Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock
Abstract
:1. Introduction
1.1. Sources of Wastewater
1.1.1. Industrial Wastewater
1.1.2. Sugar-Based Wastewater
1.1.3. Cellulose- and Chitin-Based Waste
1.1.4. Landfill Leachates
1.1.5. Protein-Based Wastewater
1.2. Need for Hydrogen as a Biofuel
2. Biological Hydrogen Production
2.1. Bio-Photolysis
2.2. Dark Fermentation
2.3. Photo Fermentation
3. Existing Wastewater Treatment Technologies and Their Bottlenecks
Microbial Electrolysis Cell Mechanism for Wastewater Treatment with Simultaneous Hydrogen Production
4. Thermodynamics and Electrochemistry for Hydrogen Production Using MEC
4.1. Anodic Potential for Hydrogen Production
4.2. Performance Calculation
4.2.1. Hydrogen Production Rate and Coulombic Efficiency
4.2.2. Energy Recovery
5. MEC Reactor Architecture
5.1. Single-Chambered MEC
5.1.1. An Up-Flow Single-Chambered MEC
5.1.2. Smallest-Scale MEC
5.1.3. A Cathode-on-Top Single-Chamber MEC
5.2. Dual-Chambered MEC
Patent ID | Description | Reference |
---|---|---|
US8440438B2 | More competition for fossil fuels and the desire to avoid carbon dioxide release through burning necessitate the development of new and sustainable technologies for energy generation and carbon capture. In accordance with aspects of the present invention, methods are given that include providing an electromethanogenic reactor containing an anode, a cathode, and a plurality of methanogenic microorganisms positioned on the cathode. Methanogens are given electrons and carbon dioxide. Even in the absence of hydrogen and/or organic carbon sources, methanogenic microbes produce methane. | [73] |
US20150233001A1 | Bioelectrochemical systems including a microbial fuel cell (MFC) and a microbial electrolysis cell (MEC) are provided. Both systems can ferment insoluble or soluble biomass, with the MFC capable of using a consolidated bioprocessing (CBP) organism to also hydrolyze an insoluble biomass and an electricigen to produce electricity. The MEC, on the other hand, relies on electricity input into the system, a fermentative organism, and an electricigen to produce fermentative products such as ethanol and 1,3-propanediol from a polyol biomass (e.g., containing glycerol). There are also approaches that are related. | [74] |
EP2747181A1 | The present invention relates to a process for inhibiting methanogenesis in single-chamber microbial electrolysis cells, which includes the initial addition of at least one methanogenesis inhibitor and is characterized by the following: dissolved hydrogen is removed from said cells after said initial addition of at least one methanogenesis inhibitor. | [75] |
US7922878B2 | The present invention provides a system for hydrogen gas generation that includes a hydrogen gas electrode assembly with a first anode in electrical communication with a first cathode, a microbial fuel cell electrode assembly with a second anode in electrical communication with a second cathode, a microbial fuel cell electrode assembly in electrical communication with a third cathode, and a hydrogen gas electrode assembly with a third anode in electrical communication with a third cathode. The hydrogen gas electrode assembly is at least partially contained in the interior space of a single-chamber housing. | [76] |
US9216919B2 | A brush anode microbial electrolysis cell is shown. At the cathode of the microbial electrolysis cell, a method for manufacturing products such as hydrogen is also given. The microbial electrolysis cell has a cylindrical shape with a concentric brush anode spirally wrapped around the outside of a cylindrical MEC, as illustrated in Figure 7. In some situations, the procedure may require sparging the anode and/or cathode with air. In rare situations, CO2-containing gas can also be fed into a cathode chamber to lower the pH. | [77] |
CN102408155A | The invention discloses a microbial electrolysis cell that combines CO2 conversion and sewage treatment functionalities. The invention relates to the intersection of biofuel cells and the environment, as well as carbon dioxide capture and usage, and it is specifically linked to a kind of CO2 conversion collection, with WWT in the microorganism electrolytic cell. | [78] |
6. Scale-Up Reactor Designing
7. Optimizing Features Affecting the MEC System Design for Hydrogen Production and Wastewater Treatment
7.1. Feedstock
7.1.1. Domestic or Residential Wastewater
7.1.2. Industrial/Food Processing Wastewater
7.1.3. Fermentation Effluents
7.1.4. Swine Wastewater
7.1.5. Refinery Wastewater
7.1.6. Winery Wastewater
7.2. Inoculation
7.3. Electrode Material
7.3.1. Anode Material
7.3.2. Cathode Material
7.4. Effect of Electrolyte pH
7.5. Temperature
7.6. Applied Potentials
8. Bottlenecks in Commercialization of MECs for Biogas Production during Wastewater Treatment
Cathode Material | Catalyst | Id | Q (m3·m−3·day−1) | Eapp (v) | References |
---|---|---|---|---|---|
Activated carbon | Nitrogen | NA | 0.0060 (m3·m−2) | 0.8 kWh·m−3 | [143] |
Stainless steel | Nickel oxide | NA | 0.76 | 0.6 kWh·m−3 | [49] |
Molybdenum disulfide | 10.7 Am−2 | NA | NA | [144] | |
Carbon cloth | Nickel/molybdenum | 2.1 Am−2 | 1.25 | 0.6 kWh·m−3 | [145] |
Molybdenum disulfide/carbon nanotubes | NA | 0.01 | 0.8 kWh·m−3 | [146] | |
Nickel powder | NA | 1.2 | 0.6 kWh·m−3 | [69] | |
Nickel-tungsten | 200 Am−2 | 1.5 | [66] | ||
Carbon paper | Nickel powder | NA | 2.6 (L·m−3·day) | 1.0 kWh·m−3 | [147] |
Nano-Mg (OH)2/graphene | 18.3 Am−2 | 0.63 | 0.7 kWh·m−3 | [148] | |
Palladium nanoparticles | NA | 2.6 | 0.6 kWh·m−3 | [149] | |
Nickel foam | 22.8 Am−2 | 50 | 1.0 kWh·m−3 | [105] | |
Nickel/phosphorous | NA | 2.29 | 0.9 kWh·m−3 | [150] | |
Nickel/molybdenum | NA | 0.13 | 0.6 kWh·m−3 | [151] | |
Nickel/tungsten | 0.14 | [152] | |||
Graphene | NA | 1.31 | 0.8 kWh·m−3 | [153] | |
Nickel/iron layered double hydroxide | 197 Am−2 | 2.12 | 0.8 kWh·m−3 | [154] | |
Gas diffusion electrode | Nickel powder | 4.6 Am−2 | 5.4 | 1.0 kWh·m−3 | [155] |
8.1. Economic and Cost Analysis
8.2. Scale-Up Strategies
Pilot-Scale Limitations
8.3. Investigation of Methane and Hydrogen Generation and Its Implications for Industrial Application
Hydrogen Production Technology and Inventory
9. Integrated MEC Systems
10. Comparison between MEC Technology and Water Electrolysis
Comparison in Terms of Theoretical Energy Yields
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res 2018, 6, 141. [Google Scholar] [CrossRef]
- Savla, N.; Pandit, S.; Khanna, N.; Mathuriya, A.S.; Jung, S.P. Microbially Powered Electrochemical Systems Coupled with Membrane-Based Technology for Sustainable Desalination and Efficient Wastewater Treatment. J. Korean Soc. Environ. Eng. 2020, 42, 360–380. [Google Scholar] [CrossRef]
- Pandit, S.; Savla, N.; Jung, S.P. 16—Recent advancements in scaling up microbial fuel cells. In Integrated Microbial Fuel Cells for Wastewater Treatment; Abbassi, R., Yadav, A.K., Khan, F., Garaniya, V., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 349–368. ISBN 978-0-12-817493-7. [Google Scholar]
- Singh Asiwal, R.; Kumar Sar, S.; Singh, S.; Sahu, M. Wastewater Treatment by Effluent Treatment Plants. IJCE 2016, 3, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Dey, P.; Pal, P.; Kevin, J.D.; Das, D.B. Lignocellulosic Bioethanol Production: Prospects of Emerging Membrane Technologies to Improve the Process—A Critical Review. Rev. Chem. Eng. 2020, 36, 333–367. [Google Scholar] [CrossRef] [Green Version]
