Earth Observation for Monitoring, Reporting, and Verification within Environmental Land Management Policy
Abstract
:1. Introduction
- VHR satellite data use in identifying the availability of suitable and connected habitat, and
- how effectively do EO approaches at the highest resolutions add new insights to overall habitat assessments for various species of importance for biodiversity conservation and recovery.
2. Materials and Methods
2.1. Study Area and Sites Selected
- Hampton Estate, located in the Greensand Plateau: Shackleford (~739 ha), 51.2116° N, 0.7034° W (Site 1) Sondes Place Farm, near Dorking, between Greensand Valley (Pippbrook and Tillingbourne) and The North Downs (~78.6 ha), 51.2304° N, 0.3425° W, (Site 2)
- Landbarn Farm also located near Dorking, between Greensand Valley (Pippbrook and Tillingbourne) and The North Downs (~100 ha), 51.2309° N, 0.3740° W, (Site 3).
2.2. Resources for Readily Available EO and Other Data (Research for Step 2)
2.2.1. UK Centre for Ecology and Hydrology Land Cover Map 2019 (LCM2019) (20 m Classified Pixels) and Crop 2019
2.2.2. Priority Habitat Inventory (England)
2.2.3. OS Open Rivers and Open Street Map GIS Shapefiles
2.2.4. Digital Elevation Model (DEM)
2.2.5. Species Occurrence Records
2.3. Resources for Very High Resolution (VHR) Satellite Imagery (Research for Step 3)
2.4. Analysis
2.4.1. Step 1—Expert Knowledge Elicitation on the Habitat and Food Requirements of the Species
2.4.2. Step 2—Habitat Suitability and Connectivity Modelling Using Existing EO and Other Resources
- (a)
- Choose the environmental variables (factors) based on species habitat and food requirement
- (b) Georeferenced species occurrence records
- (a)
- ArcMap tools
- (b) Scoring system (from 1 to 5) based on species habitat and food requirement
2.4.3. Step 3—Habitat Assessment Approach and Contribution of VHR EO Data
- -
- prior expert knowledge about the studied species
- -
- either or both visual interpretation and automated classification of features of the VHR imagery
- -
- species occurrence georeferenced records and OS Open Rivers (only for Dragonfly and Damselfly species).
3. Results
3.1. Step 2—Habitat Suitability and Connectivity Analysis
3.1.1. Silver-Washed Fritillary (SWF) Butterfly
3.1.2. Small Blue (SB) Butterfly
3.1.3. Skylark
3.1.4. Hazel/Common Dormouse
3.1.5. Dragonflies and Damselflies
3.2. Step 3—Habitat Assessment Analysis with VHR Imagery
3.2.1. Silver-Washed Fritillary Butterfly
3.2.2. Small Blue Butterfly
3.2.3. Skylark
3.2.4. Dormouse
3.2.5. Dragonflies and Damselflies
4. Discussion
- Identify a wider range of landcover types relevant to the habitat preferences of the species than the range of classes in LCM2019. Notable amongst these was scrub (an aspect of preferred habitat of small blue butterfly, Silver-washed fritillary butterfly, and Hazel dormouse), ‘patchiness’ small open spaces in broadleaved woodland (Silver-washed fritillary butterfly), and recognition of small areas of single trees (Hazel dormouse, Silver-washed fritillary butterfly, and small blue butterfly).
- Assess qualitative differences within a given land class/habitat type—examples include the ability to resolve uncut and cut grassland as shown in the habitat assessment for the Skylark and, by inference, whether grassland areas are grazed or are tall/scrubby (the Kidney Vetch flower is associated with the latter, and the SB butterfly is dependent on this plant).
- Automate quantitative assessment of the habitat/land cover and automate the representation of the extended range of land-cover/habitat types via supervised image classification. This raises the potential to efficiently quantify at a finely resolved level (e.g., 1 to a few m), the provision and location of suitable habitats for these, and most likely, many other species. Given the availability of suitable VHR image coverage, even quite large areas (up to 23 km2) are tractable to this finely resolved habitat assessment approach.
- Evaluate negative aspects of habitat provision such as discontinuities in valuable ‘corridors’ such as hedgerows (important avenues for migration and movement for wildlife and therefore a highly distinctive habitat) and diversity of ‘qualities’ within a given habitat type (such as ponds where features such as the quality of adjacent vegetation are also important).
