Measuring Circular Supply Chain Risk: A Bayesian Network Methodology
Abstract
:1. Introduction
- To develop a circular supply chain risk framework, in order to generate risk profiles of various CSC partners;
- To study the disruption caused due to the occurrence of various risk on the performance of CSC,
- To develop a risk exposure index (REI) for the identification of vulnerable nodes in the CSC network.
2. Literature Review
2.1. Circular Economy and Circular Supply Chain
2.2. Typical Supply Chain Risk vs. Circular Supply Chain Risk
2.3. Risk Assessment Model
3. Bayesian Network Methodology
4. Case Illustration
4.1. Company Profile and Problem Description
4.2. Data Collection
5. Modeling and Discussion
5.1. Risk Measurement Model
5.2. Results and Discussion
5.3. Effect Analysis and Discussion
5.3.1. Inventory Holding Cost
5.3.2. Impact of Partners on SC Revenue
5.3.3. Lost Sales
5.4. Risk Exposure Index
6. Managerial Implication
7. Conclusions, Limitations and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, S.J. Information management research and practice in the post-COVID-19 world. Int. J. Inf. Manag. 2020, 55, 102175. [Google Scholar] [CrossRef]
- Amit, R.; Han, X. Value creation through novel resource configurations in a digitally enabled world. Strateg. Entrep. J. 2017, 11, 228–242. [Google Scholar] [CrossRef]
- Islam, T.; Pitafi, A.H.; Arya, V.; Wang, Y.; Akhtar, N.; Mubarik, S.; Xiaobei, L. Panic Buying in the COVID-19 Pandemic: A Multi-country Examination; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; Volume 59, ISBN 0086131206. [Google Scholar]
- Song, T.; Zhang, Q.; Ran, J.; Ran, W. Research on Supplier Collaboration of Daily Consumer Goods under Uncertainty of Supply and Demand. Sustainability 2021, 13, 5683. [Google Scholar] [CrossRef]
- Matos, S.; Hall, J. Integrating sustainable development in the supply chain: The case of life cycle assessment in oil and gas and agricultural biotechnology. J. Oper. Manag. 2007, 25, 1083–1102. [Google Scholar] [CrossRef]
- Hazée, S.; Van Vaerenbergh, Y.; Delcourt, C.; Kabadayi, S. Service delivery system design for risk management in sharing-based product service systems: A customer-oriented approach. Int. J. Oper. Prod. Manag. 2020, 40, 459–479. [Google Scholar] [CrossRef]
- Yu, Z.; Razzaq, A.; Rehman, A.; Shah, A.; Jameel, K.; Mor, R.S. Disruption in global supply chain and socio-economic shocks: A lesson from COVID-19 for sustainable production and consumption. Oper. Manag. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Shahed, K.S.; Azeem, A.; Ali, S.M.; Moktadir, M.A. A supply chain disruption risk mitigation model to manage COVID-19 pandemic risk. Environ. Sci. Pollut. Res. 2021, 2020. [Google Scholar] [CrossRef]
- Sharma, P.; Leung, T.Y.; Kingshott, R.P.J.; Davcik, N.S.; Cardinali, S. Managing uncertainty during a global pandemic: An international business perspective. J. Bus. Res. 2020, 116, 188–192. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A. OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications. Int. J. Prod. Econ. 2021, 232, 107921. [Google Scholar] [CrossRef] [PubMed]
- Ferasso, M.; Beliaeva, T.; Kraus, S.; Clauss, T.; Ribeiro-Soriano, D. Circular economy business models: The state of research and avenues ahead. Bus. Strateg. Environ. 2020, 1–19. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Sarkis, J.; Yin, F.; Dou, Y. Sustainable supply chain flexibility and its relationship to circular economy-target performance. Int. J. Prod. Res. 2020, 58, 5893–5910. [Google Scholar] [CrossRef]
- Diaz, A.; Schöggl, J.P.; Reyes, T.; Baumgartner, R.J. Sustainable product development in a circular economy: Implications for products, actors, decision-making support and lifecycle information management. Sustain. Prod. Consum. 2021, 26, 1031–1045. [Google Scholar] [CrossRef]
- Sarkis, J.; Zhu, Q. Environmental sustainability and production: Taking the road less travelled. Int. J. Prod. Res. 2018, 56, 743–759. [Google Scholar] [CrossRef]