- Gude, V.G. Energy and Water Autarky of Wastewater Treatment and Power Generation Systems. Renew. Sustain. Energy Rev. 2015, 45, 52–68. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Mehariya, S.; Bhatia, R.K.; Kumar, M.; Pugazhendhi, A.; Awasthi, M.K.; Atabani, A.E.; Kumar, G.; Kim, W.; Seo, S.-O.; et al. Wastewater Based Microalgal Biorefinery for Bioenergy Production: Progress and Challenges. Sci. Total Environ. 2021, 751, 141599. [Google Scholar] [CrossRef]
- Tiwari, R.R. Occupational Health Hazards in Sewage and Sanitary Workers. Indian J. Occup. Environ. Med. 2008, 12, 112–115. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, N.R.; Filho, S.S.F.; Hespanhol, B.P.; Piveli, R.P. Evaluation of Chemical Sludge Production in Wastewater Treatment Processes. Desalin. Water Treat. 2016, 57, 16346–16352. [Google Scholar] [CrossRef]
- Sher, F.; Hanif, K.; Rafey, A.; Khalid, U.; Zafar, A.; Ameen, M.; Lima, E.C. Removal of Micropollutants from Municipal Wastewater Using Different Types of Activated Carbons. J. Environ. Manag. 2021, 278, 111302. [Google Scholar] [CrossRef]
- Agasam, T.; Savla, N.; Kalburge, S.J.; T.k., S.; Pandit, S.; Jadhav, D.A. Chapter 7—Microbial electrosynthesis: Carbon dioxide sequestration via bioelectrochemical system. In The Future of Effluent Treatment Plants; Shah, M., Rodriguez-Couto, S., Mehta, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 113–132. ISBN 978-0-12-822956-9. [Google Scholar]
- Bhagchandanii, D.D.; Babu, R.P.; Sonawane, J.M.; Khanna, N.; Pandit, S.; Jadhav, D.A.; Khilari, S.; Prasad, R. A Comprehensive Understanding of Electro. Fermenta 2020, 6, 92. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Rajendran, K.; Pugazhendhi, A.; Rao, C.V.; Atabani, A.E.; Kumar, G.; Yang, Y.-H. Renewable Biohydrogen Production from Lignocellulosic Biomass Using Fermentation and Integration of Systems with Other Energy Generation Technologies. Sci. Total Environ. 2021, 765, 144429. [Google Scholar] [CrossRef]
- Rousseau, R.; Etcheverry, L.; Roubaud, E.; Basséguy, R.; Délia, M.-L.; Bergel, A. Microbial Electrolysis Cell (MEC): Strengths, Weaknesses and Research Needs from Electrochemical Engineering Standpoint. Appl. Energy 2020, 257, 113938. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Awasthi, M.K.; Dussap, C.-G.; Pandey, A. Assessing the Impact of Industrial Waste on Environment and Mitigation Strategies: A Comprehensive Review. J. Hazard. Mater. 2020, 398, 123019. [Google Scholar] [CrossRef]
- Jin, B.; van Leeuwen, H.J.; Patel, B.; Yu, Q. Utilisation of Starch Processing Wastewater for Production of Microbial Biomass Protein and Fungal α-Amylase by Aspergillus Oryzae. Bioresour. Technol. 1998, 66, 201–206. [Google Scholar] [CrossRef]
- Kim, B.H.; Park, H.S.; Kim, H.J.; Kim, G.T.; Chang, I.S.; Lee, J.; Phung, N.T. Enrichment of Microbial Community Generating Electricity Using a Fuel-Cell-Type Electrochemical Cell. Appl. Microb. Biotechnol. 2004, 63, 672–681. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Ahmad, D.; Lesa, R. Electrolytic Treatment of Beer Brewery Wastewater. Ind. Eng. Chem. Res. 2006, 45, 6854–6859. [Google Scholar] [CrossRef]
- Rezaei, F.; Richard, T.L.; Logan, B.E. Analysis of Chitin Particle Size on Maximum Power Generation, Power Longevity, and Coulombic Efficiency in Solid–Substrate Microbial Fuel Cells. J. Power Sources 2009, 192, 304–309. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Habermann, W.; Pommer, E.H. Biological Fuel Cells with Sulphide Storage Capacity. Appl. Microbiol. Biotechnol. 1991, 35, 128–133. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse Wastewater Characteristics, Treatment, and Management in the Meat Processing Industry: A Review on Trends and Advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef]
- Fornero, J.J.; Rosenbaum, M.; Angenent, L.T. Electric Power Generation from Municipal, Food, and Animal Wastewaters Using Microbial Fuel Cells. Electroanalysis 2010, 22, 832–843. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Saravanan, R.; Raghavulu, S.V.; Mohanakrishna, G.; Sarma, P.N. Bioelectricity Production from Wastewater Treatment in Dual Chambered Microbial Fuel Cell (MFC) Using Selectively Enriched Mixed Microflora: Effect of Catholyte. Bioresour. Technol. 2008, 99, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.D.; Kavitha, S.; Tyagi, V.K.; Rajkumar, M.; Bhatia, S.K.; Kumar, G.; Banu, J.R. Macroalgae-Derived Biohydrogen Production: Biorefinery and Circular Bioeconomy. Biomass Conv. Bioref. 2021. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Cardeña, R.; Cercado, B.; Buitrón, G. Chapter 7—Microbial Electrolysis Cell for Biohydrogen Production. In Biohydrogen, 2nd ed.; Biomass, Biofuels, Biochemicals; Pandey, A., Mohan, S.V., Chang, J.-S., Hallenbeck, P.C., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 159–185. ISBN 978-0-444-64203-5. [Google Scholar]
- Nayak, B.K.; Pandit, S.; Das, D. Biohydrogen. In Air Pollution Prevention and Control; Kennes, C., Veiga, M.C., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2013; pp. 345–381. ISBN 978-1-118-52336-0. [Google Scholar]
- Rajesh Banu, J.; Ginni, G.; Kavitha, S.; Yukesh Kannah, R.; Adish Kumar, S.; Bhatia, S.K.; Kumar, G. Integrated Biorefinery Routes of Biohydrogen: Possible Utilization of Acidogenic Fermentative Effluent. Bioresour. Technol. 2021, 319, 124241. [Google Scholar] [CrossRef]
- Ghirardi, M.L.; King, P.W.; Mulder, D.W.; Eckert, C.; Dubini, A.; Maness, P.-C.; Yu, J. Hydrogen Production by Water Biophotolysis. In Microbial BioEnergy: Hydrogen Production; Advances in Photosynthesis and Respiration; Zannoni, D., De Philippis, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 38, pp. 101–135. ISBN 978-94-017-8553-2. [Google Scholar]
- Savla, N.; Shinde, A.; Sonawane, K.; Mekuto, L.; Chowdhary, P.; Pandit, S. Microbial Hydrogen Production: Fundamentals to Application. In Microorganisms for Sustainable Environment and Health; Chowdhary, P., Raj, A., Verma, D., Akhter, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 343–365. ISBN 978-0-12-819001-2. [Google Scholar]
- Tang, J.H. A Review of Suitable Substrates for Hydrogen Production in Microbial Electrolysis Cells. IOP Conf. Ser. Earth Environ. Sci. 2021, 621, 012145. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lay, C.-H.; Sen, B.; Chu, C.-Y.; Kumar, G.; Chen, C.-C.; Chang, J.-S. Fermentative Hydrogen Production from Wastewaters: A Review and Prognosis. Int. J. Hydrog. Energy 2012, 37, 15632–15642. [Google Scholar] [CrossRef]
- Werner, C.M.; Katuri, K.P.; Hari, A.R.; Chen, W.; Lai, Z.; Logan, B.E.; Amy, G.L.; Saikaly, P.E. Graphene-Coated Hollow Fiber Membrane as the Cathode in Anaerobic Electrochemical Membrane Bioreactors—Effect of Configuration and Applied Voltage on Performance and Membrane Fouling. Environ. Sci. Technol. 2016, 50, 4439–4447. [Google Scholar] [CrossRef]
- Garrido-Baserba, M.; Vinardell, S.; Molinos-Senante, M.; Rosso, D.; Poch, M. The Economics of Wastewater Treatment Decentralization: A Techno-Economic Evaluation. Environ. Sci. Technol. 2018, 52, 8965–8976. [Google Scholar] [CrossRef]
- Rasheed, T.; Shafi, S.; Bilal, M.; Hussain, T.; Sher, F.; Rizwan, K. Surfactants-Based Remediation as an Effective Approach for Removal of Environmental Pollutants—A Review. J. Mol. Liq. 2020, 318, 113960. [Google Scholar] [CrossRef]
