Sulfur Application Combined with Planomicrobium sp. Strain MSSA-10 and Farmyard Manure Biochar Helps in the Management of Charcoal Rot Disease in Sunflower (Helianthus annuus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Experimental Material
2.2. Experimental Layout
2.3. Crop Husbandry
2.4. Data Collection
2.4.1. Disease and Growth Assessments
2.4.2. Assessment of Physio-Chemical Attributes
2.5. Statistical Analysis
3. Results
3.1. Disease Incidence and Plant Mortality
3.2. Impact of Different Treatments on Growth Attributes of Sunflower
3.3. Impact of Various Treatments on Physiochemical Attributes of Sunflowers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrew, R.L.; Kane, N.C.; Baute, G.J.; Grassa, C.J.; Rieseberg, L.H. Recent nonhybrid origin of sunflower ecotypes in a novel habitat. Mol. Ecol. 2013, 22, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Karefyllakis, D.; van der Goot, A.J.; Nikiforidis, C.V. Multicomponent emulsifiers from sunflower seeds. Curr. Opin. Food Sci. 2019, 29, 35–41. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, S.; Hasan, W.; Ul-Allah, S.; Tanveer, M.; Farooq, M.; Nawaz, A. Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric. Water Manage 2018, 201, 152–166. [Google Scholar] [CrossRef]
- Shah, A.; Hassnain, S.; Nadeem, A. Sunflower area and production variability in Pakistan: Opportunities and constraints. Helia 2005, 28, 165–178. [Google Scholar] [CrossRef] [Green Version]
- GOP. Economic Survey of Pakistan; Economic Adviser’s Wing, Finance Division, Government of Pakistan: Islamabad, Pakistan, 2020. [Google Scholar]
- Mukhtar, I. Sunflower disease and insect pests in Pakistan: A review. African Crop Sci. J. 2010, 17, 109–118. [Google Scholar] [CrossRef]
- Siddique, S.; Shoaib, A.; Khan, S.N.; Mohy-ud-din, A. Screening and histopathological characterization of sunflower germplasm for resistance to Macrophomina phaseolina. Mycologia 2021, 113, 92–107. [Google Scholar] [CrossRef]
- Ijaz, S.; Sadaqat, H.A.; Khan, M.N. A review of the impact of charcoal rot (Macrophomina phaseolina) on sunflower. J. Agric. Sci. 2013, 151, 222–227. [Google Scholar] [CrossRef]
- Iqbal, U.; Mukhtar, T.; Iqbal, S.M. In vitro and in vivo evaluation of antifungal activities of some antagonistic plants against charcoal rot causing fungus Macrophomina phaseolina. Pakistan J. Agric. Sci. 2014, 51, 689–694. [Google Scholar]
- Ram, R.M.; Singh, H.B. Rhizoctonia bataticola: A serious threat to chickpea production. Int. J. Chem. Stud. 2018, 6, 715–723. [Google Scholar]
- Khan, S.N. Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopath 2007, 5, 111–118. [Google Scholar]
- Bhutta, R.A. Biological Studies on Some Fungi Associated with Sunflower in Pakistan; Sindh Agriculture University: Tandojam, Pakistan, 1997. [Google Scholar]
- Amusa, R.U.; Okechukwu, N.A.; Akinfenwa, B. Reactions of cowpea to infection by Macrophomina phaseolina isolates from leguminous plants in Nigeria. African J. Agric. Res. 2007, 2, 73–75. [Google Scholar]
- Katan, J. Physical and cultural methods for the management of soil-borne pathogens. Crop Prot 2000, 19, 725–731. [Google Scholar] [CrossRef]