- Evaluate habitat provision and quality efficiently and readily over time, offering valuable information for management decision making, e.g., urgency of intervention or responses and for efficient MRV for incentive schemes and policies.
- Assess habitat in ‘non-traditional’ urban and suburban areas by using the more finely resolved observation offered by VHR imagery to analyse the distribution and connectedness of relevant habitat types in such settings, and to support the nature recovery potential of private gardens, municipal and public spaces, and the built environment.
5. Conclusions
- Satellite spatial resolution is decisive in terms of assessing biodiversity and habitats. VHR data (at approximately 1–4 m) offers great potential for habitat suitability and connectivity assessment for the five wildlife species in this research and, most likely, for many more.
- Automated habitat suitability assessment using VHR imagery is feasible and provides valuable, ecologically meaningful information
- The expert insights of ecologists on the species–habitat relationships examined here provide key underpinning knowledge to enable use to be made of the potential of VHR satellite data for habitat assessment.
- VHR data and imagery offer great potential for use in habitat management at the scale of individual properties (farms, etc.) and at a whole-landscape scale. It provides an effective source of information of value for land management and environmental decision making and as potential evidence for the MRV relevant to ELM and similar policies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motavalli, P.; Nelson, K.; Udawatta, R.; Jose, S.; Bardhan, S. Global achievements in sustainable land management. Int. Soil Water Conserv. Res. 2013, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schwilch, G.; Bestelmeyer, B.; Bunning, S.; Critchley, W.; Herrick, J.; Kellner, K.; Liniger, H.; Nachtergaele, F.; Ritsema, C.; Schuster, B.; et al. Experiences in monitoring and assessment of sustainable land management. Land Degrad. Dev. 2011, 22, 214–225. [Google Scholar] [CrossRef]
- Hans, H. Concepts of sustainable land management. ITC J. 1997, 3/4, 210–215. [Google Scholar]
- Zscheischler, J.; Rogga, S. Innovations for Sustainable Land Management—A Comparative Case Study. In Sustainable Land Management in a European Context: A Co-Design Approach; Weith, T., Barkmann, T., Gaasch, N., Rogga, S., Strauß, C., Zscheischler, J., Eds.; Springer International Publishing: New York, NY, USA, 2021; pp. 145–164. [Google Scholar]
- World Bank. Sustainable Land Management; The World Bank: Washington, DC, USA, 2006; p. 108. [Google Scholar]
- Sustainable Soil and Land Management and Climate Change. Available online: http://www.fao.org/climate-smart-agriculture-sourcebook/production-resources/module-b7-soil/chapter-b7-1/en/ (accessed on 29 July 2021).
- Bryan, B. Incentives, land use, and ecosystem services: Synthesizing complex linkages. Environ. Sci. Policy 2013, 27, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Bastidas Fegan, S. The DS-SLM Sustainable Land Management Mainstreaming Tool-Decision Support for Mainstreaming and Scaling up Sustainable Land Management; FAO: Rome, Italy, 2019; p. 44. [Google Scholar]
- Environment Bill. Available online: https://services.parliament.uk/bills/2019-21/environment.html (accessed on 29 July 2021).
- Agriculture Bill. Available online: https://services.parliament.uk/bills/2019-21/agriculture.htm (accessed on 29 July 2021).
- DEFRA. Available online: https://www.gov.uk/government/publications/environmental-land-management-schemes-overview/environmental-land-management-scheme-overview (accessed on 29 July 2021).
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, J.; Short, C.; Berriet-Solliec, M.; Gael-Lataste, F.; Pham, H.-V.; Affleck, M.; Courtney, P.; Déprès, C. Public Goods and Ecosystem Services from Agriculture and Forestry–Towards a Holistic Approach: Review of Theories and Concepts; European Commission: Brussels, Belgium, 2015; pp. 1–37. [Google Scholar]
- Hejnowicz, A.P.; Hartley, S.E. New Directions: A Public Goods Approach to Agricultural Policy Post-Brexit; CECAN: Guildford, UK, 2018; pp. 1–42. [Google Scholar]
- Rodgers, C. Delivering a better natural environment? The Agriculture Bill and future agri-environment policy. Environ. Law Rev. 2019, 21, 38–48. [Google Scholar] [CrossRef] [Green Version]
- DEFRA. Environmental Land Management: Policy Discussion, ELMS Consulation Document. Available online: https://consult.defra.gov.uk/elm/elmpolicyconsultation/supporting_documents/ELM%20Policy%20Discussion%20Document%20230620.pdf (accessed on 29 July 2021).
