Landscape Pattern Evolution Processes and the Driving Forces in the Wetlands of Lake Baiyangdian
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Research Methods
3. Results
3.1. Wetland Changes and Landscape Pattern from 1980 to 2017
3.2. Changes in Land Use Types over the Study Period
3.3. Driving Forces behind Wetland Landscape Fragmentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Granata, F.; Gargano, R.; Marinis, G.D. Artificial intelligence based approaches to evaluate actual evapotranspiration in wet-lands. Sci. Total Environ. 2019, 703, 135653. [Google Scholar] [CrossRef]
- Lin, W.; Cen, J.; Xu, D.; Du, S.; Gao, J. Wetland landscape pattern changes over a period of rapid development (1985–2015) in the ZhouShan Islands of Zhejiang province, China. Estuar. Coast. Shelf Sci. 2018, 213, 148–159. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, N.; Luo, L.; Li, X.; Ren, C.; Song, K.; Chen, J.M. Shrinkage and fragmentation of marshes in the West Songnen Plain, China, from 1954 to 2008 and its possible causes. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 477–486. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Huang, Q. Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: A case study of the middle reaches of the Heihe River, China. Ecol. Indic. 2014, 46, 240–252. [Google Scholar] [CrossRef]
- OECD. Guidelines for Aid Agencies for Improved Conservation and Sustainable Use of Tropical and Sub-Tropical Wetlands; OECD Guidelines on Aid & Environment; OECD: Paris, France, 1996; p. 9. [Google Scholar]
- Meng, W.; He, M.; Hu, B.; Mo, X.; Li, H.; Liu, B.; Wang, Z. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, K.; Fu, B. Wetland loss under the impact of agricultural development in the Sanjiang Plain, NE China. Environ. Monit. Assess. 2009, 166, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Sica, Y.; Quintana, R.; Radeloff, V.; Gavier-Pizarro, G. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci. Total Environ. 2016, 568, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Basu, T.; Das, A.; Pham, Q.B.; Al-Ansari, N.; Linh, N.T.T.; Lagerwall, G. Development of an integrated peri-urban wetland deg-radation assessment approach for the Chatra Wetland in eastern India. Sci. Rep. 2021, 11, 4470. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; Zhang, M.; Tan, Z. Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades. Sci. Total Environ. 2021, 787, 147644. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.; Lin, C. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Rashid, I.; Aneaus, S. Landscape transformation of an urban wetland in Kashmir Himalaya, India using high-resolution remote sensing data, geospatial modeling, and ground observations over the last 5 decades (1965–2018). Environ. Monit. Assess. 2020, 192, 1–14. [Google Scholar] [CrossRef]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Li, L.; Tedesco, L.; Li, F.; Jin, C.; Du, J. Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng–Xingkai Plain, China. J. Environ. Manag. 2012, 111, 120–132. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Zhang, S. Investigating landscape pattern and its dynamics in Daqing, China. Int. J. Remote Sens. 2005, 26, 2259–2280. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of Urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: Implications for Landscape Planning Towards a Sustainable Urban Wetland Ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- Huang, S.; Dahal, D.; Young, C.; Chander, G.; Liu, S. Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota. Remote Sens. Environ. 2011, 115, 3377–3389. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.; Galatowitsch, S.M.; Matthews, J.W. Wetland Compensation and Landscape Change in a Rapidly Urbanizing Context. Environ. Manag. 2021, 67, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Liu, J.; Christensen, P. Spatial distribution and ecological risk assessment of metals in sediments of Baiyangdian wetland ecosystem. Ecotoxicology 2011, 20, 1107–1116. [Google Scholar] [CrossRef]
- Moiwo, J.P.; Yang, Y.; Li, S.H.H.; Yang, Y. Impact of water resource exploitation on the hydrology and water storage in Baiyangdian Lake. Hydrol. Process. 2010, 24, 3026–3039. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, C.; Cai, Y.; Yang, Z.; Yi, Y. NDVI dynamics under changing meteorological factors in a shallow lake in future metropolitan, semiarid area in North China. Sci. Rep. 2018, 8, 15971. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Liu, X.; Liu, J.; Liu, Y.; Qiao, X.; Ma, M.; Zheng, B.; Zhao, X. Occurrence, partition and environmental risk assessment of per- and polyfluoroalkyl substances in water and sediment from the Baiyangdian Lake, China. Sci. Rep. 2020, 10, 4691. [Google Scholar] [CrossRef]
