Thai Non-Life Insurance Companies’ Resilience and the Historic 2011 Floods: Some Recommendations for Greater Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Financial Structure of Non-Life Insurance Companies during 2008–2014
3.2. Findings for Null Hypotheses 1–3
3.3. Findings for Hypotheses 4, 5 and 6
3.4. Discussion of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonkman, S.N.; Bočkarjova, M.; Kok, M.; Bernardini, P. Integrated Hydrodynamic and Economic Modeling of Flood Damage in The Netherlands. Ecol. Econ. 2008, 66, 77–90. [Google Scholar] [CrossRef]
- World Bank. Economic Forum, Global Risks, 8th ed.; Section 2: Testing Economic and Environmental Resilience; World Bank: Washington, DC, USA, 2013; Available online: https://www.theguardian.com/business/2012/feb/14/lloyds-thailand-flooding-2bn-dollars (accessed on 25 January 2012).
- Schich, S. Insurance Companies and the Financial Crisis. Financ. Mark. Trends 2009, 2, 1–31. [Google Scholar] [CrossRef]
- Pathak, S.; Ahmad, M.M. Flood risk reduction through insurance for SMEs in Pathumthani province, Thailand. Dev. Pract. 2018, 28, 303–310. [Google Scholar] [CrossRef]
- Bin, O.; Kruse, J.; Landry, C. Flood Hazards, Insurance Rates, and Amenities: Evidence from the Coastal Housing Market. J. Risk Insur. 2008, 75, 63–82. Available online: http://www.jstor.org/stable/25145263 (accessed on 6 June 2021). [CrossRef]
- Botzen, W.J.W.; Bergh, J.C.J.M.V.D. Insurance Against Climate Change and Flooding in the Netherlands: Present, Future, and Comparison with Other Countries. Risk Anal. 2008, 28, 413–426. [Google Scholar] [CrossRef]
- Botzen, W.J.W.; Van Den Bergh, J.C.J.M. Monetary Valuation of Insurance against Flood Risk under Climate Change. Int. Econ. Rev. 2012, 53, 1005–1026. [Google Scholar] [CrossRef]
- Grmanová, E.; Strunz, H. Efficiency of insurance companies: Application of DEA and Tobit analyses. J. Int. Stud. 2017, 10, 250–263. [Google Scholar] [CrossRef]
- Haraguchi, M.; Lall, U. Flood Risks and Impacts: A Case Study of Thailand’s Floods in 2011 and Research Questions for Supply Chain Decision Making. Int. J. Disaster Risk Reduct. 2015, 14, 256–272. [Google Scholar] [CrossRef]
- A.M. Best Co. Best Analyzes Impact of Flood Losses on Thai Insurance Industry. Insur. J. 2012. Available online: https://www.insurancejournal.com/news/international/2012/02/10/235055.htm (accessed on 12 March 2016).
- Global Insurance. Flood Losses Prompt Key Changes in Thai Insurance Industry; Session Best’s Briefing; A.M. Best Company, Inc.: Oldwick, NJ, USA, 2012; Available online: http://www.ambest.com/press/021001thaifloodbriefing.pdf (accessed on 7 June 2017).
- Muang Thai Insurance Annual Report. 2011. Available online: http://www.muangthaiinsurance.com/var/annualreport/MTI_2011.pdf (accessed on 5 June 2017).
- OECD. Global Insurance Market Trend 2017. 2017. Available online: https://www.oecd.org/daf/fin/insurance/Global-Insurance-Market-Trends-2017.pdf (accessed on 15 February 2019).
- Trinh, T.; Nguyen, X.; Sgro, P. Determinants of non-life insurance expenditure in developed and developing countries: An empirical investigation. Appl. Econ. 2016, 48, 5639–5653. [Google Scholar] [CrossRef]
- MarketLine.com. Life Insurance. 2018. Available online: https://store.marketline.com/search/?query=non-life+insurance&per_page= (accessed on 10 March 2020).
- Office of Insurance Commission. National Catastrophe Insurance Fund Guidance. 2012. Available online: http://www.boi.go.th/upload/content/OIC%20(English%20Version)_67752.pdf (accessed on 20 March 2020).