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Mulligan, M.; van Soesbergen, A.; Hole, D.G.; Brooks, T.M.; Burke, S.; Hutton, J. Mapping nature’s contribution to SDG 6 and implications for other SDGs at policy relevant scales. Remote Sens. Environ. 2020, 239, 111671. [Google Scholar] [CrossRef]
- Boumans, R.; Roman, J.; Altman, I.; Kaufman, L. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosyst. Serv. 2015, 12, 30–41. [Google Scholar] [CrossRef]
- Ivanic, K.-Z.; Stolton, S.; Arango, C.F.; Dudley, N. Protected Areas Benefits Assessment Tool + (PA-BAT+): A Tool to Assess Local Stakeholder Perceptions of the Flow of Benefits from Protected Areas; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2020; p. 84. [Google Scholar]
- Preston, S.; Raudsepp-Hearne, C. Ecosystem Services Toolkit. Completing and Using Ecosystem Service Assessment for Decision-Making: An Interdisciplinary Toolkit for Managers; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- TESSA (Toolkit for Ecosystem Service Site-Based Assessment). Available online: https://ecosystemsknowledge.net/tessa-toolkit-ecosystem-service-site-based-assessment (accessed on 29 July 2021).
- MIMES. Available online: https://ipbes.net/ar/node/29397?page=15 (accessed on 29 July 2021).
- ARIES. Available online: https://aries.integratedmodelling.org/ (accessed on 29 July 2021).
- Neugarten, R.; Langhammer, P.F.; Osipova, E.; Bagstad, K.J.; Bhagabati, N.; Butchart, S.H.; Dudley, N.; Elliott, V.; Gerber, L.R.; Gutiérrez-Arellano, C.; et al. Tools for Measuring, Modelling, and Valuing Ecosystem Services: Guidance for Key Biodiversity Areas, Natural World Heritage Sites, and Protected Areas; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2018; p. 70. [Google Scholar]
- Pan, H.; Zhang, L.; Cong, C.; Deal, B.; Wang, Y. A dynamic and spatially explicit modeling approach to identify the ecosystem service implications of complex urban systems interactions. Ecol. Indic. 2019, 102, 426–436. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Page, J.; Cong, C.; Barthel, S.; Kalantari, Z. How ecosystems services drive urban growth: Integrating nature-based solutions. Anthropocene 2021, 35, 100297. [Google Scholar] [CrossRef]
- Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef]
- Natural Capital Committee. Advice on Using Nature Based Interventions to Reach Net Zero Greenhouse Gas. Emission; UK Department for Environment, Food\Rural Affairs: Westminster, UK, 2020.
- DEFRA. Environmental Land Management Tests and Trials Quarterly Evidence Report. Available online: https://www.gov.uk/government/publications/environmental-land-management-tests-and-trials (accessed on 9 June 2021).
- Surrey Hills AONB. Making Space for Nature. 2020. Available online: https://mk0surreyhillsnfif4k.kinstacdn.com/wp-content/uploads/2020/02/Item-5-Making-Space-for-Nature.pdf (accessed on 29 July 2021).
- Sadlier, G.; Flytkjær, R.; Sabri, S.; Robin, N. Value of Satellite-Derived Earth Observation Capabilities to the UK Government Today and by 2020; London Economics: Boston, MA, USA, 2018. [Google Scholar]
- Geospatial Commission. Unlocking the Power of Location: The UK’s Geospatial Strategy. Available online: https://www.gov.uk/government/publications/unlocking-the-power-of-locationthe-uks-geospatial-strategy/unlocking-the-power-of-location-the-uks-geospatial-strategy-2020-to-2025 (accessed on 29 July 2021).