- Agrawal, S.; Singh, R.K.; Murtaza, Q. Disposition decisions in reverse logistics: Graph theory and matrix approach. J. Clean. Prod. 2016, 137, 93–104. [Google Scholar] [CrossRef]
- Upadhyay, A.; Kumar, A.; Akter, S. An analysis of UK retailers’ initiatives towards circular economy transition and policy-driven directions. Clean Technol. Environ. Policy 2021, 1–9. [Google Scholar] [CrossRef]
- Fiksel, J.; Sanjay, P.; Raman, K. Steps toward a resilient circular economy in India. Clean Technol. Environ. Policy 2021, 23, 203–218. [Google Scholar] [CrossRef]
- De Angelis, R. Circular economy: Laying the foundations for conceptual and theoretical development in management studies. Manag. Decis. 2020, 59. [Google Scholar] [CrossRef]
- Lahane, S.; Kant, R.; Shankar, R. Circular Supply Chain Management: A State-of-art review and future opportunities. J. Clean. Prod. 2020, 258, 120859. [Google Scholar] [CrossRef]
- Genovese, A.; Acquaye, A.A.; Figueroa, A.; Koh, S.C.L. Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications. Omega 2017, 66, 344–357. [Google Scholar] [CrossRef]
- Bui, T.D.; Tsai, F.M.; Tseng, M.L.; Tan, R.R.; Yu, K.D.S.; Lim, M.K. Sustainable supply chain management towards disruption and organizational ambidexterity: A data driven analysis. Sustain. Prod. Consum. 2021, 26, 373–410. [Google Scholar] [CrossRef]
- Koh, S.C.L.; Gunasekaran, A.; Morris, J.; Obayi, R.; Ebrahimi, S.M. Conceptualizing a circular framework of supply chain resource sustainability. Int. J. Oper. Prod. Manag. 2017, 37, 1520–1540. [Google Scholar] [CrossRef]
- Pan, S.Y.; Du, M.A.; Huang, I.T.; Liu, I.H.; Chang, E.E.; Chiang, P.C. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. J. Clean. Prod. 2014, 108, 1–13. [Google Scholar] [CrossRef]
- Ethirajan, M.; Arasu, M.T.; Kandasamy, J.; Vimal, K.E.K.; Nadeem, S.P.; Kumar, A. Analysing the risk of adopting circular economy initiatives in manufacturing supply chains. Bus. Strateg. Environ. 2020, 30, 204–206. [Google Scholar] [CrossRef]
- Spekman, R.E.; Davis, E.W. Risky business: Expanding the discussion on risk and the extended enterprise. Int. J. Phys. Distrib. Logist. Manag. 2004, 34, 414–433. [Google Scholar] [CrossRef]
- Tang, C.S. Perspectives in supply chain risk management. Int. J. Prod. Econ. 2006, 103, 451–488. [Google Scholar] [CrossRef]
- Jüttner, U.; Peck, H.; Christopher, M. Supply chain risk management: Outlining an agenda for future research. Int. J. Logist. Res. Appl. 2003, 6, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Stevenson, M. A review of supply chain risk management: Definition, theory, and research agenda. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 205–230. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zobel, C.W. Exploring supply chain network resilience in the presence of the ripple effect. Int. J. Prod. Econ. 2020, 228, 107693. [Google Scholar] [CrossRef]
- Ojha, R.; Ghadge, A.; Tiwari, M.K.; Bititci, U.S. Bayesian network modelling for supply chain risk propagation. Int. J. Prod. Res. 2018, 56, 5795–5819. [Google Scholar] [CrossRef]
- Boulding, K. The Economy of the Coming Spaceship Earth. In Environmental Quality in a Growing Economy; Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Pearce, D.W.; Turner, R.K. Economics of Natural Resources and the Environment; Johns Hopkins University Press: Baltimore, MD, USA, 1989. [Google Scholar]
- Thierry, M.; Salomon, M.; Van Nunen, J.; Van Wassenhove, L. Strategic issues in product recovery management. Calif. Manag. Rev. 1995, 37, 114–136. [Google Scholar] [CrossRef] [Green Version]
- Walter, R. Stahel Circular Economy. Nature 2015, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Heshmati, A.; Geng, Y.; Yu, X. A review of the circular economy in China: Moving from rhetoric to implementation. J. Clean. Prod. 2013, 42, 215–227. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Towards the Circular Economy. 2013. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/TCE_Report-2013.pdf (accessed on 20 May 2021).
