; Towne, E.G.; Kembel, S.W. Flowering phenology as a functional trait in a tallgrass prairie. New Phytol. 2012, 193, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.D. Effects of Changing Temperature and Moisture on Phenological Sequences of Plant and Plant Community on the Alpine Meadow; Chinese Academy of Sciences: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Dunne, J.A.; Harte, J.; Taylor, K.J. Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods. Ecol. Monogr. 2003, 73, 69–86. [Google Scholar] [CrossRef]
- Wipf, S. Phenology, growth, and fecundity of eight subArctic tundra species in response to snowmelt manipulations. Plant. Ecol. 2010, 207, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Price, M.V.; Waser, N.M. Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology 1998, 79, 1261–1271. [Google Scholar] [CrossRef]
- Bliss, L.C. Caloric and Lipid Content in Alpine Tundra Plants. Ecology 1962, 43, 753–757. [Google Scholar] [CrossRef]
- Inouye, D.W. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 2008, 89, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Yu, K.; Zhang, Y.; Zhai, J.; Zhang, Y.; Zhang, H. Ground observed climatology and trend in snow cover phenology across China with consideration of snow-free breaks. Clim. Dyn. 2020, 55, 1–21. [Google Scholar] [CrossRef]
- Archibald, S.; Scholes, R. Leaf green-up in a semi-arid African savanna –separating tree and grass responses to environmental cues. J. Veg. Sci. 2007, 18, 583–594. [Google Scholar] [CrossRef]
- Shen, M. Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2011, 108, E91–E92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.Q.; An, S.; Inouye, D.W.; Schwartz, M.D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Chang. Biol. 2015, 21, 3635–3646. [Google Scholar] [CrossRef] [PubMed]
- China Meteorological Administration. Observation Criterion of Agricultural Meteorology; China Meteorological Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Deng, Z.F.; Xie, X.L.; Zhou, X.M. Primary study on reproductive strategies of Kobresia Humilis population in alpine meadow. Chin. J. Ecol. 2001, 20, 68–70. (In Chinese) [Google Scholar]
- Sherry, R.A.; Zhou, X.H.; Gu, S.L.; Arnonr, J.A.; Schimel, D.S.; Verburg, P.S.; Wallacem, L.L.; Luo, Y.Q. Divergence of reproductive phenology under climate warming. Proc. Natl. Acad. Sci. USA 2007, 104, 198–202. [Google Scholar] [CrossRef] [Green Version]
- China Meteorological Administration. Specifications for Surface Meteorological Observations; China Meteorological Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Tao, F.; Yokozawa, M.; Zhang, Z.; Hayashi, Y.; Ishigooka, Y. Land surface phenology dynamics and climate variations in the North East China Transect (NECT), 1982–2000. Int. J. Remote Sens. 2008, 29, 5461–5478. [Google Scholar] [CrossRef]
- Yu, F.; Price, K.P.; Ellis, J.; Shi, P. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens. Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- Becker, B.J.; Wu, M.-J. The Synthesis of Regression Slopes in Meta-Analysis. Stat. Sci. 2007, 22, 414–429. [Google Scholar] [CrossRef]
- Spineli, L.M.; Nikolaos, P. Meta-analysis: Fixed-effect model. Am. J. Orthod. Dentofac. 2020, 157, 134–137. [Google Scholar] [CrossRef]