- Kuenzer, C.; Ottinger, M.; Wegmann, M.; Guo, H.; Wang, C.; Zhang, J.; Dech, S.; Wikelski, M. Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks. Int. J. Remote Sens. 2014, 35, 6599–6647. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.; Blonda, P.; Bunting, P.; Jones, G.; Inglada, J.; Arias, M.; Kosmidou, V.; Petrou, Z.I.; Manakos, I.; Adamo, M.; et al. The Earth Observation Data for Habitat Monitoring (EODHaM) system. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 17–28. [Google Scholar] [CrossRef]
- Vihervaara, P.; Auvinen, A.-P.; Mononen, L.; Törmä, M.; Ahlroth, P.; Anttila, S.; Böttcher, K.; Forsius, M.; Heino, J.; Heliölä, J.; et al. How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 2017, 10, 43–59. [Google Scholar] [CrossRef]
- Rocchini, D.; Marcantonio, M.; Da Re, D.; Chirici, G.; Galluzzi, M.; Lenoir, J.; Ricotta, C.; Torresani, M.; Ziv, G. Time-lapsing biodiversity: An open source method for measuring diversity changes by remote sensing. Remote Sens. Environ. 2019, 231, 111192. [Google Scholar] [CrossRef] [Green Version]
- Randin, C.F.; Ashcroft, M.B.; Bolliger, J.; Cavender-Bares, J.; Coops, N.C.; Dullinger, S.; Dirnböck, T.; Eckert, S.; Ellis, E.; Fernández, N.; et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 2020, 239, 111626. [Google Scholar] [CrossRef]
- Townsend, P.A.; Lookingbill, T.R.; Kingdon, C.; Gardner, R.H. Spatial pattern analysis for monitoring protected areas. Remote Sens. Environ. 2009, 113, 1410–1420. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Crawford, B.A.; Maerz, J.C.; Moore, C.T. Expert-Informed Habitat Suitability Analysis for At-Risk Species Assessment and Conservation Planning. J. Fish. Wildl. Manag. 2020, 11, 130–150. [Google Scholar] [CrossRef] [Green Version]
- Ahmadipari, M.; Yavari, A.; Ghobadi, M. Ecological monitoring and assessment of habitat suitability for brown bear species in the Oshtorankooh protected area, Iran. Ecol. Indic. 2021, 126, 107606. [Google Scholar] [CrossRef]
- McMahon, C.R.; Howe, H.; Hoff, J.V.D.; Alderman, R.; Brolsma, H.; Hindell, M. Satellites, the All-Seeing Eyes in the Sky: Counting Elephant Seals from Space. PLoS ONE 2014, 9, e92613. [Google Scholar] [CrossRef] [Green Version]
- Fretwell, P.T.; Staniland, I.; Forcada, J. Whales from Space: Counting Southern Right Whales by Satellite. PLoS ONE 2014, 9, e88655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mairota, P.; Cafarelli, B.; Labadessa, R.; Lovergine, F.P.; Tarantino, C.; Lucas, R.; Nagendra, H.; Didham, R.K. Very high resolution Earth observation features for monitoring plant and animal community structure across multiple spatial scales in protected areas. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 100–105. [Google Scholar] [CrossRef]
- Rocchini, D.; Hernandez-Stefanoni, J.L.; He, K.S. Advancing species diversity estimate by remotely sensed proxies: A conceptual review. Ecol. Inform. 2015, 25, 22–28. [Google Scholar] [CrossRef]
- Fretwell, P.T.; Trathan, P.N. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sens. Ecol. Conserv. 2021, 7, 139–153. [Google Scholar] [CrossRef]
- Räsänen, A.; Aurela, M.; Juutinen, S.; Kumpula, T.; Lohila, A.; Penttilä, T.; Virtanen, T. Detecting northern peatland vegetation patterns at ultra-high spatial resolution. Remote Sens. Ecol. Conserv. 2020, 6, 457–471. [Google Scholar] [CrossRef] [Green Version]
- Klimetzek, D.; Stăncioiu, P.T.; Paraschiv, M.; Niță, M.D. Ecological Monitoring with Spy Satellite Images—The case of Red Wood Ants in Romania. Remote Sens. 2021, 13, 520. [Google Scholar] [CrossRef]
- Rotenberry, J.T.; Preston, K.L.; Knick, S.T. Gis-Based Niche Modeling for Mapping Species’ Habitat. Ecology 2006, 87, 1458–1464. [Google Scholar] [CrossRef]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
- Haines-Young, R.H.; Potschin, M.B.; Deane, R.; Porter, K. Policy Impact and Future Options for Countryside Survey. Final Report. Available online: https://www.nottingham.ac.uk/cem/pdf/FOFCS_FinalReport_Revised_August2014.pdf (accessed on 29 July 2021).