- Liu, C.; Xie, G.; Huang, H. Shrinking and drying up of Baiyangdian Lake wetland: A natural or human cause? Chin. Geogr. Sci. 2006, 16, 314–319. [Google Scholar] [CrossRef]
- Bai, Y.; Zheng, H.; Ouyang, Z.; Zhuang, C.; Jiang, B. Modeling hydrological ecosystem services and tradeoffs: A case study in Baiyangdian watershed, China. Environ. Earth Sci. 2013, 70, 709–718. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Zheng, H.; Jin, H.; Xu, T.; Yang, P.; Tijiang, X.; Yan, Z.; Ji, Z.; Lu, J.; et al. Evolution Characteristics for Water Eco-Environment of Baiyangdian Lake with 3S Technologies in the Past 60 Years. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 29–31 October 2011; pp. 434–460. [Google Scholar]
- Mao, D.; Luo, L.; Wang, Z.; Wilson, M.C.; Zeng, Y.; Wu, B.; Wu, J. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Gao, Y.; Singh, V.P. Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days. J. Hydrol. 2010, 388, 217–233. [Google Scholar] [CrossRef]
- Cui, G.; Liu, Y.; Tong, S. Analysis of the causes of wetland landscape patterns and hydrological connectivity changes in Momoge National Nature Reserve based on the Google Earth Engine Platform. Arab. J. Geosci. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Wang, B.B.; Liu, J.L.; Zhang, T.; Chen, Q.Y. Spatial and Temporal Changes of Landscape Patches in Baiyangdian Wetlands, China. J. Agro-Environ. Sci. 2010, 29, 1857–1867. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, Z.N.; Zhao, W.J. Analysis of driving forces of baiyangdian wetland evolution during 1984–2013. Chin. J. Ecol. 2016, 35, 499–507. [Google Scholar] [CrossRef]
- Zhuang, C.; Ouyang, Z.; Xu, W.; Bai, Y. Landscape dynamics of baiyangdian lake from 1974 to 2007. Acta Ecol. Sin. 2011, 31, 839–848. [Google Scholar]
- Song, C.; Ke, L.; Pan, H.; Zhan, S.; Liu, K.; Ma, R. Long-term surface water changes and driving cause in Xiong’an, China: From dense Landsat time series images and synthetic analysis. Sci. Bull. 2018, 63, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Pei, Y.; Yang, Z.; He, C. Historical changes in polycyclic aromatic hydrocarbons (PAHs) input in Lake Baiyangdian related to regional socio-economic development. J. Hazard. Mater. 2011, 187, 441–449. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, X.; Yang, Z. Environmental flow management strategies based on the integration of water quantity and quality, a case study of the Baiyangdian Wetland, China. Ecol. Eng. 2016, 96, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Yang, Z.; Cui, B.; Liu, J. Eco-environmental water demands for the Baiyangdian Wetland. Front. Environ. Sci. Eng. China 2008, 2, 73–80. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Yong, B. Identification of dominant interactions between climatic seasonality, catchment char-acteristics and agricultural activities on Budyko-type equation parameter estimation. J. Hydrol. 2018, 556, 585–599. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.; Wang, D.; Liu, P.; Guo, S.; Xu, C.-Y. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol. 2015, 522, 326–338. [Google Scholar] [CrossRef]
- Fathi, M.M.; Awadallah, A.G.; Abdelbaki, A.M.; Haggag, M. A new Budyko framework extension using time series SARIMAX model. J. Hydrol. 2019, 570, 827–838. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Yang, T.; Yu, Z.; Xing, W.; Zhao, C. Multimodel ensemble projections of future climate extreme changes in the Haihe River Basin, China. Theor. Appl. Clim. 2014, 118, 405–417. [Google Scholar] [CrossRef]
- Zeng, R.; Zhao, Y.; Yang, Z. Emergy-based Health Assessment of Baiyangdian Watershed Ecosystem in Temporal and Spatial Scales. Procedia Environ. Sci. 2010, 2, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.; Liu, X.; Gang, L.; Xu, H.; Liu, S.; Cheng, D.; Gong, W. Distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China. J. Environ. Sci. 2011, 23, 1640–1649. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Zhou, H.; Li, Y.; Qian, Y.; Zhang, L. Assessment of wetland fragmentation in the Tarim River basin, western China. Environ. Earth Sci. 2009, 57, 455–464. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Peng, S.; Yu, Z.; Yong, B.; Taylor, J. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Glob. Planet. Chang. 2014, 115, 1–15. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M.; Allen, R.G.; Pereira, L.S.; Martin, S. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 56. [Google Scholar]
- Choudhury, B. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Ren, C.; Luo, L.; Yang, T.; Huang, N.; Hu, L.-J.; Yang, H.; et al. Shrinkage and fragmentation of grasslands in the West Songnen Plain, China. Agric. Ecosyst. Environ. 2009, 129, 315–324. [Google Scholar] [CrossRef]
- Mcgarigal, K.S.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. 2002. Available online: www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 25 October 2020).