- Gaige, A.R.; Ayella, A.; Shuai, B. Methyl jasmonate and ethylene induce partial resistance in Medicago truncatula against the charcoal rot pathogen Macrophomina phaseolina. Physiol. Mol. Plant Pathol. 2010, 74, 412–418. [Google Scholar] [CrossRef]
- Gaige, A.R.; Doerksen, T.; Shuai, B. Medicago truncatula ecotypes A17 and R108 show variations in jasmonic acid/ethylene induced resistance to Macrophomina phaseolina. Can. J. Plant Pathol. 2012, 34, 98–103. [Google Scholar] [CrossRef]
- Mukhtar, T.; Arooj, M.; Ashfaq, M.; Gulzar, A. Resistance evaluation and host status of selected green gram germplasm against Meloidogyne incognita. Crop Prot. 2017, 92, 198–202. [Google Scholar] [CrossRef]
- Mukhtar, T.; Kayani, M.Z. Comparison of the damaging effects of Meloidogyne incognita on a resistant and susceptible cultivar of cucumber. Bragantia 2020. [Google Scholar] [CrossRef]
- Iqbal, U.; Mukhtar, T. Evaluation of Biocontrol Potential of Seven Indigenous Trichoderma Species against Charcoal Rot Causing Fungus, Macrophomina phaseolina. Gesunde Pflanz. 2020, 72, 195–202. [Google Scholar] [CrossRef]
- Taha, M.M.; Mahmoud, A.F.; Hassan, M.A.; Mahmoud, A.M.; Sallam, M.A. Potential resistance of certain sunflower cultivars and inbred lines against charcoal rot disease caused by Macrophomina phaseolina (Tassi) Goid. J. Phytopathol. Pest Manag. 2018, 5, 55–66. [Google Scholar]
- El-Abdean, W.Z.; Abo-Elyousr, K.A.M.; Hassan, M.H.A.; El-sharkawy, R.M.A. Effect of silicon compounds against Macrophomina phaseolina the causal agent of soybean charcoal rot disease. Arch. Phytopathol. Plant Prot. 2020, 53, 983–998. [Google Scholar] [CrossRef]
- Zveibil, A.; Mor, N.; Gnayem, N.; Freeman, S. Survival, host–pathogen interaction, and management of Macrophomina phaseolina on strawberry in Israel. Plant Dis. 2012, 96, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, M.; Seijo, T.E.; Noling, J.C.; De los Santos, B.; Peres, N.A. Efficacy of fumigant treatments and inoculum placement on control of Macrophomina phaseolina in strawberry beds. Crop Prot. 2016, 90, 163–169. [Google Scholar] [CrossRef]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King saud University-Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef] [Green Version]
- El_Komy, M.H.; Hassouna, M.G.; Abou-Taleb, E.M.; Al-Sarar, A.S.; Abobakr, Y. A mixture of Azotobacter, Azospirillum, and Klebsiella strains improves root-rot disease complex management and promotes growth in sunflowers in calcareous soil. Eur. J. Plant Pathol. 2020, 156, 713–726. [Google Scholar] [CrossRef]
- Gupta, K.; Dubey, N.K.; Singh, S.P.; Kheni, J.K.; Gupta, S.; Varshney, A. Plant Growth-Promoting Rhizobacteria (PGPR): Current and Future Prospects for Crop Improvement. In Current Trends in Microbial Biotechnology for Sustainable Agriculture; Springer: Singapore, 2021; pp. 203–226. [Google Scholar]
- Khare, E.; Arora, N.K. Biosurfactant based formulation of Pseudomonas guariconensis LE3 with multifarious plant growth promoting traits controls charcoal rot disease in Helianthus annus. World J. Microbiol. Biotechnol. 2021, 37, 55. [Google Scholar] [CrossRef]