- Morton, R.D.; Rowland, C.S. Developing and Evaluating an Earth Observation-enabled ecological land cover time series system. JNCC Rep. 2015, 563, 2–7. [Google Scholar]
- Morton, R.D.; Marston, C.G.; O’Neil, A.W.; Rowland, C.S. Land Cover Map 2019 (land parcels, GB). NERC Environ. Inf. Data Cent. 2020. [Google Scholar] [CrossRef]
- Feranec, J.M.G.; Hazeu, G. European Landscape Dynamics (Chapter 5. Interpretation of Satellite Images); Taylor & Francis: Oxfordshire, UK, 2016; pp. 33–41. [Google Scholar]
- UN. Earth Observations for Official Statistics Satellite Imagery and Geospatial Data Task Team Report; United Nations Satellite Imagery and Geo-spatial Data Task Team: Rio de Janeiro, Brazil, 2017; p. 170.
- Svatonova, H. Analysis of Visual Interpretation of Satellite Data. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B2, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011; pp. 130–158. [Google Scholar]
- Thomas, N.P.; Benning, I.L.; Ching, V.M. Classification of Remotely Sensed Images; Taylor\Francis: Oxfordshire, UK, 1987; p. 267. [Google Scholar]
- Ibarrola-Ulzurrun, E.; Marcello, J.; Gonzalo-Martin, C. Assessment of Component Selection Strategies in Hyperspectral Imagery. Entropy 2017, 19, 666. [Google Scholar] [CrossRef]
- Kumar, P.S.J.; Huan, T.L. Earth Science and Remote Sensing Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Anderson, C.B. Biodiversity monitoring, earth observations and the ecology of scale. Ecol. Lett. 2018, 21, 1572–1585. [Google Scholar] [CrossRef]
- Ernst, C.; Mayaux, P.; Verhegghen, A.; Bodart, C.; Christophe, M.; Defourny, P. National forest cover change in Congo Basin: Deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Glob. Chang. Biol. 2013, 19, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Nagendra, H.; Mairota, P.; Marangi, C.; Lucas, R.; Dimopoulos, P.; Honrado, J.; Niphadkar, M.; Mucher, S.; Tomaselli, V.; Panitsa, M.; et al. Satellite Earth observation data to identify anthropogenic pressures in selected protected areas. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 124–132. [Google Scholar] [CrossRef]
- Adamo, M.; Tomaselli, V.; Tarantino, C.; Vicario, S.; Veronico, G.; Lucas, R.; Blonda, P. Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy. Remote Sens. 2020, 12, 1447. [Google Scholar] [CrossRef]
- DEFRA. Roadmap for the Use of Earth Observation across Defra 2015–2020 Report. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/488133/defra-earth-obs-roadmap-2015.pdf (accessed on 29 July 2021).
- Secades, C.; O’Connor, B.; Brown, C.; Walpole, M. Review of the Use of Remotely-Sensed Data for Monitoring Biodiversity Change and Tracking Progress towards the Aichi Biodiversity Targets; UNEP-WCMC: Cambridge, UK, 2014; p. 183. [Google Scholar]
- Barbosa, C.D.A.; Atkinson, P.; Dearing, J. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- SIRS. Feasibility Study about the Mapping and Monitoring of Green Linear Features Based on VHR Satellites Imagery. Available online: https://land.copernicus.eu/user-corner/technical-library/study-lead-by-sirs (accessed on 29 July 2021).
- Making Earth Observation Work (MEOW) for UK Biodiversity Monitoring and Surveillance, Phase 4: Testing Applications in Habitat Condition Assessment A Report to the Department for Environment, Food and Rural Affairs, Prepared by Environment Systems. Available online: http://randd.defra.gov.uk/Document.aspx?Document=13900_BE0119_MEOW4_Report_Final.pdf (accessed on 29 July 2021).
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976.