- Haskins, E.M. A Decade of DuPont Ratio Performance. Manag. Account. Q. 2013, 14, 24–33. [Google Scholar]
- Adams, M.; Jiang, W. Do Outside Directors Influence the Financial Performance of Risk-Trading Firms? Evidence from the United Kingdom (UK) Insurance Industry. J. Bank. Financ. 2016, 64, 36–51. [Google Scholar] [CrossRef]
- Altuntas, M.; Rauch, J. Concentration and Financial Stability in The Property-Liability Insurance Sector: Global Evidence. J. Risk Financ. 2017, 18, 284–302. [Google Scholar] [CrossRef]
- Elango, B. Impact of Insurers’ Product Variety on Performance Across Underwriting Cycles. Manag. Decis. 2009, 47, 359–374. [Google Scholar] [CrossRef]
- Enjolras, G.; Kast, R. Combining Participating Insurance and Financial Policies: A New Risk Management Instrument Against Natural Disasters in Agriculture. Agric. Financ. Rev. 2012, 72, 156–178. [Google Scholar] [CrossRef]
- Kaya, E.O. Financial Performance Assessment of Non-Life Insurance Companies Traded in Borsa Istanbul via Grey Relational Analysis. Int. J. Econ. Financ. 2016, 8, 277. [Google Scholar] [CrossRef] [Green Version]
- Le, H.H.; Viviani, J.L. Predicting Bank Failure: An Improvement by Implementing Machine Learning Approach on Classical Financial Ratios. Res. Int. Bus. Financ. 2017. Available online: http://www.sciencedirect.com/science/article/pii/S0275531917301241 (accessed on 19 April 2020). [CrossRef]
- Malafronte, I.; Porzio, C.; Starita, M.G. The Nature and Determinants of Disclosure Practices in The Insurance Industry: Evidence from European Insurers. Int. Rev. Financ. Anal. 2016, 45, 367–382. [Google Scholar] [CrossRef] [Green Version]
- Soekarno, S.; Azhari, D.A. Analysis of Financial Ratio to Distinguish Indonesia Joint Venture General Insurance Company Performance using Discriminant Analysis. Asian J. Technol. Manag. 2009, 2, 110–122. [Google Scholar]
- Van der Heijden, H. Distributional Properties of Some Financial Ratios in Insurance. In Proceedings of the British Accounting & Finance Association (BAFA) Annual Conference, Birmingham, UK, 12–14 April 2011. [Google Scholar]
- Weng, T.C.; Chen, G.Z.; Chi, H.Y. Effects of Directors and Officer’s Liability Insurance on Accounting Restatements. Int. Rev. Econ. Financ. 2017, 49, 437–452. [Google Scholar] [CrossRef]
- Benali, N.; Feki, R. The Impact of Natural Disasters on Insurers’ Profitability: Empirical Evidence from the Property/Casualty Insurance Industry. Res. Int. Bus. Financ. 2017. Available online: http://www.sciencedirect.com/science/article/pii/S0275531916304834 (accessed on 24 May 2020). [CrossRef]
- Kaminski, K.; Sterling Wetzel, T.; Guan, L. Can financial ratios detect fraudulent financial reporting? Manag. Audit. J. 2004, 19, 15–28. [Google Scholar] [CrossRef]
- Oscar, A.J.; Sackey, F.G.; Amoah, L.; Frimpong Manso, R. The Financial Performance of Life Insurance Companies in Ghana. J. Risk Financ. 2013, 14, 286–302. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.P. Financial Policies on Firm Performance: The US Insurance Industry Before and After the Global Financial Crisis. Econ. Model. 2015, 51, 391–402. [Google Scholar] [CrossRef]
- Owusu-Sekyere, F.; Kotey, A.R. Profitability of Insurance Brokerage Firms in Ghana. Acad. J. Econ. Stud. 2019, 5, 179–192. [Google Scholar]
- Pervan, M.; Curak, M.; Marijanovic, I. Dynamic Panel Analysis of Bosnia and Herzegovina Insurance Companies’ Profitability. Recent Researches in Business and Economics. 2012. Available online: http://www.wseas.us/elibrary/conferences/2012/Porto/AEBD/AEBD-24.pdf (accessed on 20 April 2019).