- Starkl, M.; Brunner, N.; Feil, M.; Hauser, A. Ensuring Sustainability of Non-Networked Sanitation Technologies: An Approach to Standardization. Environ. Sci. Technol. 2015, 49, 6411–6418. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Parkhey, P.; Gupta, P. Improvisations in Structural Features of Microbial Electrolytic Cell and Process Parameters of Electrohydrogenesis for Efficient Biohydrogen Production: A Review. Renew. Sustain. Energy Rev. 2017, 69, 1085–1099. [Google Scholar] [CrossRef]
- Kim, K.N.; Lee, S.H.; Kim, H.; Park, Y.H.; In, S.-I. Improved Microbial Electrolysis Cell Hydrogen Production by Hybridization with a TiO2 Nanotube Array Photoanode. Energies 2018, 11, 3184. [Google Scholar] [CrossRef] [Green Version]
- Escapa, A.; Mateos, R.; Martínez, E.J.; Blanes, J. Microbial Electrolysis Cells: An Emerging Technology for Wastewater Treatment and Energy Recovery. From Laboratory to Pilot Plant and Beyond. Renew. Sustain. Energy Rev. 2016, 55, 942–956. [Google Scholar] [CrossRef]
- Eerten-Jansen, M.C.A.A.V.; Heijne, A.T.; Buisman, C.J.N.; Hamelers, H.V.M. Microbial Electrolysis Cells for Production of Methane from CO2: Long-Term Performance and Perspectives. Int. J. Energy Res. 2012, 36, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valor 2017, 8, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Kitching, M.; Butler, R.; Marsili, E. Microbial Bioelectrosynthesis of Hydrogen: Current Challenges and Scale-Up. Enzyme Microb. Technol. 2017, 96, 1–13. [Google Scholar] [CrossRef]
- Pant, D.; Singh, A.; Bogaert, G.V.; Olsen, S.I.; Nigam, P.S.; Diels, L.; Vanbroekhoven, K. Bioelectrochemical Systems (BES) for Sustainable Energy Production and Product Recovery from Organic Wastes and Industrial Wastewaters. RSC Adv. 2012, 2, 1248–1263. [Google Scholar] [CrossRef]
- Sleutels, T.H.J.A.; Ter Heijne, A.; Buisman, C.J.N.; Hamelers, H.V.M. Bioelectrochemical Systems: An Outlook for Practical Applications. ChemSusChem 2012, 5, 1012–1019. [Google Scholar] [CrossRef]
- Liu, H.; Grot, S.; Logan, B.E. Electrochemically Assisted Microbial Production of Hydrogen from Acetate. Environ. Sci. Technol. 2005, 39, 4317–4320. [Google Scholar] [CrossRef] [PubMed]
- Rozendal, R.A.; Jeremiasse, A.W.; Hamelers, H.V.M.; Buisman, C.J.N. Hydrogen Production with a Microbial Biocathode. Environ. Sci. Technol. 2008, 42, 629–634. [Google Scholar] [CrossRef]
- Selembo, P.; Merrill, M.; Logan, B. The Use of Stainless Steel and Nickel Alloys as Low-Cost Cathodes in Microbial Electrolysis Cells. J. Power Sources 2009, 190, 271–278. [Google Scholar] [CrossRef]
- Foley, J.; Rozendal, R.; Hertle, C.; Lant, P.; Rabaey, K. Life Cycle Assessment of High-Rate Anaerobic Treatment, Microbial Fuel Cells, and Microbial Electrolysis Cells. Environ. Sci. Technol. 2010, 44, 3629–3637. [Google Scholar] [CrossRef]
- Escapa, A.; San-Martín, M.I.; Mateos, R.; Morán, A. Scaling-up of Membraneless Microbial Electrolysis Cells (MECs) for Domestic Wastewater Treatment: Bottlenecks and Limitations. Bioresour. Technol. 2015, 180, 72–78. [Google Scholar] [CrossRef]
- Dhar, B.R.; Elbeshbishy, E.; Hafez, H.; Lee, H.-S. Hydrogen Production from Sugar Beet Juice Using an Integrated Biohydrogen Process of Dark Fermentation and Microbial Electrolysis Cell. Bioresour. Technol. 2015, 198, 223–230. [Google Scholar] [CrossRef]
- Colantonio, N.; Kim, Y. Cadmium (II) Removal Mechanisms in Microbial Electrolysis Cells. J. Hazard. Mater. 2016, 311. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, A.; Zhang, J.; Wang, S.; Luan, Y.; Liu, W.; Wang, A.; Yue, X. Hydrogen Recovery from Waste Activated Sludge: Role of Free Nitrous Acid in a Prefermentation–Microbial Electrolysis Cells System. ACS Sustain. Chem. Eng. 2018, 6, 3870–3878. [Google Scholar] [CrossRef]
- Miller, A.; Singh, L.; Wang, L.; Liu, H. Linking Internal Resistance with Design and Operation Decisions in Microbial Electrolysis Cells. Environ. Int. 2019, 126, 611–618. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Long, F.; Singh, L.; Trujillo, S.; Xiao, X.; Liu, H. Breaking the Loop: Tackling Homoacetogenesis by Chloroform to Halt Hydrogen Production-Consumption Loop in Single Chamber Microbial Electrolysis Cells. Chem. Eng. J. 2020, 389, 124436. [Google Scholar] [CrossRef]
- Baek, G.; Shi, L.; Rossi, R.; Logan, B.E. The Effect of High Applied Voltages on Bioanodes of Microbial Electrolysis Cells in the Presence of Chlorides. Chem. Eng. J. 2021, 405, 126742. [Google Scholar] [CrossRef]
- Guwy, A.J.; Dinsdale, R.M.; Kim, J.R.; Massanet-Nicolau, J.; Premier, G. Fermentative Biohydrogen Production Systems Integration. Bioresour. Technol. 2011, 102, 8534–8542. [Google Scholar] [CrossRef] [PubMed]
- Morales-Guio, C.G.; Stern, L.-A.; Hu, X. Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. [Google Scholar] [CrossRef] [Green Version]
- Yasri, N.; Roberts, E.P.L.; Gunasekaran, S. The Electrochemical Perspective of Bioelectrocatalytic Activities in Microbial Electrolysis and Microbial Fuel Cells. Energy Rep. 2019, 5, 1116–1136. [Google Scholar] [CrossRef]
- Fetyan, A.; El-Nagar, G.A.; Lauermann, I.; Schnucklake, M.; Schneider, J.; Roth, C. Detrimental Role of Hydrogen Evolution and Its Temperature-Dependent Impact on the Performance of Vanadium Redox Flow Batteries. J. Energy Chem. 2019, 32, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, M.S. A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Tang, X.; Du, Z.; Li, H. Hydrogen Production from Acetate in a Cathode-on-Top Single-Chamber Microbial Electrolysis Cell with a Mipor Cathode. Biochem. Eng. J. 2010, 51, 48–52. [Google Scholar] [CrossRef]
- Hu, H.; Fan, Y.; Liu, H. Hydrogen Production Using Single-Chamber Membrane-Free Microbial Electrolysis Cells. Water Res. 2008, 42, 4172–4178. [Google Scholar] [CrossRef]
- Call, D.F.; Logan, B.E. A Method for High Throughput Bioelectrochemical Research Based on Small Scale Microbial Electrolysis Cells. Biosens. Bioelectron. 2011, 26, 4526–4531. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Fan, Y.; Liu, H. Hydrogen Production in Single-Chamber Tubular Microbial Electrolysis Cells Using Non-Precious-Metal Catalysts. Int. J. Hydrog. Energy 2009, 34, 8535–8542. [Google Scholar] [CrossRef]
- Guo, X.; Liu, J.; Xiao, B. Bioelectrochemical Enhancement of Hydrogen and Methane Production from the Anaerobic Digestion of Sewage Sludge in Single-Chamber Membrane-Free Microbial Electrolysis Cells. Int. J. Hydrog. Energy 2013, 38, 1342–1347. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Hamelers, H.V.M.; Buisman, C.J.N. Effects of Membrane Cation Transport on PH and Microbial Fuel Cell Performance. Environ. Sci. Technol. 2006, 40, 5206–5211. [Google Scholar] [CrossRef]
- Selembo, P.A.; Merrill, M.D.; Logan, B.E. Hydrogen Production with Nickel Powder Cathode Catalysts in Microbial Electrolysis Cells. Int. J. Hydrog. Energy 2010, 35, 428–437. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N. Effect of the Type of Ion Exchange Membrane on Performance, Ion Transport, and PH in Biocatalyzed Electrolysis of Wastewater. Water Sci. Technol. 2008, 57, 1757–1762. [Google Scholar] [CrossRef] [PubMed]
- Rozendal, R.A.; Hamelers, H.V.M.; Molenkamp, R.J.; Buisman, C.J.N. Performance of Single Chamber Biocatalyzed Electrolysis with Different Types of Ion Exchange Membranes. Water Res. 2007, 41, 1984–1994. [Google Scholar] [CrossRef]
- Kim, J.R.; Cheng, S.; Oh, S.-E.; Logan, B.E. Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 1004–1009. [Google Scholar] [CrossRef]
- Cheng, S.; Logan, B. Electromethanogenic Reactor and Processes for Methane Production 2013. Available online: https://patents.google.com/patent/US8440438/en?oq=microbial+electrolysis+cell (accessed on 28 June 2021).