- Ma, L.; Qin, D.; Bian, L.; Xiao, C.; Luo, Y. Assessment of Snow Cover Vulnerability over the Qinghai-Tibetan Plateau. Adv. Clim. Chang. Res. 2011, 2, 93–100. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Zhou, L.; Wang, T. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ. Res. Lett. 2013, 8, 014008. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, S.; Cao, Y.; He, T.; Wang, D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5, 16820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, K. Selecting a Model to Predict the Onset of Growth of Fagus sylvatica. J. Appl. Ecol. 1994, 31, 172. [Google Scholar] [CrossRef]
- Chuine, I.; Cour, P.; Rousseau, D.-D. Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling. Plant. Cell Environ. 1999, 22, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chuine, I.; Cour, P.; Rousseau, D.D. Fitting models predicting dates of flowering of temperate-zone trees using simulated an-nealing. Plant. Cell. Environ. 1998, 21, 455–466. [Google Scholar] [CrossRef]
- Lesica, P.; Kittelson, P. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J. Arid. Environ. 2010, 74, 1013–1017. [Google Scholar] [CrossRef]
- Sparks, T.H.; Carey, P.D. The Responses of Species to Climate Over Two Centuries: An Analysis of the Marsham Phenological Record, 1736–1947. J. Ecol. 1995, 83, 321. [Google Scholar] [CrossRef]
- Friedel, M.; Nelson, D.; Sparrow, A.; Kinloch, J.; Maconochie, J.; Friedel, M.; Nelson, D.; Sparrow, A.; Kinloch, J.; Maconochie, J. What Induces Central Australian Arid Zone Trees and Shrubs to Flower and Fruit? Aust. J. Bot. 1993, 41, 307–319. [Google Scholar] [CrossRef]
- Xu, J.; Haginoya, S.; Masuda, K.; Suzuki, R. Heat and Water Balance Estimates over the Tibetan Plateau in 1997–1998. J. Meteorol. Soc. Jpn. 2005, 83, 577–593. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer: New York, NY, USA, 2001. [Google Scholar]
- Diez, J.M.; Ibáñes, I.; Miller-Rushing, A.J.; Mazer, S.J.; Crimmins, T.M.; Crimmins, M.A.; Bertelsen, C.D.; Inouye, D.W. Forecasting phenology: From species variability to community patterns. Ecol. Lett. 2012, 15, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.G.; Tang, Y.H.; Chen, J.; Zhu, X.L.; Zheng, Y.H. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2011, 151, 1711–1722. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; Cook, B.I.; Allen, J.; Crimmins, T.; Betancourt, J.L.; Travers, S.E.; Pau, S.; Regetz, J.; Davies, T.J.; Kraft, N.; et al. Warming experiments underpredict plant phenological responses to climate change. Nature 2012, 485, 494–497. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Wu, T.; Shen, L.; Pepin, N.; Zhang, L.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth Sci. Rev. 2020, 201, 103043. [Google Scholar] [CrossRef]
- Jiang, W.X.; Jia, L.; Xiao, T.G.; Luobu, J.C.; Zhou, Z.B. Climate change and spatial distribution of winter snowfall over the Tibetan Plateau during 1971–2010. J. Glaciol. Geocryol. 2016, 38, 1211–1218. (In Chinese) [Google Scholar]
- Bjorkman, A.D.; Elmendorf, S.; Beamish, A.L.; Vellend, M.; Henry, G.H.R. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob. Chang. Biol. 2015, 21, 4651–4661. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.W.; Jojanson, J.J. Hydroclimatic Analysis of Snowfall Trends Associated with the North American Great Lakes. J. Hydrometeorol. 2004, 5, 471–486. [Google Scholar] [CrossRef]