- European Commission. The role of waste-to-energy in the circular economy. In Proceedings of the UNECE Ministerial Conference, Astana, Kazakhstan, 14 June 2017; Volume 11. [Google Scholar]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Farooque, M.; Zhang, A.; Thurer, M.; Qu, T.; Huisingh, D. Circular supply chain management: A definition and structured literature review. J. Clean. Prod. 2019, 228, 882–900. [Google Scholar] [CrossRef]
- Bressanelli, G.; Perona, M.; Saccani, N. Challenges in supply chain redesign for the Circular Economy: A literature review and a multiple case study. Int. J. Prod. Res. 2019, 57, 7395–7422. [Google Scholar] [CrossRef] [Green Version]
- Chhimwal, M.; Agrawal, S.; Kumar, G. Challenges in the implementation of circular economy in manufacturing industry. J. Model. Manag. 2021. [Google Scholar] [CrossRef]
- Bastas, A.; Liyanage, K. Setting a framework for organisational sustainable development. Sustain. Prod. Consum. 2019, 20, 207–229. [Google Scholar] [CrossRef]
- Ferronato, N.; Cristina, E.; Antonio, M.; Portillo, G.; Ionel, L.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Hallikas, J.; Virolainen, V.; Tuominen, M. Risk analysis and assessment in network environments: A dyadic case study. Int. J. Prod. Econ. 2002, 78, 45–55. [Google Scholar] [CrossRef]
- Zsidisin, G.A.; Ellram, L.M.; Carter, J.R.; Cavinato, J.L. An analysis of supply risk assessment techniques. Int. J. Phys. Distrib. Logist. Manag. 2004, 34, 397–413. [Google Scholar] [CrossRef]
- Chopra, S.; Sodhi, M.M.S. Managing risk to avoid: Supply-chain breakdown. MIT Sloan Manag. Rev. 2004, 46, 53–61. [Google Scholar]
- Sharma, L.; Pandey, S. Recovery of resources from end-of-life passenger cars in the informal sector in India. Sustain. Prod. Consum. 2020, 24, 1–11. [Google Scholar] [CrossRef]
- Mishra, D.; Sharma, R.R.K.; Kumar, S.; Dubey, R. Bridging and buffering: Strategies for mitigating supply risk and improving supply chain performance. Int. J. Prod. Econ. 2016, 180, 183–197. [Google Scholar] [CrossRef]
- Kocabasoglu, C.; Prahinski, C.; Klassen, R.D. Linking forward and reverse supply chain investments: The role of business uncertainty. J. Oper. Manag. 2007, 25, 1141–1160. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ozkan-Ozen, Y.D.; Mangla, S.K.; Ram, M. Risk assessment for sustainability in e-waste recycling in circular economy. Clean Technol. Environ. Policy 2020, 1–13. [Google Scholar] [CrossRef]
- Giunipero, L.C.; Eltantawy, R.A. Securing the upstream supply chain: A risk management approach. Int. J. Phys. Distrib. Logist. Manag. 2004, 34, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Singh, R.K.; Murtaza, Q. A literature review and perspectives in reverse logistics. Resour. Conserv. Recycl. 2015, 97, 76–92. [Google Scholar] [CrossRef]
- Agnusdei, G.P.; Gnoni, M.G.; Tornese, F. Modelling and simulation tools for integrating forward and reverse logistics: A literature review. In Proceedings of the European Modeling & Simulation Symposium, Lisbon, Portugal, 18–20 September 2019; pp. 317–326. [Google Scholar] [CrossRef]