- Reguera, G.; Speers, A.M.; Young, J.M.; Awate, B. Microbial Electrochemical Cells and Methods for Producing Electricity and Bioproducts Therein 2015. Available online: https://patents.google.com/patent/US20150233001/en?oq=microbial+electrolysis+cell (accessed on 28 June 2021).
- Baiget, S.G.; Fernández, M.L.V.; Cirucci, J.; Planell, N.M.; Sancho, F.J.L.; Labat, J.A.B.; Canudas, A.G. Process for the Methanogenesis Inhibition in Single Chamber Microbial Electrolysis Cells 2014. Available online: https://patents.google.com/patent/EP2747181A1/en?oq=EP2747181A1 (accessed on 29 June 2021).
- Logan, B. Electrohydrogenic Reactor for Hydrogen Gas Production 2011. Available online: https://patents.google.com/patent/US7922878B2/en?oq=US7922878B2 (accessed on 28 June 2021).
- Popat, S.; Parameswaran, P.; Torres, C.; Rittmann, B. Microbial Electrolysis Cells and Methods for the Production of Chemical Products 2015. Available online: https://patents.google.com/patent/US9216919B2/en?oq=US9216919B2 (accessed on 28 June 2021).
- 78. He, Y.; Wang, Y.; Xi, H.; Yao, S.; Wang, B. A Microbial Electrolytic Cell Integrating CO2 Conversion and Sewage Treatment 2012. Available online: https://patents.google.com/patent/CN102408155A/en?oq=CN102408155A (accessed on 28 June 2021).
- Rivera, I.; Schröder, U.; Patil, S.A. Chapter 5.8—Microbial Electrolysis for Biohydrogen Production: Technical Aspects and Scale-Up Experiences. In Microbial Electrochemical Technology; Biomass, Biofuels and Biochemicals; Mohan, S.V., Varjani, S., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 871–898. ISBN 978-0-444-64052-9. [Google Scholar]
- Cusick, R.D.; Bryan, B.; Parker, D.S.; Merrill, M.D.; Mehanna, M.; Kiely, P.D.; Liu, G.; Logan, B.E. Performance of a Pilot-Scale Continuous Flow Microbial Electrolysis Cell Fed Winery Wastewater. Appl. Microbiol. Biotechnol. 2011, 89, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Call, D.; Logan, B.E. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environ. Sci. Technol. 2008, 42, 3401–3406. [Google Scholar] [CrossRef] [PubMed]
- Heidrich, E.S.; Edwards, S.R.; Dolfing, J.; Cotterill, S.E.; Curtis, T.P. Performance of a Pilot Scale Microbial Electrolysis Cell Fed on Domestic Wastewater at Ambient Temperatures for a 12month Period. Bioresour. Technol. 2014, 173, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Heidrich, E.S.; Dolfing, J.; Scott, K.; Edwards, S.R.; Jones, C.; Curtis, T.P. Production of Hydrogen from Domestic Wastewater in a Pilot-Scale Microbial Electrolysis Cell. Appl. Microbiol. Biotechnol. 2013, 97, 6979–6989. [Google Scholar] [CrossRef]
- Baeza, J.A.; Martínez-Miró, À.; Guerrero, J.; Ruiz, Y.; Guisasola, A. Bioelectrochemical Hydrogen Production from Urban Wastewater on a Pilot Scale. J. Power Sources 2017, 356, 500–509. [Google Scholar] [CrossRef]
- Carmona-Martínez, A.A.; Trably, E.; Milferstedt, K.; Lacroix, R.; Etcheverry, L.; Bernet, N. Long-Term Continuous Production of H2 in a Microbial Electrolysis Cell (MEC) Treating Saline Wastewater. Water Res. 2015, 81, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savla, N.; Khilari, S.; Pandit, S.; Jung, S.P. Effective Cathode Catalysts for Oxygen Reduction Reactions in Microbial Fuel Cell. In Bioelectrochemical Systems: Vol.1 Principles and Processes; Kumar, P., Kuppam, C., Eds.; Springer: Singapore, 2020; pp. 189–210. ISBN 9789811568725. [Google Scholar]
- Baudler, A.; Schmidt, I.; Langner, M.; Greiner, A.; Schröder, U. Does It Have to Be Carbon? Metal Anodes in Microbial Fuel Cells and Related Bioelectrochemical Systems. Energy Environ. Sci. 2015, 8, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Aiken, D.C.; Curtis, T.P.; Heidrich, E.S. Avenues to the Financial Viability of Microbial Electrolysis Cells [MEC] for Domestic Wastewater Treatment and Hydrogen Production. Int. J. Hydrog. Energ. 2019, 44, 2426–2434. [Google Scholar] [CrossRef]
- Yu, Z.; Leng, X.; Zhao, S.; Ji, J.; Zhou, T.; Khan, A.; Kakde, A.; Liu, P.; Li, X. A Review on the Applications of Microbial Electrolysis Cells in Anaerobic Digestion. Bioresour. Technol. 2018, 255, 340–348. [Google Scholar] [CrossRef]
- Bo, T.; Zhu, X.; Zhang, L.; Tao, Y.; He, X.; Li, D.; Yan, Z. A New Upgraded Biogas Production Process: Coupling Microbial Electrolysis Cell and Anaerobic Digestion in Single-Chamber, Barrel-Shape Stainless Steel Reactor. Electrochem. Commun. 2014, 45, 67–70. [Google Scholar] [CrossRef]
- Gikas, P. Towards Energy Positive Wastewater Treatment Plants. J. Environ. Manag. 2017, 203, 621–629. [Google Scholar] [CrossRef]
- Cusick, R.D.; Kiely, P.D.; Logan, B.E. A Monetary Comparison of Energy Recovered from Microbial Fuel Cells and Microbial Electrolysis Cells Fed Winery or Domestic Wastewaters. Int. J. Hydrog. Energy 2010, 35, 8855–8861. [Google Scholar] [CrossRef]
- Zhen, G.; Kobayashi, T.; Lu, X.; Kumar, G.; Hu, Y.; Bakonyi, P.; Rózsenberszki, T.; Koók, L.; Nemestóthy, N.; Bélafi-Bakó, K.; et al. Recovery of Biohydrogen in a Single-Chamber Microbial Electrohydrogenesis Cell Using Liquid Fraction of Pressed Municipal Solid Waste (LPW) as Substrate. Int. J. Hydrog. Energy 2016, 41, 17896–17906. [Google Scholar] [CrossRef]
- Montpart, N.; Rago, L.; Baeza, J.A.; Guisasola, A. Hydrogen Production in Single Chamber Microbial Electrolysis Cells with Different Complex Substrates. Water Res. 2015, 68, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Liu, Z.; He, Y.; Zhang, Y.; Jianwen, L.; Zhu, Z.; Si, B.; Zhang, C.; Xing, X.-H. Microbial Electrolysis Cell to Treat Hydrothermal Liquefied Wastewater from Cornstalk and Recover Hydrogen: Degradation of Organic Compounds and Characterization of Microbial Community. Int. J. Hydrog. Energy 2016, 41, 4132–4142. [Google Scholar] [CrossRef]
- Bhatia, S.C. 23—Biohydrogen. In Advanced Renewable Energy Systems; Bhatia, S.C., Ed.; Woodhead Publishing India: New Delhi, India, 2014; pp. 627–644. ISBN 978-1-78242-269-3. [Google Scholar]
- Sosa-Hernández, O.; Popat, S.C.; Parameswaran, P.; Alemán-Nava, G.S.; Torres, C.I.; Buitrón, G.; Parra-Saldívar, R. Application of Microbial Electrolysis Cells to Treat Spent Yeast from an Alcoholic Fermentation. Bioresour. Technol. 2016, 200, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Han, T.; Guo, Z.; Varrone, C.; Wang, A.; Liu, W. Methane Production Enhancement by an Independent Cathode in Integrated Anaerobic Reactor with Microbial Electrolysis. Bioresour. Technol. 2016, 208, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Xing, D.; Xie, T.; Ren, N.-Q.; Logan, B. Hydrogen Production from Proteins via Electrohydrogenesis in Microbial Electrolysis Cells. Biosens. Bioelectron. 2010, 25, 2690–2695. [Google Scholar] [CrossRef]