- Esteban, P.; Jones, P.D.; Javier, M.-V.; Montse, M. Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. Int. J. Climatol. 2005, 25, 319–329. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y.S.; Guo, Y.H.; Gao, H.F.; Zhang, H.B.; Wang, Y.F. Environmental and biophysical controls on the evapo-transpiration over the highest alpine steppe. J. Hydrol. 2015, 529, 980–992. [Google Scholar] [CrossRef]
- Orsolini, Y.; Wegmann, M.; Dutra, E.; Liu, B.; Balsamo, G.; Yang, K.; De Rosnay, P.; Zhu, C.; Wang, W.; Senan, R.; et al. Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations. Cryosphere 2019, 13, 2221–2239. [Google Scholar] [CrossRef] [Green Version]
- Körner, C.; Basler, D. Phenology Under Global Warming. Science 2010, 327, 1461–1462. [Google Scholar] [CrossRef]
- Laube, J.; Sparks, T.; Estrella, N.; Höfler, J.; Ankerst, D.; Menzel, A. Chilling outweighs photoperiod in preventing precocious spring development. Glob. Chang. Biol. 2013, 20, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Ahas, R.; Aasa, A.; Menzel, A.; Fedotova, V.G.; Scheifinger, H. Changes in European spring phenology. Int. J. Clim. 2002, 22, 1727–1738. [Google Scholar] [CrossRef]
- Aldridge, G.; Inouye, D.W.; Forrest, J.R.; Barr, W.A.; Miller-Rushing, A.J. Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. J. Ecol. 2011, 99, 905–913. [Google Scholar] [CrossRef]
- CaraDonna, P.J.; Iler, A.M.; Inouye, D.W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. USA 2014, 111, 4916–4921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, P.; Tautenhahn, S.; Cornelissen, J.H.C.; Kattge, J.; Bönisch, G.; Römermann, C. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Glob. Ecol. Biogeogr. 2018, 27, 310–321. [Google Scholar] [CrossRef]
- Perezharguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.; Craine, J.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Atkin, O.K.; Loveys, B.R.; Atkinson, L.J.; Pons, T.L.; Atkin, O.K.; Loveys, B.R.; Atkinson, L.J.; Pons, T.L. Phenotypic plasticity and growth temperature: Understanding interspecific variability. J. Exp. Bot. 2005, 57, 267–281. [Google Scholar] [CrossRef]
- Walker, M.D.; Walker, D.A.; Welker, J.M.; Arft, A.M.; Bardsley, T.; Brooks, P.D.; Fahnestock, J.T.; Jones, M.H.; Losleben, M.; Parsons, A.N.; et al. Long-term experimental manipulation of winter snow regime and summer temperature in Arctic and alpine tundra. Hydrol. Process. 1999, 13, 2315–2330. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chiariello, N.R.; Loarie, S.R.; Mooney, H.A.; Field, C.B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. USA 2006, 103, 13740–13744. [Google Scholar] [CrossRef] [Green Version]
- Chuine, I.; Morin, X.; Bugmann, H. Warming, Photoperiods, and Tree Phenology. Science 2010, 329, 277–278. [Google Scholar] [CrossRef]
- Chouard, P. Vernalization and its Relations to Dormancy. Annu. Rev. Plant. Physiol. 1960, 11, 191–238. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, B.; Yuan, Y.; Sun, Q.; Zhang, T.; Liu, Y.; Li, Y.; Li, R. Divergent shifts in flowering phenology of herbaceous plants on the warming Qinghai–Tibetan plateau. Agric. For. Meteorol. 2021, 307, 108502. [Google Scholar] [CrossRef]