- ManzariTavakoli, E.; Mirzaee, M. Coordination of a three-level supply chain under disruption using profit sharing and return policy contracts. Int. J. Ind. Eng. Comput. 2014, 5, 139–150. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J. Random yield supply chain with a yield dependent secondary market. Eur. J. Oper. Res. 2010, 206, 221–230. [Google Scholar] [CrossRef]
- Monte, M.C.; Fuente, E.; Blanco, A.; Negro, C. Waste management from pulp and paper production in the European Union. Waste Manag. 2009, 29, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Kull, T.J.; Talluri, S. A supply risk reduction model using integrated multicriteria decision making. IEEE Trans. Eng. Manag. 2008, 55, 409–419. [Google Scholar] [CrossRef]
- Levary, R.R.; Levary, R.R. Insight from industry Ranking foreign suppliers based on supply risk. Supply Chain Manag. Int. J. 2007, 12, 392–394. [Google Scholar] [CrossRef]
- Chan, F.T.S.; Kumar, N. Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 2007, 35, 417–431. [Google Scholar] [CrossRef]
- Chen, P.S.; Wu, M.T. A modified failure mode and effects analysis method for supplier selection problems in the supply chain risk environment: A case study. Comput. Ind. Eng. 2013, 66, 634–642. [Google Scholar] [CrossRef]
- Giannakis, M.; Papadopoulos, T. Supply chain sustainability: A risk management approach. Int. J. Prod. Econ. 2016, 171, 455–470. [Google Scholar] [CrossRef]
- Tuncel, G. Computers in Industry Risk assessment and management for supply chain networks: A case study. Comput. Ind. 2010, 61, 250–259. [Google Scholar] [CrossRef]
- Gupta, S.; Soni, U.; Kumar, G. Computers & Industrial Engineering Green supplier selection using multi-criterion decision making under fuzzy environment: A case study in automotive industry. Comput. Ind. Eng. 2019, 136, 663–680. [Google Scholar] [CrossRef]
- Paksoy, T.; Çalik, A.; Yildizba, A.; Huber, S. Risk Management in Lean & Green Supply Chain: A Novel Fuzzy Linguistic Risk Assessment Approach. In Lean and Green Supply Chain Management; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Hu, A.H.; Hsu, C.W.; Kuo, T.C.; Wu, W.C. Risk evaluation of green components to hazardous substance using FMEA and FAHP. Expert Syst. Appl. 2009, 36, 7142–7147. [Google Scholar] [CrossRef]
- Hosseini, S.; Ivanov, D.; Dolgui, A. Ripple effect modelling of supplier disruption: Integrated Markov chain and dynamic Bayesian network approach. Int. J. Prod. Res. 2020, 58, 3284–3303. [Google Scholar] [CrossRef]
- Faisal, M.N.; Banwet, D.K.; Shankar, R. Supply chain risk mitigation: Modeling the enablers. Bus. Process. Manag. J. 2006, 12, 535–552. [Google Scholar] [CrossRef]
- Radivojevi, G.; Gajovi, V. Supply chain risk modeling by AHP and Fuzzy AHP methods. J. Risk Res. 2013, 17, 337–352. [Google Scholar] [CrossRef]
- Tummala, R.; Schoenherr, T. Assessing and managing risk using the Supply Chain Risk Management Process (SCRMP). Supply Chain Manag. Int. J. 2011, 16, 474–483. [Google Scholar] [CrossRef]
- Teng, S.G.; Ho, S.M.; Shumar, D.; Liu, P.C.; Teng, S.G. Implementing FMEA in a collaborative supply chain environment. Int. J. Qual. Reliab. Manag. 2006, 23, 179–196. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Mohanty, B.K.; Singh, K.N. Supply chain risk assessment during new product development: A group decision making approach using numeric and linguistic data. Int. J. Prod. Res. 2013, 51, 2790–2804. [Google Scholar] [CrossRef]