- Yang, H.; Li, S.; Chen, J.; Zhang, X.; Xu, S. The Standardization and Harmonization of Land Cover Classification Systems towards Harmonized Datasets: A Review. ISPRS Int. J. Geo-Inf. 2017, 6, 154. [Google Scholar] [CrossRef] [Green Version]
- Jansen, L.J.; Di Gregorio, A. Land-use data collection using the “land cover classification system”: Results from a case study in Kenya. Land Use Policy 2003, 20, 131–148. [Google Scholar] [CrossRef]
- Headquarters, C.; Skole, D.; Salas, W.; Taylor, V. Global Observation of Forest Cover: Fine Resolution Data and Product Design Strategy, Report of a Workshop; GOFC-GOLD: Washington, DC, USA, 1998. [Google Scholar]
- Global Observation for Forest Cover and Land Dynamics (GOFC/GOLD). Available online: http://www.gofcgold.wur.nl (accessed on 19 July 2021).
- Venter, Z.; Sydenham, M. Continental-Scale Land Cover Mapping at 10 m Resolution over Europe (ELC10). Remote Sens. 2021, 13, 2301. [Google Scholar] [CrossRef]
- Africover. Available online: http://www.fao.org/3/bd854e/bd854e.pdf (accessed on 29 July 2021).
- National Land Cover Database 2019 (NLCD2019) Legend. Available online: https://www.mrlc.gov/data/legends/national-land-cover-database-2019-nlcd2019-legend (accessed on 29 July 2021).
- National Land Use Database: Land Use and Land Cover Classification. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/11493/144275.pdf (accessed on 29 July 2021).
- Jackson, D.L. Guidance on the Interpretation of the Biodiversity Broad Habitat Classification (Terrestrial and Freshwater Types): Definitions and the Relationship with Other Classifications. JNCC Report No. 307, JNCC, Peterborough. Available online: https://data.jncc.gov.uk/data/0b7943ea-2eee-47a9-bd13-76d1d66d471f/JNCC-Report-307-SCAN-WEB.pdf (accessed on 29 July 2021).
- Society, T.R. Observing the Earth: Expert Views on Environmental Observation for the UK. Available online: https://royalsociety.org/-/media/policy/projects/environmental-observation/environmental-observations-report.pdf (accessed on 29 July 2021).
- Tansey, K.; Chambers, I.; Anstee, A.; Denniss, A.; Lamb, A. Object-oriented classification of very high resolution airborne imagery for the extraction of hedgerows and field margin cover in agricultural areas. Appl. Geogr. 2009, 29, 145–157. [Google Scholar] [CrossRef]
- Pettorelli, N.; Safi, K.; Turner, W. Satellite remote sensing, biodiversity research and conservation of the future. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130190. [Google Scholar] [CrossRef]
- SH AONB Surrey Hills Management Plan 2020–2025. Available online: https://mk0surreyhillsnfif4k.kinstacdn.com/wp-content/uploads/2019/12/Surrey-Hills-Management-Plan-Web-72-SP-1.pdf (accessed on 29 July 2021).
- Trust, S.W. Biodiversity and Planning in Surrey. Available online: https://surreynaturepartnership.files.wordpress.com/2019/10/biodiversity-planning-in-surrey-revised_post-revision-nppf_mar-2019.pdf (accessed on 29 July 2021).
- Morton, R.D.; Marston, C.G.; O’Neil, A.W.; Rowland, C.S. Land Cover Map 2017, 2018, 2019 (25 m Rasterised Land Parcels, GB); NERC Environmental Information Data Centre: Lancaster, UK, 2020. [Google Scholar] [CrossRef]
- DigiMap EDINA. Available online: https://digimap.edina.ac.uk (accessed on 29 July 2021).
- Open Government Licence, Priority Habitat Inventory (England). Available online: https://data.gov.uk/dataset/4b6ddab7-6c0f-4407-946e-d6499f19fcde/priority-habitat-inventory-england (accessed on 29 July 2021).
- Export Open Street Map. Available online: https://www.openstreetmap.org/export#map=6/42.088/12.564 (accessed on 4 September 2020).