- Defalco, L.A.; Fernandez, G.C.J.; Nowak, R.S. Variation in the establishment of a non-native annual grass influences competitive interactions with Mojave Desert perennials. Biol. Invasions 2007, 9, 293–307. [Google Scholar] [CrossRef]
- Zettlemoyer, M.A.; Schultheis, E.H.; Lau, J.A. Phenology in a warming world: Differences between native and non-native plant species. Ecol. Lett. 2019, 22, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Willis, C.G.; Primack, R.; Miller-Rushing, A.J.; Davis, C.C. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 17029–17033. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Tan, K.; Nan, H.; Ciais, P.; Fang, J.; Wang, T.; Vuichard, N.; Zhu, B. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Glob. Planet. Chang. 2012, 98–99, 73–80. [Google Scholar] [CrossRef]
- Hansen, J.E.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Space Phys. 2007, 112, F02S03. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef] [Green Version]
Station No. | Station | Province | Latitude (°) | Longitude (°) | Altitude (m) | Observed Species |
---|---|---|---|---|---|---|
1 | Datong b | Qinghai | 36.95 | 101.68 | 2450.00 | Iris lactea Pall., Taraxacum mongolicum |
2 | Menyuan a | Qinghai | 37.38 | 101.62 | 2850.00 | Plantago asiatica, Taraxacum mongolicum, Iris lactea Pall. |
3 | Huzhu b | Qinghai | 36.82 | 101.95 | 2480.00 | Agropyron cristatum, Plantago asiatica |
4 | Huangyuan b | Qinghai | 36.68 | 101.23 | 2634.00 | Phragmites australis, Plantago asiatica, Iris lactea Pall. |
5 | Huangzhong b | Qinghai | 36.52 | 101.57 | 2668.00 | Iris lactea Pall., Taraxacum mongolicum |
6 | Haibei a | Qinghai | 36.97 | 100.90 | 3115.00 | Stipa krylovii, Koeleria macrantha, Poa crymophila, Kobresia humilis, Plantago asiatica, Taraxacum mongolicum, Iris lactea Pall., Artemisia scoparia |
7 | Shiqu a | Sichuan | 32.98 | 98.10 | 4200.00 | Elymus nutans, Taraxacum mongolicum |
8 | Hainanzhou a | Qinghai | 36.27 | 100.62 | 2835.00 | Plantago asiatica, Taraxacum mongolicum |
9 | Guide a | Qinghai | 36.03 | 101.43 | 2237.10 | Agropyron cristatum |
10 | Guinan a | Qinghai | 35.58 | 100.75 | 3120.00 | Plantago asiatica, Taraxacum mongolicum, Iris lactea Pall. |
11 | Tongde b | Qinghai | 35.27 | 100.65 | 3289.00 | Elymus nutans, Poa crymophila, Kobresia humilis |
12 | Henan a | Qinghai | 34.73 | 101.60 | 3500.00 | Elymus nutans, Puccinellia tenuiflora, Kobresia pygmaea, Scirpus distigmaticus, Plantago asiatica |
13 | Maqu a | Gansu | 34.00 | 102.05 | 3471.4 | Elymus nutans, Poa annua, Taraxacum mongolicum |
14 | Nomhon a | Qinghai | 36.43 | 96.42 | 2790.40 | Phragmites australis |
15 | Qumarleb a | Qinghai | 34.13 | 95.78 | 4175.00 | Festuca ovina, Poa alpina, Kobresia pygmaea, Carex montana, Plantago asiatica, Taraxacum mongolicum |
16 | Xinghai a | Qinghai | 35.58 | 99.98 | 3323.20 | Agropyron cristatum, Leymus secalinus, Stipa krylovii, Plantago asiatica, Taraxacum mongolicum, Iris lactea Pall. |
17 | Tiebujia b | Qinghai | 37.08 | 99.58 | 3269.00 | Poa crymophila, Artemisia scoparia |
18 | Delingha a | Qinghai | 37.37 | 97.37 | 2981.50 | Agropyron cristatum, Medicago sativa |
19 | Gade a | Qinghai | 33.97 | 99.90 | 4050.00 | Koeleria macrantha, Elymus nutans, Festuca ovina, Kobresia humilis, Plantago asiatica, Taraxacum mongolicum, Gentiana algida |