- Sinha, P.R.; Whitman, L.E.; Malzahn, D. Methodology to mitigate supplier risk in an aerospace supply chain. Supply Chain Manag. Int. J. 2004, 9, 154–168. [Google Scholar] [CrossRef]
- Garvey, M.D.; Carnovale, S.; Yeniyurt, S. An analytical framework for supply network risk propagation: A Bayesian network approach. Eur. J. Oper. Res. 2015, 243, 618–627. [Google Scholar] [CrossRef]
- Kumar Sharma, S.; Sharma, S. Developing a Bayesian Network Model for Supply Chain Risk Assessment. Supply Chain Forum 2015, 16, 50–72. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Z.; Chu, F.; Zheng, F.; Chu, C. A new robust dynamic Bayesian network approach for disruption risk assessment under the supply chain ripple effect. Int. J. Prod. Res. 2021, 59, 265–285. [Google Scholar] [CrossRef]
- Hosseini, S.; Ivanov, D. A new resilience measure for supply networks with the ripple effect considerations: A Bayesian network approach. Ann. Oper. Res. 2019, 1–27. [Google Scholar] [CrossRef]
- Pai, R.R.; Kallepalli, V.R.; Caudill, R.J.; Zhou, M. Methods toward supply chain risk analysis. In Proceedings of the SMC’03 Conference Proceedings. IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, USA, 8 October 2003; Volume 5, pp. 4560–4565. [Google Scholar] [CrossRef]
- Shevtshenko, E.; Wang, Y. Decision support under uncertainties based on robust Bayesian networks in reverse logistics management. Int. J. Comput. Appl. Technol. 2009, 36, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Xia, Y.; Wang, X. Managing supply uncertainties through Bayesian information update. IEEE Trans. Autom. Sci. Eng. 2009, 7, 24–36. [Google Scholar] [CrossRef]
- Duchessi, P.J. A methodology for developing Bayesian networks: An application to information technology (IT) implementation. Eur. J. Oper. Res. 2007, 179, 234–252. [Google Scholar] [CrossRef]
- Luu, V.T.; Kim, S.; Van Tuan, N.; Ogunlana, S.O. Quantifying schedule risk in construction projects using Bayesian belief networks. Int. J. Proj. Manag. 2009, 27, 39–50. [Google Scholar] [CrossRef]
- Yelland, P.M.; Kim, S.; Stratulate, R.; Microsystems, S. A Bayesian Model for Sales Forecasting at sun microsystems. Interfaces 2010, 40, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Sarker, B.R.; Escobar, L.A. Peak demand forecasting for a seasonal product using Bayesian approach. J. Oper. Res. Soc. 2011, 62, 1019–1028. [Google Scholar] [CrossRef]
- Cui, G.; Wong, M.L.; Lui, H.; Wong, M.L. Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming. Manag. Sci. 2006, 52, 597–612. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.D.; Mackoy, R.D.; Thompson, V.B.; Harrell, G. A Bayesian network estimation of the service-profit chain for transport service satisfaction. Decis. Sci. 2004, 35, 665–689. [Google Scholar] [CrossRef] [Green Version]
- Tofighi, S.; Torabi, S.A.; Mansouri, S.A. Humanitarian logistics network design under mixed uncertainty. Eur. J. Oper. Res. 2016, 250, 239–250. [Google Scholar] [CrossRef] [Green Version]