- Google Earth Engine. Available online: https://explorer.earthengine.google.com/#workspace (accessed on 29 July 2021).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, A.; Turner, N. Cultural Keystone Species: Implications for Ecological Conservation and Restoration. Ecol. Soc. 2004, 9, 3. [Google Scholar] [CrossRef]
- Hötker, H.; Oppermann, R.; Jahn, T.; Bleil, R. Protection of biodiversity of free living birds and mammals in respect of the effects of pesticides. Jul.-Kühn-Arch. 2013, 442, 91–92. [Google Scholar]
- Donald, P.; Buckingham, D.; Moorcroft, D.; Muirhead, L.; Evans, A.; Kirby, W. Habitat use and diet of skylarks Alauda arvensis wintering on lowland farmland in southern Britain. J. Appl. Ecol. 2001, 38, 536–547. [Google Scholar] [CrossRef]
- Chamberlain, D.E.; Crick, H.Q. Population declines and reproductive performance of Skylarks Alauda arvensis in different regions and habitats of the United Kingdom. IBIS 2008, 141, 38–51. [Google Scholar] [CrossRef]
- Wilson, J.D.; Evans, J.; Browne, S.J.; King, J.R. Territory Distribution and Breeding Success of Skylarks Alauda arvensis on Organic and Intensive Farmland in Southern England. J. Appl. Ecol. 1997, 34, 1462. [Google Scholar] [CrossRef]
- Murray, K.A. Factors Affecting Foraging by Breeding Farmland Birds; Open University: Buckinghamshire, UK, 2004. [Google Scholar]
- Sozio, G.; Iannarilli, F.; Melcore, I.; Boschetti, M.; Fipaldini, D.; Luciani, M.; Roviani, D.; Schiavano, A.; Mortelliti, A. Forest management affects individual and population parameters of the hazel dormouse Muscardinus avellanarius. Mamm. Biol. 2016, 81, 96–103. [Google Scholar] [CrossRef]
- Trout, R.C.; Brooks, S.E.; Rudlin, P.; Neil, J. The effects of restoring a conifer Plantation on an Ancient Woodland Site (PAWS) in the UK on the habitat and local population of the Hazel Dormouse (Muscardinus avellanarius). Eur. J. Wildl. Res. 2012, 58, 635–643. [Google Scholar] [CrossRef]
- Goodwin, C.E.D.; Hodgson, D.J.; Al-Fulaij, N.; Bailey, S.; Langton, S.; McDonald, R.A. Voluntary recording scheme reveals ongoing decline in the United Kingdom hazel dormouse Muscardinus avellanarius population. Mammal. Rev. 2017, 47, 183–197. [Google Scholar] [CrossRef]
- Goodwin, C.E.D.; Suggitt, A.J.; Bennie, J.; Silk, M.J.; Duffy, J.P.; Al-Fulaij, N.; Bailey, S.; Hodgson, D.J.; McDonald, R.A. Climate, landscape, habitat, and woodland management associations with hazel dormouse Muscardinus avellanarius population status. Mammal. Rev. 2018, 48, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Otto, C.R.V.; Roth, C.; Carlson, B.L.; Smart, M.D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proc. Natl. Acad. Sci. USA 2016, 113, 10430–10435. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.E.; Ustin, S. Habitat suitability modelling of an invasive plant with advanced remote sensing data. Divers. Distrib. 2009, 15, 627–640. [Google Scholar] [CrossRef]
- Gomez, J.J.; Túnez, J.I.; Fracassi, N.; Cassini, M.H. Habitat suitability and anthropogenic correlates of Neotropical river otter (Lontra longicaudis) distribution. J. Mammal. 2014, 95, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Duro, D.; Franklin, S.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Cord, A.F.; Brauman, K.; Chaplin-Kramer, R.; Huth, A.; Ziv, G.; Seppelt, R. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation. Trends Ecol. Evol. 2017, 32, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Cochran, F.; Daniel, J.; Jackson, L.; Neale, A. Earth observation-based ecosystem services indicators for national and subnational reporting of the sustainable development goals. Remote Sens. Environ. 2020, 244, 111796. [Google Scholar] [CrossRef] [PubMed]