- Bouriaux, S.; Russell, D.T. Loss Ratio on Insurance Equity Securities: A New Step in Insurance Securitization. J. Risk Financ. 2002, 3, 73–82. [Google Scholar] [CrossRef]
- Lee, C.C.; Lin, C.W. Globalization, Political Institutions, Financial Liberalization, And Performance of the Insurance Industry. North Am. J. Econ. Financ. 2016, 36, 244–266. [Google Scholar] [CrossRef]
- Mahmoud, O.H. A Multivariate Model for Predicting the Efficiency of Financial Performance for Property and Liability Egyptian Insurance Companies. In Applying Multivariate Statistical Models; CAS Discussion Paper Program: Québec City, QC, Canada, 2008; pp. 53–78. [Google Scholar]
- Almajali, A.Y.; Alamro, S.A.; Al-Soub, Y.Z. Factors Affecting the Financial Performance of Jordanian Insurance Companies Listed at Amman Stock Exchange. J. Manag. Res. 2012, 4, 266–289. [Google Scholar] [CrossRef] [Green Version]
- Cowling, M.; Bates, P.; Jagger, N.; Murray, G. Study of the Impact of the Enterprise Investment Scheme (EIS) and Venture Capital Trusts (VCTS) on Company Performance. In HM Revenue & Customs Research Report 44; Institute for Employment Studies: Brighton, UK, 2008. [Google Scholar]
- Lumpkin, G.; Dess, G.G. Linking two dimensions of entrepreneurial orientation to firm performance: The moderating role of environment and industry life cycle. J. Bus. Ventur. 2001, 16, 429–451. [Google Scholar] [CrossRef]
- Malik, H. Determinants of Insurance Companies Profitability: An analysis of Insurance Sector of Pakistan. Acad. Res. Int. J. 2011, 1, 315–321. [Google Scholar]
- Mehari, D.; Aemiro, T. Firm Specific Factors that Determine Insurance Companies’ Performance in Ethiopia. Eur. Sci. J. 2013, 9, 245–255. [Google Scholar]
- Vijayakumar, D.A.; Kadirvelu, S. Determinants of Profitability in Indian Public Sector Petroleum Industries. Manag. Labour Stud. 2003, 28, 170–182. [Google Scholar] [CrossRef]
- Vijayakumar, D.; Kadirvelu, S. Determinants of profitability: The case of Indian Public Sector Power Industries. Manag. Account. 2004, 39, 118–124. [Google Scholar]
- Liargovas, P.G.; Skandalis, K.S. Motives and Marketing Strategies of Greek Companies Exporting to South-East European Markets. South-East. Eur. J. Econ. 2008, 2, 227–244. [Google Scholar]
- Browne, M.J.; Carson, J.M.; Hoyt, R.E. Dynamic Financial Models of Life Insurers. N. Am. Actuar. J. 2001, 5, 11–26. [Google Scholar] [CrossRef]
- Charumathi, B. On the Determinants of Profitability of Indian Life Insurers—An Empirical Study. In Proceedings of the World Congress on Engineering, London, UK, 4–6 July 2012. [Google Scholar]
- Chen, R.; Wong, K. The Determinants of Financial Health of Asian Insurance Companies. J. Risk Insur. 2004, 71, 469–499. [Google Scholar] [CrossRef]
- Joo, B.A. Analysis of Financial Stability of Indian Non-Life Insurance Companies. Asian J. Financ. Account. 2013, 5, 306–319. [Google Scholar] [CrossRef]
- Cummins, J.D.; Harrington, S.E.; Klein, R. Insolvency Experience, Risk Based Capital and Prompt Corrective Action in Property-Liability insurance. J. Bank. Financ. 1995, 19, 511–527. [Google Scholar] [CrossRef]
- Majumdar, S.K. The Impact of Size and Age on Firm-Level Performance: Some Evidence from India. Rev. Ind. Organ. 1997, 12, 231–241. [Google Scholar] [CrossRef]