- Mufti, R.; Bano, A. PGPR-induced defense responses in the soybean plant against charcoal rot disease. Eur. J. Plant Pathol. 2019, 155, 983–1000. [Google Scholar] [CrossRef]
- Viejobueno, J.; Albornoz, P.L.; Camacho, M.; de los Santos, B.; Martínez-Zamora, M.G.; Salazar, S.M. Protection of Strawberry Plants against Charcoal Rot Disease (Macrophomina phaseolina) Induced by Azospirillum brasilense. Agronomy 2021, 11, 195. [Google Scholar] [CrossRef]
- Sabaté, D.C.; Brandan, C.P.; Petroselli, G.; Erra-Balsells, R.; Audisio, M.C. Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biol. Control 2017, 113, 1–8. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Humayun, P.; Kiran, B.K.; Kannan, I.G.K.; Vidya, M.S.; Deepthi, K.; Rupela, O. Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol. 2011, 27, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, S.; Srinivas, V.; Naresh, N.; Pratyusha, S.; Ankati, S.; Madhuprakash, J.; Govindaraj, M.; Sharma, R. Deciphering the antagonistic effect of Streptomyces spp. and host-plant resistance induction against charcoal rot of sorghum. Planta 2021, 253, 57. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Sharma, R.; Srinivas, V.; Naresh, N.; Mishra, S.P.; Ankati, S.; Pratyusha, S.; Govindaraj, M.; Gonzalez, S.V.; Nervik, S.; et al. Identification and Characterization of a Streptomyces albus Strain and Its Secondary Metabolite Organophosphate against Charcoal Rot of Sorghum. Plants 2020, 9, 1727. [Google Scholar] [CrossRef]
- Khare, E.; Singh, S.; Maheshwari, D.K.; Arora, N.K. Suppression of Charcoal Rot of Chickpea by Fluorescent Pseudomonas Under Saline Stress Condition. Curr. Microbiol. 2011, 62, 1548–1553. [Google Scholar] [CrossRef] [PubMed]
- El_Komy, M.H.; Ibrahim, Y.E.; Saleh, A.A.; Molan, Y.Y. Integration of rhizobacterial mixture and silicon nutrition shows potential for the management of charcoal rot of sunflowers caused by Macrophomina phaseolina in semi-arid regions. J. Plant Pathol. 2020, 102, 1227–1239. [Google Scholar] [CrossRef]
- Wang, M.; Gao, L.; Dong, S.; Sun, Y.; Shen, Q.; Guo, S. Role of Silicon on Plant–Pathogen Interactions. Front. Plant Sci. 2017, 8, 701. [Google Scholar] [CrossRef] [Green Version]
- Morsy, S. Effect of some Soil Amendments on Damping-Off and Charcoal-Rot as well as on Sunflower Growth Characteristics and Yield. Egypt. J. Phytopathol. 2012, 40, 27–38. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Massachusetts, MA, USA, 2012; ISBN 9780123849052. [Google Scholar]
- Shah, M.A.M.A.; Manaf, A.; Hussain, M.; Farooq, S.; Zafar-ul-Hye, M. Sulphur fertilization improves the sesame productivity and economic returns under rainfed conditions. Int. J. Agric. Biol. 2013, 15, 1301–1306. [Google Scholar]