- Ren, L.; Siegert, M.; Ivanov, I.; Pisciotta, J.M.; Logan, B.E. Treatability Studies on Different Refinery Wastewater Samples Using High-Throughput Microbial Electrolysis Cells (MECs). Bioresour. Technol. 2013, 136, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Katuri, K.P.; Ali, M.; Saikaly, P.E. The Role of Microbial Electrolysis Cell in Urban Wastewater Treatment: Integration Options, Challenges, and Prospects. Curr. Opin. Biotechnol. 2019, 57, 101–110. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N. Principle and Perspectives of Hydrogen Production through Biocatalyzed Electrolysis. Int. J. Hydrog. Energy 2006, 31, 1632–1640. [Google Scholar] [CrossRef]
- Ditzig, J.; Liu, H.; Logan, B.E. Production of Hydrogen from Domestic Wastewater Using a Bioelectrochemically Assisted Microbial Reactor (BEAMR). Int. J. Hydrog. Energy 2007, 32, 2296–2304. [Google Scholar] [CrossRef]
- Cheng, S.; Logan, B.E. Ammonia Treatment of Carbon Cloth Anodes to Enhance Power Generation of Microbial Fuel Cells. Electrochem. Commun. 2007, 9, 492–496. [Google Scholar] [CrossRef]
- Jeremiasse, A.W.; Hamelers, H.V.M.; Saakes, M.; Buisman, C.J.N. Ni Foam Cathode Enables High Volumetric H2 Production in a Microbial Electrolysis Cell. Int. J. Hydrog. Energy 2010, 35, 12716–12723. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kobayashi, T.; Kumar, G.; Xu, K. Promoted Electromethanosynthesis in a Two-Chamber Microbial Electrolysis Cells (MECs) Containing a Hybrid Biocathode Covered with Graphite Felt (GF). Chem. Eng. J. 2016, 284, 1146–1155. [Google Scholar] [CrossRef]
- Krishnan, S.; Md Din, M.F.; Taib, S.M.; Nasrullah, M.; Sakinah, M.; Wahid, Z.A.; Kamyab, H.; Chelliapan, S.; Rezania, S.; Singh, L. Accelerated Two-Stage Bioprocess for Hydrogen and Methane Production from Palm Oil Mill Effluent Using Continuous Stirred Tank Reactor and Microbial Electrolysis Cell. J. Clean. Prod. 2019, 229, 84–93. [Google Scholar] [CrossRef]
- Achinas, S.; Euverink, G.J.W. Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material. Energies 2019, 12, 217. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhang, Y.; Luo, L.; Liu, H. Startup Performance of Microbial Electrolysis Cell Assisted Anaerobic Digester (MEC-AD) with Pre-Acclimated Activated Carbon. Bioresour. Technol. Rep. 2019, 5, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Yu, E.H.; Daud, W.R.W.; Kim, B.H.; Scott, K. Bioanode as a Limiting Factor to Biocathode Performance in Microbial Electrolysis Cells. Bioresour. Technol. 2017, 238, 313–324. [Google Scholar] [CrossRef]
- Savla, N.; Anand, R.; Pandit, S.; Prasad, R. Utilization of Nanomaterials as Anode Modifiers for Improving Microbial FuelCells Performance. J. Renew. Mater. 2020, 8, 1581–1605. [Google Scholar] [CrossRef]
- Li, S.; Cheng, C.; Thomas, A. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. Adv. Mater. 2017, 29, 1602547. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Roca-Puigros, M.; Geppert, F.; Caizán-Juanarena, L.; Na Ayudthaya, S.P.; Buisman, C.; ter Heijne, A. Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems. Front. Bioeng. Biotechnol. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Prévoteau, A.; Patil, S.A.; Rabaey, K. Engineering Electrodes for Microbial Electrocatalysis. Curr. Opin. Biotechnol. 2015, 33, 149–156. [Google Scholar] [CrossRef]
- Carlotta-Jones, D.I.; Purdy, K.; Kirwan, K.; Stratford, J.; Coles, S.R. Improved Hydrogen Gas Production in Microbial Electrolysis Cells Using Inexpensive Recycled Carbon Fibre Fabrics. Bioresour. Technol. 2020, 304, 122983. [Google Scholar] [CrossRef]
- Rasheed, T.; Hassan, A.A.; Kausar, F.; Sher, F.; Bilal, M.; Iqbal, H.M.N. Carbon Nanotubes Assisted Analytical Detection—Sensing/Delivery Cues for Environmental and Biomedical Monitoring. Trends Anal. Chem. 2020, 132, 116066. [Google Scholar] [CrossRef]
- Pocaznoi, D.; Calmet, A.; Etcheverry, L.; Erable, B.; Bergel, A. Stainless Steel Is a Promising Electrode Material for Anodes of Microbial Fuel Cells. Energy Environ. Sci. 2012, 5, 9645–9652. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Donose, B.C.; Soeriyadi, A.H.; Prévoteau, A.; Patil, S.A.; Freguia, S.; Gooding, J.J.; Rabaey, K. Flame Oxidation of Stainless Steel Felt Enhances Anodic Biofilm Formation and Current Output in Bioelectrochemical Systems. Environ. Sci. Technol. 2014, 48, 7151–7156. [Google Scholar] [CrossRef] [PubMed]
- Cotterill, S.E.; Dolfing, J.; Jones, C.; Curtis, T.P.; Heidrich, E.S. Low Temperature Domestic Wastewater Treatment in a Microbial Electrolysis Cell with 1 M2 Anodes: Towards System Scale-Up. Fuel Cells 2017, 17, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.; Im, S.; Chung, J.-W. Optimizing the Operating Temperature for Microbial Electrolysis Cell Treating Sewage Sludge. Int. J. Hydrog. Energy 2017, 42, 27784–27791. [Google Scholar] [CrossRef]
- Zhang, T.; Nie, H.; Bain, T.S.; Lu, H.; Cui, M.; Snoeyenbos-West, O.L.; Franks, A.E.; Nevin, K.P.; Russell, T.P.; Lovley, D.R. Improved Cathode Materials for Microbial Electrosynthesis. Energy Environ. Sci. 2012, 6, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.J.; Ismail, Z.Z. Slaughterhouse Wastewater Biotreatment Associated with Bioelectricity Generation and Nitrogen Recovery in Hybrid System of Microbial Fuel Cell with Aerobic and Anoxic Bioreactors. Ecol. Eng. 2018, 125, 119–130. [Google Scholar] [CrossRef]
- Wang, L.; He, Z.; Guo, Z.; Sangeetha, T.; Yang, C.; Gao, L.; Wang, A.; Liu, W. Microbial Community Development on Different Cathode Metals in a Bioelectrolysis Enhanced Methane Production System. J. Power Sources 2019, 444, 227306. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Sangeetha, T.; Guo, Z.; Liu, W.; Cui, M.; Yang, C.; Wang, L.; Wang, A. Cathode Material as an Influencing Factor on Beer Wastewater Treatment and Methane Production in a Novel Integrated Upflow Microbial Electrolysis Cell (Upflow-MEC). Int. J. Hydrog. Energy 2016, 41, 2189–2196. [Google Scholar] [CrossRef] [Green Version]
- Siegert, M.; Yates, M.D.; Spormann, A.M.; Logan, B.E. Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells. ACS Sustain. Chem. Eng. 2015, 3, 1668–1676. [Google Scholar] [CrossRef]