20 | Garz a | Sichuan | 31.62 | 100.00 | 3393.50 | Taraxacum mongolicum |
21 | Golmud a | Qinghai | 36.42 | 94.90 | 2807.60 | Phragmites australis |
22 | Daocheng a | Sichuan | 29.05 | 100.30 | 3727.70 | Plantago asiatica, Taraxacum mongolicum |
23 | Lhasa a | Tibet | 29.67 | 91.13 | 3648.70 | Plantago asiatica, Taraxacum mongolicum |
24 | Nyingchi a | Tibet | 29.67 | 94.33 | 2991.80 | Plantago asiatica, Taraxacum mongolicum |
25 | Shigatse a | Tibet | 29.30 | 88.88 | 3836.15 | Plantago asiatica, Taraxacum mongolicum |
26 | Zoige a | Sichuan | 33.58 | 102.97 | 3439.60 | Plantago asiatica, Taraxacum mongolicum |
27 | Lhoka a | Tibet | 29.25 | 91.77 | 3551.70 | Plantago asiatica, Taraxacum mongolicum |
Groups | Pre-Season Period Length | Site | Precipitation | Site × Precipitation | |||
---|---|---|---|---|---|---|---|
d.f. | F | d.f. | F | d.f. | F | ||
Early-flowering | 10 | 16 | 21.414 *** | 367 | 1.228 * | 254 | 1.332 ** |
20 | 11.204 *** | 478 | 1.348 ** | 181 | 1.522 ** | ||
30 | 12.528 *** | 511 | 1.845 *** | 158 | 1.868 *** | ||
40 | 10.601 *** | 552 | 1.634 *** | 134 | 4.564 *** | ||
50 | 9.489 *** | 549 | 1.851 *** | 126 | 4.290 *** | ||
60 | 10.513 *** | 557 | 1.974 *** | 119 | 4.473 *** | ||
70 | 9.621 *** | 566 | 1.632 ** | 105 | 2.780 *** | ||
80 | 7.725 *** | 576 | 1.661 ** | 104 | 7.540 *** | ||
90 | 6.846 *** | 577 | 1.705 ** | 98 | 4.131 *** | ||
Mid-to-late-flowering | 10 | 9 | 2.510 * | 320 | 1.145 | 90 | 1.306 |
20 | 1.959 | 381 | 1.055 | 51 | 1.345 | ||
30 | 2.495 * | 389 | 1.314 | 47 | 2.963 *** | ||
40 | 2.564 * | 400 | 0.906 | 35 | 7.227 *** | ||
50 | 3.870 ** | 407 | 1.012 | 31 | 7.068 *** | ||
60 | 1.149 | 392 | 0.757 | 41 | 7.947 *** | ||
70 | 2.319 | 420 | 0.895 | 20 | 11.791 *** | ||
80 | 0.938 | 412 | 0.689 | 13 | 4.561 *** | ||
90 | 1.481 | 400 | 1.156 | 26 | 3.716 *** |
Functional Group | Site | SCD | Site × SCD | |||
d.f. | F | d.f. | F | d.f. | F | |
Early-flowering | 11 | 26.776 *** | 55 | 1.905 | 47 | 0.419 |
Mid-to-late-flowering | 9 | 7.688 *** | 57 | 2.603 ** | 41 | 0.715 |
Functional Group | Site | SCDM | Site × SCDM | |||
d.f. | F | d.f. | F | d.f. | F | |
Early-flowering | 11 | 13.794 *** | 91 | 2.054 | 34 | 0.384 |
Mid-to-late-flowering | 9 | 6.074 *** | 92 | 3.302 | 26 | 0.536 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Li, B.; Yuan, Y.; Sun, Q.; Zhang, T.; Liu, Y.; Li, Y.; Li, R.; Li, F. Trends in Flowering Phenology of Herbaceous Plants and Its Response to Precipitation and Snow Cover on the Qinghai—Tibetan Plateau from 1983 to 2017. Sustainability 2021, 13, 7640. https://doi.org/10.3390/su13147640
Jiang Y, Li B, Yuan Y, Sun Q, Zhang T, Liu Y, Li Y, Li R, Li F. Trends in Flowering Phenology of Herbaceous Plants and Its Response to Precipitation and Snow Cover on the Qinghai—Tibetan Plateau from 1983 to 2017. Sustainability. 2021; 13(14):7640. https://doi.org/10.3390/su13147640
Chicago/Turabian StyleJiang, Yuhao, Baolin Li, Yecheng Yuan, Qingling Sun, Tao Zhang, Yan Liu, Ying Li, Rui Li, and Fei Li. 2021. "Trends in Flowering Phenology of Herbaceous Plants and Its Response to Precipitation and Snow Cover on the Qinghai—Tibetan Plateau from 1983 to 2017" Sustainability 13, no. 14: 7640. https://doi.org/10.3390/su13147640