- Bloem, E.; Haneklaus, S.; Schnug, E. Significance of sulfur compounds in the protection of plants against pests and diseases. J. Plant Nutr. 2005, 28, 763–784. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Routledge: London, UK, 2015; ISBN 9781849770552. [Google Scholar]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Elmer, W.H.; Pignatello, J.J. Effect of Biochar Amendments on Mycorrhizal Associations and Fusarium Crown and Root Rot of Asparagus in Replant Soils. Plant Dis. 2011, 95, 960–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.C.; Frye, S.; Gale, N.; Garmon, M.; Launchbury, R.; Machado, N.; Melamed, S.; Murray, J.; Petroff, A.; Winsborough, C. Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environ. Manag. 2013, 129, 62–68. [Google Scholar] [CrossRef]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances Agron 2011, 112, 103–143. [Google Scholar]
- Eo, J.; Park, K.-C. Effects of manure composts on soil biota and root-rot disease incidence of ginseng (Panax ginseng). Appl. Soil Ecol. 2013, 71, 58–64. [Google Scholar] [CrossRef]
- Eo, J.; Park, K.-C.; Kim, M.-H.; Kwon, S.-I.; Song, Y.-J. Effects of rice husk and rice husk biochar on root rot disease of ginseng (Panax ginseng) and on soil organisms. Biol. Agric. Hortic. 2018, 34, 27–39. [Google Scholar] [CrossRef]
- Shahid, M.; Shah, A.A.; Basit, F.; Noman, M.; Zubair, M.; Ahmed, T.; Naqqash, T.; Manzoor, I.; Maqsood, A. Achromobacter sp. FB-14 harboring ACC deaminase activity augmented rice growth by upregulating the expression of stress-responsive CIPK genes under salinity stress. Braz. J. Microbiol. 2020, 51, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Akram, M.S.; Khan, M.A.; Zubair, M.; Shah, S.M.; Ismail, M.; Shabir, G.; Basheer, S.; Aslam, K.; Tariq, M. A phytobeneficial strain Planomicrobium sp. MSSA-10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment. J. Appl. Microbiol. 2018, 124, 1566–1579. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, M.F.; Ashraf, I.; Abid, M.; Steffens, D. Effect of biochar, lime, and compost application on phosphorus adsorption in a Ferralsol. J. Plant Nutr. Soil Sci. 2015, 178, 576–581. [Google Scholar] [CrossRef]
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Calmak, I.; Horst, W.J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 1991, 83, 463–468. [Google Scholar] [CrossRef]
- Kumar, K.B.; Khan, P.A. Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Indian J. Exp. Biol. 1982, 20, 412–416. [Google Scholar]
- Zielewicz, W.; Wróbel, B.; Niedbała, G. Quantification of Chlorophyll and Carotene Pigments Content in Mountain Melick (Melica nutans L.) in Relation to Edaphic Variables. Forests 2020, 11, 1197. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Steel, R.; Torrei, J.; Dickey, D. Principles and Procedures of Statistics A Biometrical Approach; McGraw-Hill Book Co.: New York, NY, USA, 1997. [Google Scholar]
- de Sousa Linhares, C.M.; Ambrósio, M.M.Q.; Castro, G.; Torres, S.B.; Esteras, C.; de Sousa Nunes, G.H.; Picó, B. Effect of temperature on disease severity of charcoal rot of melons caused by Macrophomina phaseolina: Implications for selection of resistance sources. Eur. J. Plant Pathol. 2020, 158, 431–441. [Google Scholar] [CrossRef]
- Akhtar, K.P.; Sarwar, G.; Arshad, H.M.I. Temperature response, pathogenicity, seed infection and mutant evaluation against Macrophomina phaseolina causing charcoal rot disease of sesame. Arch. Phytopathol. Plant Prot. 2011, 44, 320–330. [Google Scholar] [CrossRef]