- San-Martín, M.I.; Sotres, A.; Alonso, R.M.; Díaz-Marcos, J.; Morán, A.; Escapa, A. Assessing Anodic Microbial Populations and Membrane Ageing in a Pilot Microbial Electrolysis Cell. Int. J. Hydrog. Energy 2019, 44, 17304–17315. [Google Scholar] [CrossRef]
- Siegert, M.; Yates, M.D.; Call, D.F.; Zhu, X.; Spormann, A.; Logan, B.E. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustain. Chem. Eng. 2014, 2, 910–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ki, D.; Parameswaran, P.; Popat, S.C.; Rittmann, B.E.; Torres, C.I. Maximizing Coulombic Recovery and Solids Reduction from Primary Sludge by Controlling Retention Time and PH in a Flat-Plate Microbial Electrolysis Cell. Environ. Sci. Water Res. Technol. 2017, 3, 333–339. [Google Scholar] [CrossRef]
- Liu, W.; Huang, S.; Zhou, A.; Zhou, G.; Ren, N.; Wang, A.; Zhuang, G. Hydrogen Generation in Microbial Electrolysis Cell Feeding with Fermentation Liquid of Waste Activated Sludge. Int. J. Hydrog. Energy 2012, 37, 13859–13864. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I. Microbial Electrolysis Cells Turning to Be Versatile Technology: Recent Advances and Future Challenges. Water Res. 2014, 56, 11–25. [Google Scholar] [CrossRef]
- Borole, A.P.; Mielenz, J.R. Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology. Int. J. Hydrog. Energy 2011, 36, 14787–14795. [Google Scholar] [CrossRef]
- Merrill, M.D.; Logan, B.E. Electrolyte Effects on Hydrogen Evolution and Solution Resistance in Microbial Electrolysis Cells. J. Power Sources 2009, 191, 203–208. [Google Scholar] [CrossRef]
- Munoz, L.D.; Erable, B.; Etcheverry, L.; Riess, J.; Basséguy, R.; Bergel, A. Combining Phosphate Species and Stainless Steel Cathode to Enhance Hydrogen Evolution in Microbial Electrolysis Cell (MEC). Electrochem. Commun. 2010, 12, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Yossan, S.; Xiao, L.; Prasertsan, P.; He, Z. Hydrogen Production in Microbial Electrolysis Cells: Choice of Catholyte. Int. J. Hydrog. Energy 2013, 38, 9619–9624. [Google Scholar] [CrossRef]
- Omidi, H.; Sathasivan, A. Optimal Temperature for Microbes in an Acetate Fed Microbial Electrolysis Cell (MEC). Int. Biodeterior. Biodegrad. 2013, 85, 688–692. [Google Scholar] [CrossRef]
- Lu, L.; Ren, N.; Zhao, X.; Wang, H.; Wu, D.; Xing, D. Hydrogen Production, Methanogen Inhibition and Microbial Community Structures in Psychrophilic Single-Chamber Microbial Electrolysis Cells. Energy Environ. Sci. 2011, 4, 1329–1336. [Google Scholar] [CrossRef]
- Ajayi, F.F.; Kim, K.-Y.; Chae, K.-J.; Choi, M.-J.; Kim, I.S. Effect of Hydrodymamic Force and Prolonged Oxygen Exposure on the Performance of Anodic Biofilm in Microbial Electrolysis Cells. Int. J. Hydrog. Energy 2010, 35, 3206–3213. [Google Scholar] [CrossRef]
- Wang, A.; Liu, W.; Ren, N.; Cheng, H.; Lee, D.-J. Reduced Internal Resistance of Microbial Electrolysis Cell (MEC) as Factors of Configuration and Stuffing with Granular Activated Carbon. Int. J. Hydrog. Energy 2010, 35, 13488–13492. [Google Scholar] [CrossRef]
- Sun, M.; Sheng, G.-P.; Zhang, L.; Xia, C.-R.; Mu, Z.-X.; Liu, X.-W.; Wang, H.-L.; Yu, H.-Q.; Qi, R.; Yu, T.; et al. An MEC-MFC-Coupled System for Biohydrogen Production from Acetate. Environ. Sci. Technol. 2008, 42, 8095–8100. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.-Y.; Tokash, J.C.; Logan, B.E. Comparison of Microbial Electrolysis Cells Operated with Added Voltage or by Setting the Anode Potential. Int. J. Hydrog. Energy 2011, 36, 10550–10556. [Google Scholar] [CrossRef]
- Chae, K.-J.; Choi, M.-J.; Kim, K.-Y.; Ajayi, F.F.; Chang, I.-S.; Kim, I.S. A Solar-Powered Microbial Electrolysis Cell with a Platinum Catalyst-Free Cathode To Produce Hydrogen. Environ. Sci. Technol. 2009, 43, 9525–9530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wen, Z.; Ci, S.; Chen, J.; He, Z. Nitrogen-Doped Activated Carbon as a Metal Free Catalyst for Hydrogen Production in Microbial Electrolysis Cells. RSC Adv. 2014, 4, 49161–49164. [Google Scholar] [CrossRef] [Green Version]
- Tokash, J.C.; Logan, B.E. Electrochemical Evaluation of Molybdenum Disulfide as a Catalyst for Hydrogen Evolution in Microbial Electrolysis Cells. Int. J. Hydrog. Energy 2011, 36, 9439–9445. [Google Scholar] [CrossRef]
- Hu, H.; Fan, Y.; Liu, H. Optimization of NiMo Catalyst for Hydrogen Production in Microbial Electrolysis Cells. Int. J. Hydrog. Energy 2010, 35, 3227–3233. [Google Scholar] [CrossRef]
- Yuan, H.; Li, J.; Yuan, C.; He, Z. Facile Synthesis of MoS2@CNT as an Effective Catalyst for Hydrogen Production in Microbial Electrolysis Cells. ChemElectroChem 2014, 1, 1828–1833. [Google Scholar] [CrossRef]
- Manuel, M.-F.; Neburchilov, V.; Wang, H.; Guiot, S.R.; Tartakovsky, B. Hydrogen Production in a Microbial Electrolysis Cell with Nickel-Based Gas Diffusion Cathodes. J. Power Sources 2010, 195, 5514–5519. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Yang, H.; Liu, X.; Jian, X.; Liang, Z. Electrochemical Evaluation of Nano-Mg(OH)2/Graphene as a Catalyst for Hydrogen Evolution in Microbial Electrolysis Cell. Fuel 2016, 174, 251–256. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Liu, X.-W.; Sun, X.-F.; Sheng, G.-P.; Zhang, Y.-Y.; Yan, G.-M.; Wang, S.-G.; Xu, A.-W.; Yu, H.-Q. A New Cathodic Electrode Deposit with Palladium Nanoparticles for Cost-Effective Hydrogen Production in a Microbial Electrolysis Cell. Int. J. Hydrog. Energy 2011, 36, 2773–2776. [Google Scholar] [CrossRef]
- Li, F.; Liu, W.; Sun, Y.; Ding, W.; Cheng, S. Enhancing Hydrogen Production with Ni–P Coated Nickel Foam as Cathode Catalyst in Single Chamber Microbial Electrolysis Cells. Int. J. Hydrog. Energy 2017, 42, 3641–3646. [Google Scholar] [CrossRef]
- Mitov, M.; Chorbadzhiyska, E.; Nalbandian, L.; Hubenova, Y. Nickel-Based Electrodeposits as Potential Cathode Catalysts for Hydrogen Production by Microbial Electrolysis. J. Power Sources 2017, 356, 467–472. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; He, Z.; Guo, Z.; Zhou, A.; Wang, A. Cathodic Hydrogen Recovery and Methane Conversion Using Pt Coating 3D Nickel Foam Instead of Pt-Carbon Cloth in Microbial Electrolysis Cells. Int. J. Hydrog. Energy 2017, 42, 19604–19610. [Google Scholar] [CrossRef]
- Cai, W.; Liu, W.; Han, J.; Wang, A. Enhanced Hydrogen Production in Microbial Electrolysis Cell with 3D Self-Assembly Nickel Foam-Graphene Cathode. Biosens. Bioelectron. 2016, 80, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Hou, D.; Fang, Y.; Huang, Y.; Ren, Z.J. Nickel Based Catalysts for Highly Efficient H2 Evolution from Wastewater in Microbial Electrolysis Cells. Electrochim. Acta 2016, 206, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Hrapovic, S.; Manuel, M.-F.; Luong, J.H.T.; Guiot, S.R.; Tartakovsky, B. Electrodeposition of Nickel Particles on a Gas Diffusion Cathode for Hydrogen Production in a Microbial Electrolysis Cell. Int. J. Hydrog. Energy 2010, 35, 7313–7320. [Google Scholar] [CrossRef] [Green Version]