- DuHadway, S.; Carnovale, S.; Hazen, B. Understanding risk management for intentional supply chain disruptions: Risk detection, risk mitigation, and risk recovery. Ann. Oper. Res. 2019, 283, 179–198. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. Inequality, limits and growth from a bioeconomic viewpoint. Rev. Soc. Econ. 1977, 35, 361–375. [Google Scholar] [CrossRef]
- Daly, H.E.; Townsend, K.N. Valuing the Earth: Economics, Ecology, Ethics; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Gouda, S.K.; Saranga, H. Sustainable supply chains for supply chain sustainability: Impact of sustainability efforts on supply chain risk. Int. J. Prod. Res. 2018, 56, 5820–5835. [Google Scholar] [CrossRef]
- Song, W.; Ming, X.; Liu, H. Identifying critical risk factors of sustainable supply chain management: A rough strength-relation analysis method. J. Clean. Prod. 2017, 143, 100–115. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B. The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. Int. J. Prod. Res. 2019, 57, 829–846. [Google Scholar] [CrossRef]
- Kauppi, K.; Longoni, A.; Caniato, F.; Kuula, M. Managing country disruption risks and improving operational performance: Risk management along integrated supply chains. Int. J. Prod. Econ. 2016, 182, 484–495. [Google Scholar] [CrossRef]
- Maria, C.; Hua, K.; Lim, M. Green as the new Lean: How to use Lean practices as a catalyst to greening your supply chain. J. Clean. Prod. 2013, 40, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Sodhi, M.S.; Tang, C.S. Research Opportunities in Supply Chain Transparency. Prod. Oper. Manag. 2019, 28, 2946–2959. [Google Scholar] [CrossRef] [Green Version]
- Gunasekaran, A. Agile manufacturing: A framework for research and development. Int. J. Prod. Econ. 1999, 62, 87–105. [Google Scholar] [CrossRef]
- Guiltinan, J. Creative Destruction and Destructive Creations: Environmental Ethics and Planned Obsolescence. J. Bus. Ethics 2009, 89, 19–28. [Google Scholar] [CrossRef]
- Llerena, D. Green Consumer Behaviour: An Experimental. Bus. Strategy Environ. 2011, 420, 408–420. [Google Scholar]
- Panjehfouladgaran, H.; Lim, S.F.W.T. Reverse logistics risk management: Identification, clustering and risk mitigation strategies. Manag. Decis. 2020, 58, 1449–1474. [Google Scholar] [CrossRef]
- Tukamuhabwa, B.; Stevenson, M.; Busby, J. Supply chain resilience in a developing country context: A case study on the interconnectedness of threats, strategies and outcomes. Supply Chain Manag. Int. J. 2017, 22, 486–505. [Google Scholar] [CrossRef] [Green Version]
Author | Area of Risk | Methodology | Type of Risk |
---|---|---|---|
Kull and Talluri [58] | Supplier selection problem | AHP and goal programming | Supply risk |
Chan and Kumar [60] | Global supplier selection | Fuzzy extended AHP | Supply risk |
Chen and Wu [61] | Supplier selection problem | Modified FMEA |
|
Giannakis and Papadopoulos [62] | Supply chain sustainability | FMEA |
|
Tuncel [63] | Supply chain network | FMECA and Petri nets framework |
|
Paksoy et al. [65] | Green supply chain | Fuzzy linguistic approach | Supplier risk |
Faisal et al. [68] | Supply Chain network | Interpretive structural modeling | Supply chain-related risk |
Radivojevi and Gajovi [69] | Complete Supply Chain | AHP and fuzzy AHP |
|