- Ahmed, N.A.-K.; Dechamp-Guillaume, G.; Seassau, C. Biofumigation to protect oilseed crops: Focus on management of soilborne fungi of sunflower. OCL 2020, 27, 59. [Google Scholar] [CrossRef]
- Khurana, N.; Chatterjee, C. Influence of variable zinc on yield, oil content, and physiology of sunflower. Commun. Soil Sci. Plant Anal. 2001, 32, 3023–3030. [Google Scholar] [CrossRef]
- Tsonev, T.; Cebola Lidon, F.J. Zinc in plants—An overview. Emirates J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Zafar-ul-Hye, M.; Tahzeeb-ul-Hassan, M.; Abid, M.; Fahad, S.; Brtnicky, M.; Dokulilova, T.; Datta, R.; Danish, S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020, 10, 69183. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Wang, Y.; Tian, X.; Jiang, Z.; Deng, F.; Tao, Y.; Jiang, Q.; Wang, L.; Zhang, Y. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. J. Hazard. Mater. 2021, 401, 123292. [Google Scholar] [CrossRef]
- Liao, J.; Liu, X.; Hu, A.; Song, H.; Chen, X.; Zhang, Z. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). Sci. Rep. 2020, 10, 11063. [Google Scholar] [CrossRef]
- Xia, H.; Riaz, M.; Zhang, M.; Liu, B.; El-Desouki, Z.; Jiang, C. Biochar increases nitrogen use efficiency of maize by relieving aluminum toxicity and improving soil quality in acidic soil. Ecotoxicol. Environ. Saf. 2020, 196, 110531. [Google Scholar] [CrossRef] [PubMed]
Sulphur Dose (mg/kg) | MP | Biochar + MP | NPK + MP | PGPR1 + MP | PGPR2 + MP | PGPR3 + MP |
---|---|---|---|---|---|---|
0.00 | T1 | T2 | T3 | T4 | T5 | T6 |
2.25 | T7 | T8 | T9 | T10 | T11 | T12 |
Rating | Disease Symptoms | Resistance Level |
---|---|---|
1 | No disease sign observed | Extremely resistant |
3 | Slight cuts on cotyledon tissue | Resistant |
5 | Cuts developed on cotyledon | Tolerant |
7 | Widespread cuts on branches and stem | Susceptible |
9 | Maximum growing points were infested | Highly susceptible |
Parameters | Sulfur mg/kg | MP | Biochar + MP | NPK + MP | PGPR1 + MP | PGPR2 + MP | PGPR3 + MP |
---|---|---|---|---|---|---|---|
Germination (seeds/pot) | 0 | 3.66 a–c | 4.66 a | 2.66 c | 4.66 a | 3.66 a–c | 3.00 bc |
2.25 | 3.66 a–c | 4.00 ab | 3.33 bc | 3.66 a–c | 4.66 a | 2.66 c | |
Head formation (number of plants) | 0 | 3.00 b | 3.33 ab | 1.33 c | 3.00 b | 2.33 bc | 2.33 bc |
2.25 | 2.33 bc | 3.00 b | 2.66 b | 2.66 b | 4.33 a | 1.33 c | |
Head injury (number of heads injured) | 0 | 4.33 a | 2.33 bc | 3.33 ab | 2.33 bc | 2.00 c | 1.66 c |
2.25 | 3.33 ab | 1.66 c | 2.33 bc | 2.33 bc | 1.33 c | 1.33 c | |
Shoot length (cm) | 0 | 67.77 g | 74.00 d–f | 81.22 b | 70.22 fg | 82.77 ab | 73.61 d–f |
2.25 | 76.88 cd | 86.44 a | 81.11 b | 75.88 de | 80.44 bc | 76.88 cd | |
Total number of leaves/plants | 0 | 13.44 c–e | 12.66 e | 15.22 a–c | 12.77 e | 13.44 c–e | 13.66 c–e |
2.25 | 13.33 c–e | 17.00 a | 16.55 ab | 14.88 bc | 13.00 de | 16.66 ab | |
Stem diameter (cm) | 0 | 0.20 c–e | 0.19 e | 0.23 a–c | 0.19 e | 0.20 c–e | 0.21 c–e |
2.25 | 0.20 c–e | 0.26 a | 0.23 a–c | 0.22 b–d | 0.20 de | 0.25 ab | |
Shoot fresh weight (g) | 0 | 87.22 d | 90.56 cd | 97.89 bc | 90.78 cd | 106.44 a | 94.11 cd |
2.25 | 105.11 ab | 109.33 a | 109.22 a | 110.44 a | 112.44 a | 104.89 ab | |