- Savla, N.; Suman; Pandit, S.; Verma, J.P.; Awasthi, A.K.; Sana, S.S.; Prasad, R. Techno-Economical Evaluation and Life Cycle Assessment of Microbial Electrochemical Systems: A Review. Curr. Res. Green Sustain. Chem. 2021, 4, 100111. [Google Scholar] [CrossRef]
- Rabaey, K.; Verstraete, W. Bacterial Potential for Electricity Generation. Trends Biotechnol. 2005, 6, 291–298. [Google Scholar] [CrossRef]
- Escapa, A.; Gómez, X.; Tartakovsky, B.; Morán, A. Estimating Microbial Electrolysis Cell (MEC) Investment Costs in Wastewater Treatment Plants: Case Study. Int. J. Hydrog. Energy 2012, 37, 18641–18653. [Google Scholar] [CrossRef]
- Guo, H.; Kim, Y. Stacked Multi-Electrode Design of Microbial Electrolysis Cells for Rapid and Low-Sludge Treatment of Municipal Wastewater. Biotechnol. Biofuels 2019, 12, 23. [Google Scholar] [CrossRef]
- Wang, T.; Li, C.; Zhu, G. Performance, Process Kinetics and Functional Microbial Community of Biocatalyzed Electrolysis-Assisted Anaerobic Baffled Reactor Treating Carbohydrate-Containing Wastewater. RSC Adv. 2018, 8, 41150–41162. [Google Scholar] [CrossRef] [Green Version]
- Muoio, R.; Palli, L.; Ducci, I.; Coppini, E.; Bettazzi, E.; Daddi, D.; Fibbi, D.; Gori, R. Optimization of a Large Industrial Wastewater Treatment Plant Using a Modeling Approach: A Case Study. J. Environ. Manag. 2019, 249, 109436. [Google Scholar] [CrossRef]
- Wan, L.-L.; Li, X.-J.; Zang, G.-L.; Wang, X.; Zhang, Y.-Y.; Zhou, Q.-X. A Solar Assisted Microbial Electrolysis Cell for Hydrogen Production Driven by a Microbial Fuel Cell. RSC Adv. 2015, 5, 82276–82281. [Google Scholar] [CrossRef]
- Bastidas-Oyanedel, J.-R.; Schmidt, J.E. Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis. Energies 2018, 11, 1551. [Google Scholar] [CrossRef] [Green Version]
- Lampert, D.J.; Cai, H.; Wang, Z.; Keisman, J.; Wu, M.; Han, J.; Dunn, J.; Sullivan, J.L.; Elgowainy, A.; Wang, M.; et al. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels; Argonne National Lab. (ANL): Argonne, IL, USA, 2015. [Google Scholar]
- Bargigli, S.; Raugei, M.; Ulgiati, S. Comparison of Thermodynamic and Environmental Indexes of Natural Gas, Syngas and Hydrogen Production Processes. Energy 2004, 29, 2145–2159. [Google Scholar] [CrossRef]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.J.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Beegle, J.R.; Borole, A.P. An Integrated Microbial Electrolysis-Anaerobic Digestion Process Combined with Pretreatment of Wastewater Solids to Improve Hydrogen Production. Environ. Sci. Water Res. Technol. 2017, 3, 1073–1085. [Google Scholar] [CrossRef]
- Hassanein, A.; Witarsa, F.; Lansing, S.; Qiu, L.; Liang, Y. Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure. Sustainability 2020, 12, 8491. [Google Scholar] [CrossRef]
- Huang, J.; Feng, H.; Huang, L.; Ying, X.; Shen, D.; Chen, T.; Shen, X.; Zhou, Y.; Xu, Y. Continuous Hydrogen Production from Food Waste by Anaerobic Digestion (AD) Coupled Single-Chamber Microbial Electrolysis Cell (MEC) under Negative Pressure. Waste Manag. 2020, 103, 61–66. [Google Scholar] [CrossRef]
- Lewis, A.J.; Ren, S.; Ye, X.; Kim, P.; Labbe, N.; Borole, A.P. Hydrogen Production from Switchgrass via an Integrated Pyrolysis–Microbial Electrolysis Process. Bioresour. Technol. 2015, 195, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-H.; Liang, D.-W.; Bai, Y.-X.; Fan, Y.-T.; Hou, H.-W. Enhanced H2 Production from Corn Stalk by Integrating Dark Fermentation and Single Chamber Microbial Electrolysis Cells with Double Anode Arrangement. Int. J. Hydrog. Energy 2014, 39, 8977–8982. [Google Scholar] [CrossRef]
- Marone, A.; Ayala-Campos, O.R.; Trably, E.; Carmona-Martínez, A.A.; Moscoviz, R.; Latrille, E.; Steyer, J.-P.; Alcaraz-Gonzalez, V.; Bernet, N. Coupling Dark Fermentation and Microbial Electrolysis to Enhance Bio-Hydrogen Production from Agro-Industrial Wastewaters and by-Products in a Bio-Refinery Framework. Int. J. Hydrog. Energy 2017, 42, 1609–1621. [Google Scholar] [CrossRef]
- Rivera, I.; Buitrón, G.; Bakonyi, P.; Nemestóthy, N.; Bélafi-Bakó, K. Hydrogen Production in a Microbial Electrolysis Cell Fed with a Dark Fermentation Effluent. J. Appl. Electrochem. 2015, 45, 1223–1229. [Google Scholar] [CrossRef]
- Khongkliang, P.; Kongjan, P.; Utarapichat, B.; Reungsang, A.; O-Thong, S. Continuous Hydrogen Production from Cassava Starch Processing Wastewater by Two-Stage Thermophilic Dark Fermentation and Microbial Electrolysis. Int. J. Hydrog. Energy 2017, 42, 27584–27592. [Google Scholar] [CrossRef]
- Wang, A.; Sun, D.; Cao, G.; Wang, H.; Ren, N.; Wu, W.-M.; Logan, B.E. Integrated Hydrogen Production Process from Cellulose by Combining Dark Fermentation, Microbial Fuel Cells, and a Microbial Electrolysis Cell. Bioresour. Technol. 2011, 102, 4137–4143. [Google Scholar] [CrossRef]
- Song, Y.-C.; Woo, W.-H. Anaerobic Digestion Apparatus Equipped with Landscape Bioelectrochemical Apparatus and Anaerobic Digestion Method of Organic Waste Using the Same 2015. Available online: https://patents.google.com/patent/KR101575790B1/en?oq=KR101575790B1 (accessed on 29 June 2021).
- Li, J.; Zhang, W. Experimental Device for Hydrogen Production by Electrolysis Assisted Fermentation 2010. Available online: https://patents.google.com/patent/CN201416000Y/en?oq=CN201416000Y (accessed on 29 June 2021).
- Jisheng, L.; Chao, S.; Li, X.; Haifeng, Z.; Bei, L.; Yu, G.; Shi, H.; Yichen, H.; Yang, L.; Haocheng, Y. Microbial Electrolytic Cell-Membrane Bioreactor Combined Treatment Device for Landfill Leachate 2020. Available online: https://patents.google.com/patent/CN211339214U/en?oq=CN211339214U (accessed on 29 June 2021).
- Krishnan, A. Power Management System for a Microbial Fuel Cell and Microbial Electrolysis Cell Coupled System 2014. Available online: https://patents.google.com/patent/US20140285007A1/en?oq=US20140285007A1 (accessed on 29 June 2021).
- Liang, Z.; Dai, H.; Zhao, Y.; Yang, H.; Liu, X. Microbial Fuel Cell Self-Driving Microbial Electrolytic Cell Hydrogen Production and Storage Method 2016. Available online: https://patents.google.com/patent/CN104141147B/en?q=MFC+%2b+MEC&oq=MFC+%2b+MEC (accessed on 29 June 2021).