- Yao, S.; Han, Z.; Feng, G. On technical efficiency of China’s insurance industry after WTO accession. China Econ. Rev. 2007, 18, 66–86. [Google Scholar] [CrossRef]
- Borges, M.R.; Nektarios, M.; Barros, C.P. Analysing the efficiency of the Greek life insurance industry. Eur. Res. Stud. 2008, 11, 35–52. [Google Scholar]
- Barros, C.P.; Nektarios, M.; Assaf, A. Efficiency in the Greek insurance industry. Eur. J. Oper. Res. 2010, 205, 431–436. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 3, 253–290. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 6, 429–444. [Google Scholar] [CrossRef]
- McDonald, J. Using least squares and tobit in second stage DEA efficiency analyses. Eur. J. Oper. Res. 2009, 197, 792–798. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory; Kotz, S., Johnson, N.L., Eds.; Academia Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Bos, J.W.; Kolari, J. Large Bank Efficiency in Europe and the United States: Are There Economics Motivations for Geographic Expansion in Financial Service? J. Bus. 2005, 78, 1555. [Google Scholar] [CrossRef] [Green Version]
- Abidin, Z. Financial and Production Performances of Domestic and Foreign Banks in Indonesia: Pre and Post Financial Crisis. Manaj. Usahaw. Indones. 2006, 6, 3–9. [Google Scholar]
- Andoh, C.; Yamoah, S.A. Reinsurance and Financial Performance of Non-life Insurance Companies in Ghana. Manag. Labour Stud. 2021, 46, 161–174. [Google Scholar] [CrossRef]
- Doğan, M. Relations between the profitability and capital structure of insurance companies: An analysis over the Turkish capital market. J. Account. Financ. 2013, 57, 121–136. [Google Scholar]
- Burca, A.M.; Batrînca, G. The determinants of financial performance in the Romanian insurance market. Int. J. Acad. Res. Account. Financ. Manag. Sci. 2014, 4, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Ćurak, M.; Pepur, S.; Poposki, K. Firm and economic factors and performance: Croatian composite insurers. Bus. Rev. Camb. 2011, 19, 136–142. [Google Scholar]
- Shiu, Y. Determinants of United Kingdom general insurance company performance. Br. Actuar. J. 2004, 10, 1079–1110. [Google Scholar] [CrossRef]
- UNISDR. 2011 Global Assessment Report on Disaster Risk Reduction: Revealing Risk, Redefining Development; Information Press: Oxford, UK, 2011. [Google Scholar]
- UNISDR. 2013 Global Assessment Report on Disaster Risk Reduction: Revealing Risk, Redefining Development; Information Press: Oxford, UK, 2013. [Google Scholar]
- ARTEMIS. 2012. Available online: https://www.artemis.bm/news/thailand-to-establish-catastrophe-insurance-fund/ (accessed on 5 June 2021).
- Fiscal Policy Office. Executive Summary and Research Disclosures. 2011. Available online: http://www.fpo.go.th/eresearch/getattachment/3fba49ae-bbb9-4b83-b75b-d7583b44dec5/9150.aspx (accessed on 5 June 2021).
- The World Bank. World Bank Catastrophe Bond Transaction Insures the Republic of Philippines against Natural Disaster-Related Losses Up to US$225 million. Available online: https://www.worldbank.org/en/news/press-release/2019/11/25/world-bank-catastrophe-bond-transaction-insures-the-republic-of-philippines-against-natural-disaster-related-losses-up-to-usd225-million (accessed on 7 June 2021).
- ThaiBMA. Cat Bond. 2019. Available online: https://www.thaibma.or.th/EN/Investors/Individual/Blog/2019/13082019.aspx (accessed on 8 June 2021).