Shoot dry weight (g) | 0 | 16.33 ab | 16.00 a–c | 15.0 b–e | 15.33 a–d | 16.33 ab | 14.33 c–f |
2.25 | 17.00 a | 14.00 d–f | 13.33 ef | 15.66 a–d | 15.00 b–e | 12.66 f | |
Root dry weight (g) | 0 | 3.05 b–d | 2.26 ef | 1.73 f | 2.83 c–e | 2.41 d–f | 3.05 b–d |
2.25 | 2.20 ef | 3.04 b–d | 2.73 de | 3.51 a–c | 3.76 ab | 4.17 a | |
100-seed weight (g) | 0 | 7.62 de | 7.66 de | 7.62 de | 7.75 c–e | 7.47 e | 7.80 b–d |
2.25 | 8.09 ab | 8.14 a | 7.99 a–c | 8.08 ab | 7.80 b–d | 8.20 a |
Parameters | Sulfur mg/kg | MP | Biochar + MP | NPK + MP | PGPR1 + MP | PGPR2 + MP | PGPR3 + MP |
---|---|---|---|---|---|---|---|
polyphenol oxidase activity (min−1 mg−1 of protein) | 0 | 0.054 f | 0.051 f | 0.15 bc | 0.091 d | 0.084 de | 0.17 b |
2.25 | 0.089 d | 0.083 de | 0.23 a | 0.14 c | 0.063 ef | 0.095 d | |
Catalase activity (min−1 mg−1 of protein) | 0 | 11.98 g | 23.34 de | 27.98 bc | 18.31 f | 19.39 ef | 29.99 b |
2.25 | 16.18 f | 25.81 cd | 38.05 a | 22.70 de | 29.61 bc | 18.60 f | |
Carotenoids (mg g−1 FW) | 0 | 2.26 b | 1.69 d–f | 2.11 bc | 1.88 c–e | 2.63 a | 1.74 de |
2.25 | 1.99 b–d | 1.38 f | 2.18 bc | 1.89 c–e | 1.64 ef | 2.12 bc | |
Protein (mg g−1 FW) | 0 | 0.13 a | 0.07 cd | 0.10 b | 0.08 c | 0.07 cd | 0.08 cd |
2.25 | 0.07 cd | 0.07 cd | 0.06 de | 0.07 de | 0.05 e | 0.08 c | |
Total chlorophyll (mg g−1 FW) | 0 | 0.410 bc | 0.292 d | 0.460 ab | 0.372 c | 0.446 ab | 0.460 ab |
2.25 | 0.419 a–c | 0.423 a–c | 0.464 ab | 0.483 ab | 0.487 a | 0.475 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ijaz, M.; Sattar, A.; Sher, A.; Ul-Allah, S.; Mansha, M.Z.; Khan, K.A.; Shahzad, M.A.; Al-Sadi, A.M.; Arif, M.; Aljuaid, B.S.; et al. Sulfur Application Combined with Planomicrobium sp. Strain MSSA-10 and Farmyard Manure Biochar Helps in the Management of Charcoal Rot Disease in Sunflower (Helianthus annuus L.). Sustainability 2021, 13, 8535. https://doi.org/10.3390/su13158535
Ijaz M, Sattar A, Sher A, Ul-Allah S, Mansha MZ, Khan KA, Shahzad MA, Al-Sadi AM, Arif M, Aljuaid BS, et al. Sulfur Application Combined with Planomicrobium sp. Strain MSSA-10 and Farmyard Manure Biochar Helps in the Management of Charcoal Rot Disease in Sunflower (Helianthus annuus L.). Sustainability. 2021; 13(15):8535. https://doi.org/10.3390/su13158535
Chicago/Turabian StyleIjaz, Muhammad, Abdul Sattar, Ahmad Sher, Sami Ul-Allah, Muhammad Zeeshan Mansha, Kashif Ali Khan, Muhammad Asif Shahzad, Abdullah M. Al-Sadi, Muhammad Arif, Bandar S. Aljuaid, and et al. 2021. "Sulfur Application Combined with Planomicrobium sp. Strain MSSA-10 and Farmyard Manure Biochar Helps in the Management of Charcoal Rot Disease in Sunflower (Helianthus annuus L.)" Sustainability 13, no. 15: 8535. https://doi.org/10.3390/su13158535
APA StyleIjaz, M., Sattar, A., Sher, A., Ul-Allah, S., Mansha, M. Z., Khan, K. A., Shahzad, M. A., Al-Sadi, A. M., Arif, M., Aljuaid, B. S., El-Shehawi, A. M., & Farooq, S. (2021). Sulfur Application Combined with Planomicrobium sp. Strain MSSA-10 and Farmyard Manure Biochar Helps in the Management of Charcoal Rot Disease in Sunflower (Helianthus annuus L.). Sustainability, 13(15), 8535. https://doi.org/10.3390/su13158535