Tummala and Schoenherr [70] | Complete Supply Chain | SCRMP |
|
Teng et al. [71] | Collaborative supply chain of Automobile industry | Integrated FMEA |
|
Hu et al. [66] | OEM/ODM of electronic manufacturer in Taiwan | FMEA and FAHP | Green component risk |
Chaudhuri et al. [72] | Aircraft manufacturing industry | Group decision making and FMEA | Supplier-related risk |
Sinha et al. [73] | Aerospace supply chain | IDEFO method | Supplier risk |
Risk Category | Risk Event | Risk Measure | References |
---|---|---|---|
Economic risk (RC1) | Supply risk (RE1), Flawed incentive structures (RE2), High investment (RE3) | Failure in delivering the right quality and quantity of product; Misalignment of interest between supplier and company; Accreditation of suppliers; Revenue generation of company; Return on investment; Financial instability due to fluctuating market demand; Portfolio of customer; Market trend; Profit percentage; Product sale. | [30,47,87] |
Environmental Risk (RC2) | Limited store of resources (RE1), Uneven geographical distribution of resources (RE2), Limited assimilative capacities of ecosystems (RE3) | Supplier licensing; Disaster mitigation; Check on resource extraction; Transportation challenges; Routing and allocation; Planning and optimization; Regularity check; Accreditation and adoption; Policies supporting CE adoption. | [52,88,89,90] |
Social Risk (RC3) | Excessive working time of the employees (RE1), Unfair wages (RE2), Work–life imbalance (RE3) | Accurate forecasting; Social responsibility; Mass immigration; Revenue generation; Profit sharing; Management involvement; Conducive working environment; Health standards; Work load distribution. | [87,91,92] |
Technological Risk (RC4) | Threat of implementing newer/complex technology (RE1), Compatibility issues with existing systems (RE2) | Fulfillment of desired objectives; Revenue generation; Environmental effect; Product performance; Likelihood of process change; Generation of defects; Value embedded. | [92,93,94] |
Waste management Risk (RC5) | Health-associated risk to the society (RE1) Penalties involving improper disposal of waste (RE2) | Effect on local geographical ecosystem; Framing of health standard protocols; Loss of credibility; Financial losses; Intricacy in receiving accreditation. | [53,95,96] |
Agile Vulnerability (RC6) | Swift response to agile changes (RE1), Flexibility in production process (RE2) | Market demand; Piling up of inventory; Lost sales; Profit generation; Frequent technological upgradation; Loss of production; Customer satisfaction. | [57,87,97] |
Risk of Cannibalization (RC7) | Deregulated markets (RE1), Problematic ownership structures (RE2) | Compliance with market norms; Monopolization; Market share; Customer satisfaction; Service life of product; Product return; Market credibility. | [57,96,98,99] |
Risk | Economic Risk | Environmental Risk | Social Risk | Techno-Logical Risk | Waste Management Risk | Agile Vulnerability | Risk of Cannibalization | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Risk Event | Supply Risk | Flawed Incentive Structures | High Investment | Limited Resources | Uneven Geographical Distribution | Assimilative Capacity of Ecosystem | Excessive Working Time of Employees | Unfair Wages | Work-Life Imbalance | Threat of Implementing New Technology | Compatibility with Existing Systems | Health-Associated Risk | Improper Disposal of Waste | Swift Response to Agile Changes | Lack of Flexibility | Deregulated Markets | Problematic Ownership Structures |