Variables | Definition |
---|---|
KPIs: | |
IAPL: Investment-assets-to-policy liabilities ratio | Total investment assets divided by total policy liabilities |
LR: Loss ratio | Net claims expense as a percentage of net written premium revenue |
OER: Operating expense ratio | Operating expenses (including commission, brokerage, underwriting and other operating expenses) as a percentage of net written premium revenue |
CBR: Combined ratio | Sum of the loss ratio (LR) and the operating expense ratio (OER) |
ROA: Return on assets | Operating profit before taxes and interest (EBIT) divided by average total assets |
ROE: Return on equity | Net profit divided by average equity |
OPM: Operating profit margin | Operating profit divided by net written premiums |
NPM: Net profit margin | Insurance profit divided by net written premium revenue |
DE: Debt-to-equity ratio | Total liabilities divided by total equity |
Characteristics: | |
Size | Natural logarithm of the amount of net written premium revenue |
Age | Number of years in operation |
Financial Statement Amounts (USD. Mil.) | Common Size (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
Statement of Financial Position | ||||||||||||||
Investment Assets | 2591 | 3385 | 4747 | 5038 | 6366 | 6941 | 8344 | 71.9 | 78.1 | 77.8 | 20.5 | 32.9 | 45.8 | 56.5 |
Other Assets | 809 | 754 | 1088 | 19,224 | 12,612 | 7810 | 5914 | 22.5 | 17.4 | 17.8 | 78.1 | 65.1 | 51.5 | 40 |
Total Assets | 3605 | 4332 | 6099 | 24,626 | 19,371 | 15,170 | 14,777 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Policy Liabilities | 1799 | 1934 | 2584 | 20,796 | 12,994 | 7806 | 6558 | 49.9 | 44.6 | 42.4 | 84.5 | 67.1 | 51.5 | 44.4 |
Other Liabilities | 709 | 842 | 1431 | 1456 | 2727 | 3225 | 2916 | 19.7 | 19.4 | 23.5 | 5.9 | 14.1 | 21.3 | 19.7 |
Total Liabilities | 2508 | 2777 | 4014 | 22,251 | 15,722 | 11,031 | 9474 | 69.6 | 64.1 | 65.8 | 90.4 | 81.2 | 72.7 | 64.1 |
Capital Fund | 1097 | 1556 | 2085 | 2375 | 3649 | 4139 | 5303 | 30.4 | 35.9 | 34.2 | 9.6 | 18.8 | 27.3 | 35.9 |
Income Statement | ||||||||||||||
Earned Premiums | 2143 | 2331 | 2842 | 3112 | 3778 | 4483 | 4687 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Combined Expenses | 2032 | 2235 | 2772 | 7381 | 3593 | 3822 | 4160 | 94.8 | 95.9 | 97.5 | 237.2 | 95.1 | 85.3 | 88.8 |
Underwriting Profit (Loss) | 111 | 100 | 70 | −4270 | 186 | 661 | 527 | 5.2 | 4.3 | 2.5 | −37.2 | 4.9 | 14.8 | 11.2 |
Profit (Loss) from Operation | 242 | 227 | 259 | −4045 | 355 | 867 | 811 | 11.3 | 9.8 | 9.1 | −30 | 9.4 | 19.3 | 17.3 |
Net Profit (Loss) | 85 | 163 | 211 | −4094 | 473 | 734 | 705 | 4 | 7 | 7.4 | −31.6 | 12.5 | 16.4 | 15 |