- Watmough, G.R.; Marcinko, C.L.J.; Sullivan, C.; Tschirhart, K.; Mutuo, P.K.; Palm, C.A.; Svenning, J.-C. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl. Acad. Sci. USA 2019, 116, 1213–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Species Scientific Name | Main Habitat Requirement | Provider of the Species Occurrence Records | Collection Period |
---|---|---|---|---|
Silver-washed fritillary butterfly | Argynnis paphia | Woodland/scrub | Butterfly Conservation (BC) | 2015–2019 |
Small blue butterfly | Cupido minimus | Chalk grassland | Butterfly Conservation (BC) | 2015–2019 |
Skylark | Alauda arvensis | Pasture/Arable | Surrey Bird Club (SBC) | 2010–2019 |
Hazel dormouse | Muscardinus avellanarius | Hedgerow | National Dormouse Database (NDD) | 2008–2019 |
Dragonflies Damselflies | Anisoptera spp. Zygoptera spp. | Inland water | British Dragonfly Society (BDS) | 2010–2019 |
Satellite Name | Camera Modes | Spatial Resolution and Bands | Date of Acquisition | Sites Covered |
---|---|---|---|---|
DMC3 | MS and PAN | MS = 4 m (blue, green, red, NIR) PAN = 1 m | 6 May 2016 | Site 2 and 3 |
12 August 2016 | Site 1 | |||
6 May 2018 | Site 2 and 3 | |||
30 June 2018 | Site 1 | |||
20 April 2019 | Site 2 and 3 | |||
29 August 2019 | Site 1 | |||
25 June 2020 | Site 1 | |||
Superview-1 | MS and PAN | MS = 2 m (blue, green, red, NIR) PAN = 0.5 m | 5 July 2017 | Site 2 and 3 |
19 May 2018 | Site 1 | |||
15 July 2018 | Site 1 | |||
Komsat-3 | MS and PAN | MS = 2.8 m (blue, green, red, NIR) PAN = 0.7 m | 20 April 2018 | Site 1 |
6 May 2020 | Site 2 and 3 |
Species | Environment Variables | Data Source | Variable Type |
---|---|---|---|
Silver-washed fritillary butterfly | Habitat type | UK CEH LCM2019 | Land cover |
Broadleaved woodland edge | UK CEH LCM2019 | Land cover | |
Footpaths through broadleaved woodland | Open Street Map | Anthropogenic | |
Small blue butterfly | Habitat type | UK CEH LCM2019 | Land cover |
Chalk grassland | Priority habitat inventory (England) | Land cover | |
Slope degree | DEM | Topographic | |
Skylark | Habitat type | UK CEH LCM2019 | Land cover |
Crop type | UK CEH Crops2019 | Land cover | |
Settlements | UK CEH LCM2019 | Anthropogenic | |
Hazel dormouse | Habitat type | UK CEH LCM2019 | Land cover |
Dragonflies and Damselflies | Habitat type | UK CEH LCM2019 | Land cover |
Slow-flowing watercourse (ditches, brooks, stream, rivulets, and rills) | OS Open Rivers | Land cover |
Score | Habitat Suitability | Rationale |
---|---|---|
1 | Least suitable/unsuitable | Species cannot survive due to the lack of food |
2 | Low suitability | Species cannot cross through that area (depending on species and the area size) due to the lack of food. |
3 | Moderately suitable habitat | Species may travel through to reach other more suitable areas, but it is unlikely to find food sources. |
4 | Suitable habitat | It may be used occasionally but dependant on other factors such as food availability or ideal requirements to sustain a breeding population. |
5 | Highly suitable habitat | Provides the best habitat for nesting, breeding, or food (depending on the species). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andries, A.; Murphy, R.J.; Morse, S.; Lynch, J. Earth Observation for Monitoring, Reporting, and Verification within Environmental Land Management Policy. Sustainability 2021, 13, 9105. https://doi.org/10.3390/su13169105
Andries A, Murphy RJ, Morse S, Lynch J. Earth Observation for Monitoring, Reporting, and Verification within Environmental Land Management Policy. Sustainability. 2021; 13(16):9105. https://doi.org/10.3390/su13169105
Chicago/Turabian StyleAndries, Ana, Richard J. Murphy, Stephen Morse, and Jim Lynch. 2021. "Earth Observation for Monitoring, Reporting, and Verification within Environmental Land Management Policy" Sustainability 13, no. 16: 9105. https://doi.org/10.3390/su13169105