M1 | 0.65 | 0.40 | 0.75 | 0.60 | 0.15 | 0.80 | 0.76 | 0.32 | 0.65 | 0.68 | 0.55 | 0.42 | 0.75 | 0.15 | 0.10 | 0.78 | 0.52 |
M2 | 0.45 | 0.55 | 0.65 | 0.50 | 0.25 | 0.62 | 0.25 | 0.67 | 0.35 | 0.64 | 0.69 | 0.49 | 0.78 | 0.16 | 0.31 | 0.54 | 0.78 |
M3 | 0.62 | 0.25 | 0.67 | 0.35 | 0.64 | 0.69 | 0.49 | 0.78 | 0.15 | 0.80 | 0.76 | 0.32 | 0.65 | 0.68 | 0.55 | 0.42 | 0.75 |
M4 | 0.64 | 0.69 | 0.49 | 0.78 | 0.15 | 0.80 | 0.76 | 0.32 | 0.65 | 0.55 | 0.65 | 0.50 | 0.25 | 0.62 | 0.25 | 0.67 | 0.35 |
Rt1 | 0.65 | 0.68 | 0.55 | 0.42 | 0.75 | 0.15 | 0.10 | 0.78 | 0.52 | 0.35 | 0.26 | 0.29 | 0.49 | 0.78 | 0.15 | 0.20 | 0.26 |
Rt2 | 0.35 | 0.64 | 0.69 | 0.49 | 0.78 | 0.15 | 0.80 | 0.76 | 0.62 | 0.25 | 0.67 | 0.35 | 0.24 | 0.29 | 0.49 | 0.38 | 0.29 |
Rt3 | 0.78 | 0.15 | 0.80 | 0.76 | 0.32 | 0.65 | 0.55 | 0.65 | 0.50 | 0.65 | 0.50 | 0.25 | 0.62 | 0.25 | 0.67 | 0.35 | 0.44 |
Re1 | 0.64 | 0.69 | 0.49 | 0.78 | 0.15 | 0.80 | 0.76 | 0.32 | 0.65 | 0.75 | 0.15 | 0.670 | 0.78 | 0.52 | 0.35 | 0.64 | 0.69 |
Re2 | 0.65 | 0.55 | 0.65 | 0.50 | 0.65 | 0.50 | 0.25 | 0.62 | 0.25 | 0.69 | 0.49 | 0.78 | 0.15 | 0.80 | 0.76 | 0.62 | 0.25 |
Re3 | 0.78 | 0.52 | 0.35 | 0.64 | 0.69 | 0.49 | 0.78 | 0.15 | 0.80 | 0.65 | 0.68 | 0.55 | 0.42 | 0.75 | 0.15 | 0.60 | 0.54 |
CSC Partner | Economic | Environmental | Social | Technological | Waste Management | Agile Vulnerability | Risk of Cannibalization | Overall Probability of Risk Impact |
---|---|---|---|---|---|---|---|---|
Risk Probability | ||||||||
M1 | 0.6 | 0.51 | 0.57 | 0.61 | 0.59 | 0.12 | 0.65 | 0.52 |
M2 | 0.55 | 0.45 | 0.42 | 0.66 | 0.64 | 0.23 | 0.66 | 0.51 |
M3 | 0.51 | 0.56 | 0.47 | 0.78 | 0.49 | 0.62 | 0.59 | 0.57 |
M4 | 0.6 | 0.58 | 0.58 | 0.6 | 0.38 | 0.44 | 0.51 | 0.53 |
Rt1 | 0.63 | 0.44 | 0.47 | 0.30 | 0.39 | 0.47 | 0.23 | 0.42 |
Rt2 | 0.56 | 0.47 | 0.73 | 0.41 | 0.29 | 0.39 | 0.34 | 0.45 |
Rt3 | 0.58 | 0.58 | 0.57 | 0.58 | 0.44 | 0.46 | 0.38 | 0.51 |
Re1 | 0.6 | 0.58 | 0.58 | 0.45 | 0.44 | 0.74 | 0.67 | 0.58 |
Re2 | 0.62 | 0.55 | 0.37 | 0.59 | 0.47 | 0.78 | 0.44 | 0.54 |
Re3 | 0.55 | 0.60 | 0.58 | 0.67 | 0.49 | 0.45 | 0.56 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhimwal, M.; Agrawal, S.; Kumar, G. Measuring Circular Supply Chain Risk: A Bayesian Network Methodology. Sustainability 2021, 13, 8448. https://doi.org/10.3390/su13158448
Chhimwal M, Agrawal S, Kumar G. Measuring Circular Supply Chain Risk: A Bayesian Network Methodology. Sustainability. 2021; 13(15):8448. https://doi.org/10.3390/su13158448
Chicago/Turabian StyleChhimwal, Madhukar, Saurabh Agrawal, and Girish Kumar. 2021. "Measuring Circular Supply Chain Risk: A Bayesian Network Methodology" Sustainability 13, no. 15: 8448. https://doi.org/10.3390/su13158448
APA StyleChhimwal, M., Agrawal, S., & Kumar, G. (2021). Measuring Circular Supply Chain Risk: A Bayesian Network Methodology. Sustainability, 13(15), 8448. https://doi.org/10.3390/su13158448