Variables | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean | SDV | Mean | SDV | Mean | SDV | Mean | SDV | Mean | SDV | Mean | SDV | Mean | SDV | ||
Financial Variables: | ||||||||||||||||
1 | IAPL | 58 | 2.76 | 3.13 | 2.95 | 3.29 | 3.2 | 3.95 | 0.68 | 0.82 | 0.89 | 1.23 | 1.17 | 1.35 | 2.27 | 6.44 |
2 | LR | 58 | 0.51 | 0.34 | 0.47 | 0.18 | 0.5 | 0.21 | 1.9 | 6.29 | 0.51 | 0.74 | 0.33 | 0.46 | 0.4 | 0.27 |
3 | OER | 58 | 0.54 | 0.43 | 0.52 | 0.24 | 1.14 | 1.47 | 2.35 | 6.33 | 0.94 | 0.92 | 0.78 | 0.62 | 0.78 | 0.37 |
4 | CBR | 58 | 1.05 | 0.48 | 0.99 | 0.29 | 1.23 | 1.48 | 2.45 | 6.27 | 1.13 | 0.86 | 0.96 | 0.53 | 0.95 | 0.28 |
5 | ROA | 58 | 0.02 | 0.11 | 0 | 0.15 | −0.02 | 0.19 | −0.05 | 0.15 | −0.02 | 0.13 | 0.02 | 0.08 | 0.03 | 0.07 |
6 | ROE | 58 | −0.06 | 0.48 | −0.07 | 0.73 | 0.03 | 0.62 | −0.54 | 2.82 | −0.24 | 1.02 | 0.08 | 0.38 | 0.04 | 0.43 |
7 | OPM | 58 | 0.05 | 0.37 | 0.1 | 0.3 | −0.07 | 1.02 | −1.35 | 6.27 | −0.06 | 0.66 | 0.11 | 0.47 | 0.13 | 0.29 |
8 | NPM | 58 | −0.01 | 0.37 | 0.06 | 0.24 | −0.1 | 1.01 | −1.37 | 6.28 | −0.03 | 0.66 | 0.07 | 0.44 | 0.1 | 0.29 |
9 | DE | 58 | 2.93 | 2.47 | 2.62 | 3.91 | 2.75 | 2.55 | 11.87 | 25.23 | 8.17 | 10.38 | 4.83 | 7.82 | 3.61 | 4.1 |
Characteristic Variables: | ||||||||||||||||
10 | Size * | 58 | 5.73 | 0.66 | 5.64 | 1 | 13.2 | 1.7 | 13.3 | 1.6 | 13.5 | 1.7 | 13.6 | 1.7 | 13.7 | 1.6 |
11 | Age ** | 58 | 34.83 | 24.98 | 35.83 | 24.98 | 36.8 | 24.9 | 37.8 | 24.9 | 38.8 | 24.9 | 39.8 | 24.9 | 40.8 | 24.9 |
(1) 2008 vs. 2009 | (2) 2009 vs. 2010 | (3) 2010 vs. 2011 | (4) 2011 vs. 2012 | (5) 2011 vs. 2013 | (6) 2011 vs. 2014 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Paired Differences | t | Paired Differences | t | Paired Differences | t | Paired Differences | t | Paired Differences | t | Paired Differences | t | |||||||||||
Mean | SDV. | Mean | SDV. | Mean | SDV. | Mean | SDV. | Mean | SDV. | Mean | SDV. | |||||||||||
IAPL | −0.19 | 0.97 | −1.45 | −0.27 | 1.47 | −1.39 | 2.53 | 3.88 | 4.96 | ** | −0.21 | 0.63 | −2.61 | ** | −0.49 | 0.80 | −4.65 | ** | −1.59 | 5.85 | −2.08 | * |
LR | 0.04 | 0.41 | 0.80 | −0.23 | 1.49 | −1.15 | −1.41 | 6.31 | −1.70 | 1.40 | 6.86 | 1.55 | 1.57 | 6.67 | 1.79 | * | 1.51 | 6.45 | 1.78 | * | ||
OER | 0.02 | 0.25 | 0.55 | −0.17 | 1.58 | −0.82 | −1.20 | 6.48 | −1.41 | 1.40 | 6.87 | 1.55 | 1.56 | 6.69 | 1.78 | * | 1.57 | 6.42 | 1.86 | * | ||
CBR | 0.06 | 0.48 | 0.98 | −0.40 | 3.06 | −0.99 | −1.23 | 6.50 | −1.44 | 1.33 | 6.83 | 1.48 | 1.49 | 6.65 | 1.71 | * | 1.50 | 6.39 | 1.79 | * | ||