- Chen, L.; Dong, X.; Wang, Y.; Xia, Y. Separating Hydrogen and Oxygen Evolution in Alkaline Water Electrolysis Using Nickel Hydroxide. Nat. Commun. 2016, 7, 11741. [Google Scholar] [CrossRef] [PubMed]
- Symes, M.D.; Cronin, L. Decoupling Hydrogen and Oxygen Evolution during Electrolytic Water Splitting Using an Electron-Coupled-Proton Buffer. Nat. Chem. 2013, 5, 403–409. [Google Scholar] [CrossRef]
- Dopson, M.; Ni, G.; Sleutels, T.H. Possibilities for Extremophilic Microorganisms in Microbial Electrochemical Systems. FEMS Microbiol. Rev. 2016, 40, 164–181. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.A.; Harnisch, F.; Koch, C.; Hübschmann, T.; Fetzer, I.; Carmona-Martínez, A.A.; Müller, S.; Schröder, U. Electroactive Mixed Culture Derived Biofilms in Microbial Bioelectrochemical Systems: The Role of PH on Biofilm Formation, Performance and Composition. Bioresour. Technol. 2011, 102, 9683–9690. [Google Scholar] [CrossRef] [PubMed]
- Popat, S.C.; Torres, C.I. Critical Transport Rates That Limit the Performance of Microbial Electrochemistry Technologies. Bioresour. Technol. 2016, 215, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.I.; Marcus, A.K.; Rittmann, B.E. Proton Transport inside the Biofilm Limits Electrical Current Generation by Anode-Respiring Bacteria. Biotechnol. Bioeng. 2008, 100, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Moscoviz, R.; Toledo-Alarcón, J.; Trably, E.; Bernet, N. Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems. Trends Biotechnol. 2016, 34, 856–865. [Google Scholar] [CrossRef]
- Sugnaux, M.; Happe, M.; Cachelin, C.P.; Gasperini, A.; Blatter, M.; Fischer, F. Cathode Deposits Favor Methane Generation in Microbial Electrolysis Cell. Chem. Eng. J. 2017, 324, 228–236. [Google Scholar] [CrossRef]
- Brown, R.K.; Harnisch, F.; Wirth, S.; Wahlandt, H.; Dockhorn, T.; Dichtl, N.; Schröder, U. Evaluating the Effects of Scaling up on the Performance of Bioelectrochemical Systems Using a Technical Scale Microbial Electrolysis Cell. Bioresour. Technol. 2014, 163, 206–213. [Google Scholar] [CrossRef]
- Luo, S.; Jain, A.; Aguilera, A.; He, Z. Effective Control of Biohythane Composition through Operational Strategies in an Innovative Microbial Electrolysis Cell. Appl. Energy 2017, 206, 879–886. [Google Scholar] [CrossRef]
Substrate Type | MEC Specification | Applied Voltage (V) | Hydrogen Production Rate (m3·m−3·day−1) | Reference |
---|---|---|---|---|
Acetate | Two-chamber MEC | 0.45 | 0.37 | [47] |
Acetate | Two-chamber MEC | 0.5 | 0.02 | [102] |
Domestic wastewater | Bioelectrochemically assisted microbial reactor | 0.5 | 0.01 | [103] |
Acetate | Modified MFC | 0.6 | 1.1 | [104] |
Acetate | Single-chamber membrane-free MEC | 0.6 | 0.69 | [64] |
Acetate | Single-chamber membrane-free MEC | 0.8 | 3.12 | [81] |
Acetate | Single-chamber MEC with anion-exchange membrane | 1.0 | 0.3 | [71] |
Acetate | Two-chamber MEC | 1 | 50 | [105] |
Glycerol | Two-chamber MEC | 0.9 | 3.9 | |
Municipal solid waste | Single-chamber MEC | 3.0 | 0.38 ± 0.09 | [106] |
Glycerol, milk, starch | Single-chamber MEC | 0.8 | 0.94 | [94] |
Palm oil mill effluent | Single-chamber MEC | 0.1–0.8 | 205 mL H2·g COD−1 | [107] |
Type | Conversion Pathway | Electricity (kWh·kg−1 H2) | Water (kg·kg−1 H2) | Ammonia (kg·kg−1 H2) | Glucose (kg·kg−1 H2) | Corn Liquor (kg·kg−1 H2) |
---|---|---|---|---|---|---|
Thermo-chemical | Steam methane reforming (SMR) | 1.11 | 21.869 | - | - | - |
Biomass gasification (BMG) | 0.98 | 305.5 | - | - | - | |
Coal gasification (CG) | 1.72 | 2.91 | - | - | - | |
Biological | Dark fermentation + microbial electrolysis cell (MEC), without ER | 21.6 | 104.225 | 0.102 | 0.335 | 0.008 |
Dark fermentation + microbial electrolysis cell (MEC), with ER | 6.03 | |||||
Dark fermentation + microbial electrolysis cell (MEC), with H2 recovery | 21.6 |
Type of Integration | Applied Voltage | Type of Reactor | Substrate | Hydrogen Production | Ref. |
---|---|---|---|---|---|
MEC-AD | −0.2 V | Dual-chamber | AD effluent | 1.7 ± 0.2 L H2·L−1·day−1 | [167] |
1.2V | Single-chamber | Fermentation sludge | 0.16 m3 H2·m−3·day−1 | [168] | |
−0.2 V | Single-chamber | Food waste | 3.48 L H2·L−1·day−1 | [169] | |
MEC/pyrolysis | Batch mode: 0.8 V | Dual-chamber | Pyrolyzed biomass effluent | 2.5 L H2·L−1·day−1 | [170] |
Continuous mode: 0.96 V | Dual-chamber | Aqueous phase of bio-oil | 4.3 L H2·L−1·day−1 | ||
MEC/dark fermentation | 0.8 V | Single-chamber | DF effluent | 100 mL H2·g COD−1 | [171] |
700 mL H2·g COD−1 | |||||
200 mV | Dual-chamber | Fruit juice wastewater | 1609 mL H2·g COD−1 | [172] | |
550 mV | Single chamber | DF effluent | 81 mL H2·L−1·day−1 | [173] | |
0.6 V | Single-chamber | Cassava starch processing wastewater | 465 mL H2·g COD−1 | [174] | |
MEC/MFC/dark fermentation | 0.2 V | Single-chamber | Cellulose | 0.24 m3 H2·m−3·day−1 | [175] |
Patent ID. | Description | Reference |
---|---|---|
KR101575790B1 | Using a bioelectrochemical device, the present invention pertains to an apparatus and a method for boosting the efficiency of an anaerobic digestion tank used for treating waste water or slurry-type waste with a high content of organic materials. In the anaerobic digestion tank, an electrode device is installed that consists of electrode modules that contain an oxidation electrode and a reduction electrode on which microorganisms with electric activity cling and develop and are integrally joined to have a separation membrane therebetween. | [176] |
CN201416000Y | Electrolysis is used to enhance the fermentation for hydrogen production in experimental installation. The utility model belongs to the biomass ferment hydrogen production device. | [177] |
CN211339214U | For landfill leachate treatment, a microbial electrolysis cell/membrane bioreactor combination device is used. The utility model is for a microbial electrolysis cell/membrane bioreactor combination treatment device for treating landfill leachate in the field of wastewater treatment. | [178] |
US20140285007A1 | A power management unit (PMU) is used in various versions of the invention to control the production of hydrogen and electricity for external usage in an MFC/MEC coupled system. A PWM controller and low-voltage electronic switches using MOSFETs are included in one embodiment of the PMU. The PWM controller generates the necessary timing waveform to drive the switches. In other instances, the switches can be replaced with any switching regulator capable of producing high efficiency at low operating voltages and currents. A wastewater treatment plant might use such a technology. | [179] |
CN104141147B | Microbiological fuel cell with self-driven microorganism electrolysis cell for hydrogen production and storage. The current invention relates to a method for reclaiming elemental mercury by using a microbiological fuel cell made from industrial effluent containing Hg2+. The method for hydrogen storage is driven microbial electrolysis cell hydrogen synthesis. | [180] |
Anolyte | Volume (L) | Current Density (A·m−2) | CH4 (L·day−1·m−2) | H2 (L·day−1·m−2) | γG | γH | Ref. |
---|---|---|---|---|---|---|---|
Wastewater acetate | 120 | 0.3 | 0.06 | 3.6 | 0.69 | - | [82,83] |
Sewage sludge | 33 | 0.01 | 0.28 | 0 | - | 6.45 | [188] |
Synthetic wastewater | 30 | 0.78 | - | - | - | - | [189] |
Synthetic, acetate, saline | 4 | 42.5 | Very less | 102 | 0.37 | - | [85] |
Sucrose, wastewater | 18 | 0.1 | 0.82 | 0.45 | 0.69 | 5.55 | [190] |
Wastewater effluent | 16 | 0.72 | - | - | - | - | [186] |
Acetate, pig slurry | 16 | 1.75 | <2 | 17.8 | 1.25 | 1.5 | [189] |
Wastewater | 130 | 0.3 | <5 | 2.52 | 1.03 | 1.24 | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dange, P.; Pandit, S.; Jadhav, D.; Shanmugam, P.; Gupta, P.K.; Kumar, S.; Kumar, M.; Yang, Y.-H.; Bhatia, S.K. Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock. Sustainability 2021, 13, 8796. https://doi.org/10.3390/su13168796
Dange P, Pandit S, Jadhav D, Shanmugam P, Gupta PK, Kumar S, Kumar M, Yang Y-H, Bhatia SK. Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock. Sustainability. 2021; 13(16):8796. https://doi.org/10.3390/su13168796
Chicago/Turabian StyleDange, Pooja, Soumya Pandit, Dipak Jadhav, Poojhaa Shanmugam, Piyush Kumar Gupta, Sanjay Kumar, Manu Kumar, Yung-Hun Yang, and Shashi Kant Bhatia. 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock" Sustainability 13, no. 16: 8796. https://doi.org/10.3390/su13168796
APA StyleDange, P., Pandit, S., Jadhav, D., Shanmugam, P., Gupta, P. K., Kumar, S., Kumar, M., Yang, Y.-H., & Bhatia, S. K. (2021). Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock. Sustainability, 13(16), 8796. https://doi.org/10.3390/su13168796