ROA | 0.03 | 0.10 | 1.85 | 0.00 | 0.06 | 0.51 | 0.03 | 0.17 | 1.16 | −0.03 | 0.13 | −1.71 | −0.06 | 0.19 | −2.46 | * | −0.07 | 0.16 | −3.33 | * | ||
ROE | 0.01 | 0.55 | 0.15 | −0.01 | 0.81 | −0.05 | 0.57 | 2.88 | 1.51 | −0.30 | 3.11 | −0.73 | −0.63 | 2.88 | −1.66 | * | −0.58 | 2.86 | −1.54 | * | ||
OPM | −0.04 | 0.41 | −0.79 | 0.35 | 2.49 | 1.06 | 1.28 | 6.41 | 1.52 | −1.28 | 6.66 | −1.47 | −1.46 | 6.57 | −1.69 | * | −1.47 | 6.37 | −1.76 | * | ||
NPM | −0.07 | 0.41 | −1.31 | 0.34 | 2.50 | 1.04 | 1.28 | 6.40 | 1.52 | −1.34 | 6.69 | −1.53 | −1.45 | 6.58 | −1.67 | * | −1.47 | 6.38 | −1.76 | * | ||
DE | 0.31 | 2.97 | 0.79 | −0.22 | 2.87 | −0.57 | −9.13 | 25.14 | −2.77 | ** | 3.70 | 26.53 | 1.06 | 7.04 | 25.29 | 2.12 | * | 8.27 | 25.47 | 2.47 | * |
Mean | SDV. | Levene’s Test for Equality of Variances | t-Test for Equality of Means | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flood Period | Post-Flood Period | Flood Period | Post-Flood Period | F | Sig. | t | df | Sig. (2-Tailed) | Mean Diff | Std. Error Diff | 95% Confidence Interval of the Difference | |||
Lower | Upper | |||||||||||||
1 | IAPL | 0.8 | 1.7 | 1 | 4.7 | 2.6 | 0.11 | −2.1 | 230 | 0.04 * | −0.9 | 0.4 | −1.8 | −0.1 |
2 | LR | 1.2 | 0.4 | 4.5 | 0.4 | 6.6 | 0.01 ** | 2 | 116.6 | 0.05 * | 0.8 | 0.4 | 0 | 1.7 |
3 | OER | 1.6 | 0.8 | 4.6 | 0.5 | 8.4 | 0.00 ** | 2 | 117.9 | 0.04 * | 0.9 | 0.4 | 0 | 1.7 |
4 | CBR | 1.8 | 1 | 4.5 | 0.4 | 7.8 | 0.01 ** | 2 | 117 | 0.05 * | 0.8 | 0.4 | 0 | 1.7 |
5 | ROA | 0 | 0 | 0.1 | 0.1 | 2 | 0.16 | −3.4 | 230 | 0.00 ** | −0.1 | 0 | −0.1 | 0 |
6 | ROE | −0.4 | 0.1 | 2.1 | 0.4 | 8.4 | 0.00 ** | −2.3 | 123.5 | 0.03 * | −0.5 | 0.2 | −0.9 | −0.1 |
7 | OPM | −0.7 | 0.1 | 4.5 | 0.4 | 7.3 | 0.01 ** | −2 | 116.7 | 0.05 * | −0.8 | 0.4 | −1.7 | 0 |
8 | NPM | −0.7 | 0.1 | 4.5 | 0.4 | 7.4 | 0.01 ** | −1.9 | 116.6 | 0.06 | −0.8 | 0.4 | −1.6 | 0 |
9 | DE | 10 | 4.2 | 19.3 | 6.2 | 21.5 | 0.00 ** | 3.1 | 138.9 | 0.00 ** | 5.8 | 1.9 | 2.1 | 9.5 |
Size | Age | IAPL | LR | OER | CBR | ROA | ROE | OPM | NPM | DE | TA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Size | 1 | |||||||||||
Age | 0.200 ** | 1 | ||||||||||
IAPL | −0.051 | −0.028 | 1 | |||||||||
LR | −0.001 | −0.066 | −0.049 | 1 | ||||||||
OER | −0.048 | −0.094 | −0.019 | 0.961 ** | 1 | |||||||
CBR | −0.034 | −0.086 | −0.040 | 0.966 ** | 0.987 ** | 1 | ||||||
ROA | 0.158 ** | 0.125 * | 0.099 | −0.353 | −0.395 | −0.408 | 1 | |||||
ROE | 0.045 | 0.095 | 0.046 | −0.745 | −0.722 | −0.736 | 0.405 ** | 1 | ||||
OPM | 0.028 | 0.084 | 0.056 | −0.980 | −0.982 | −0.996 | 0.408 ** | 0.746 ** | 1 | |||
NPM | 0.029 | 0.090 | 0.056 | −0.980 | −0.983 | −0.996 | 0.409 ** | 0.746 ** | 0.999 ** | 1 | ||
DE | −0.081 | −0.085 | −0.142 | 0.039 | 0.019 | 0.023 | −0.037 | −0.322 | −0.029 | −0.028 | 1 | |
TA | 0.651 ** | 0.117 | −0.351 | −0.006 | −0.225 | −0.306 | 0.234 ** | 0.145 * | 0.238 ** | −0.029 | 0.242 ** | 1.00 |
N | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 |
Total Assets | Average Technical Efficiency Score | ||||
---|---|---|---|---|---|
Before Flood | During Flood | After Flood | F | ||
Overall (n = 58) | 0.7440 | 0.6444 | 0.5043 | 18.511 * | |
>USD 335 mil. | (n = 12) | 0.7875 | 0.8133 | 0.7492 | 0.438 |
STD | 0.1357 | 0.1707 | 0.1952 | ||
From USD 170–335 mil. | (n = 12) | 0.8067 | 0.7058 | 0.6050 | 4.081 * |
STD | 0.1286 | 0.1600 | 0.2181 | ||
<USD 170 mil. | (n = 34) | 0.7041 | 0.5581 | 0.3756 | 25.544 ** |
STD | 0.1541 | 0.2341 | 0.1523 |
Traditional Regression CRS | Traditional Regression VRS | Tobit Regression CRS | Tobit Regression VRS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient: | t | t | t | t | ||||||||
IAPL | 0.0089 | 1.55 | 0.0151 | * | 2.23 | 0.0090 | 1.62 | 0.0236 | * | 2.12 | ||
LR | −0.1374 | * | −2.20 | −0.1451 | −1.93 | −0.1454 | * | −2.40 | −0.1505 | * | −1.96 | |
NPM | 0.2204 | 1.59 | 0.3033 | * | 2.17 | 0.2263 | 1.70 | 0.3121 | * | 2.23 | ||
TA 1,2 | 0.0106 | 0.60 | 0.0911 | ** | 4.78 | 0.0104 | 0.62 | 0.0925 | ** | 4.84 | ||
Constant | 0.1460 | 1.01 | 0.8601 | ** | 5.61 | 0.1392 | 1.00 | 0.8582 | ** | 5.55 | ||
R2 | 13.3700 | 41.8900 | ** | 20.2300 | 31.4800 | ** | ||||||
Log Likelihood | 23.8484 | 17.1913 | 20.4205 | 9.8876 | ||||||||
AIC 3 | 37.6967 | 24.3826 | 28.8411 | 7.7753 | ||||||||
BIC 4 | 28.5535 | 14.2558 | 17.8692 | 4.3768 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terdpaopong, K.; Rickards, R.C. Thai Non-Life Insurance Companies’ Resilience and the Historic 2011 Floods: Some Recommendations for Greater Sustainability. Sustainability 2021, 13, 8890. https://doi.org/10.3390/su13168890
Terdpaopong K, Rickards RC. Thai Non-Life Insurance Companies’ Resilience and the Historic 2011 Floods: Some Recommendations for Greater Sustainability. Sustainability. 2021; 13(16):8890. https://doi.org/10.3390/su13168890
Chicago/Turabian StyleTerdpaopong, Kanitsorn, and Robert C. Rickards. 2021. "Thai Non-Life Insurance Companies’ Resilience and the Historic 2011 Floods: Some Recommendations for Greater Sustainability" Sustainability 13, no. 16: 8890. https://doi.org/10.3390/su13168890
APA StyleTerdpaopong, K., & Rickards, R. C. (2021). Thai Non-Life Insurance Companies’ Resilience and the Historic 2011 Floods: Some Recommendations for Greater Sustainability. Sustainability, 13(16), 8890. https://doi.org/10.3390/su13168890