- Wu, J.G. Landscape Ecology: Pattern, Process, Scale and Hierarchy; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Peng, J.; Zhao, M.; Guo, X.; Pan, Y.; Liu, Y. Spatial-temporal dynamics and associated driving forces of urban ecological land: A case study in Shenzhen City, China. Habitat Int. 2017, 60, 81–90. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of Wetland Conversion: A Global Meta-Analysis. PLoS ONE 2013, 8, e81292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Peng, S.; Yang, T.; Shao, Q.; Xu, J.; Xing, W. Spatial and Temporal Characteristics of Reference Evapotranspiration Trends in the Haihe River Basin, China. J. Hydrol. Eng. 2011, 16, 239–252. [Google Scholar] [CrossRef]
- Bai, J.; Fang, J.; Huang, L.; Deng, W.; Ainong, L.I.; Kong, B. Landscape pattern evolution and its driving factors of Baiyangdian lake-marsh wetland system. Geogr. Res. 2013, 32, 1634–1644. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, X. Changes in hydrological connectivity and spatial morphology of Baiyangdian wetland over the last 20 years. Acta Ecol. Sin. 2018, 38, 4205–4213. [Google Scholar] [CrossRef]
- Lü, J.; Jiang, W.; Wang, W.; Chen, K.; Li, Z. Wetland landscape pattern change and its driving forces in Beijing-Tianjin-Hebei region in recent 30 years. Acta Ecol. Sin. 2018, 38, 4492–4503. [Google Scholar] [CrossRef]
- Qiang, W.; Jingling, L. Environmental water demand of Baiyangdian Lake at different times and places. Acta Sci. Circumstantiae 2008, 28, 1447–1454. [Google Scholar]
- Kong, W.; Sun, O.; Xu, W.; Chen, Y. Changes in vegetation and landscape patterns with altered river water-flow in arid West China. J. Arid. Environ. 2009, 73, 306–313. [Google Scholar] [CrossRef]
- Lv, J.; Jiang, W.; Wang, W.; Wu, Z.; Liu, Y.; Wang, X.; Li, Z. Wetland Loss Identification and Evaluation Based on Landscape and Remote Sensing Indices in Xiong’an New Area. Remote Sens. 2019, 11, 2834. [Google Scholar] [CrossRef] [Green Version]
Year | Wetland (km2) | Percentage (%) | Stage | Change in Wetland Area (km2) | Change Rate (%) | Annual Change Rate (%) |
---|---|---|---|---|---|---|
1980 | 234.44 | 67.57% | 1980–1990 | 3.45 | 1.47% | 0.15% |
1990 | 237.90 | 68.57% | 1990–2000 | 15.32 | 6.44% | 0.64% |
2000 | 253.22 | 72.98% | 2000–2005 | −37.79 | −14.92% | −2.98% |
2005 | 215.43 | 62.09% | 2005–2010 | −19.36 | −8.99% | −1.80% |
2010 | 196.07 | 56.51% | 2010–2017 | 19.44 | 9.91% | 1.42% |
2017 | 215.50 | 62.11% | 1980–2017 | −18.94 | −8.08% | −0.22% |
Indice | Abbreviations | Definitions | Unit | 1980 | 1990 | 2000 | 2005 | 2010 | 2017 |
---|---|---|---|---|---|---|---|---|---|
Number of patches | NP | The degree of subdivision of a land use type | Pcs | 24.00 | 42.00 | 96.00 | 71.00 | 78.00 | 72.00 |
Patch density | PD | Represent the density of patches for each land use type | Pcs/hm2 | 0.10 | 0.18 | 0.38 | 0.33 | 0.40 | 0.33 |
Edge density | ED | The edge length between patches of heterogeneous landscape elements | m/ha | 1.36 | 1.47 | 14.75 | 15.00 | 13.50 | 16.20 |
Landscape shape Index | LSI | The complexity of patch shape and the direction and intensity of human activity | % | 6.60 | 6.78 | 10.91 | 10.15 | 9.86 | 11.64 |
Largest patch index | LPI | The percentage of the total landscape area comprising the largest patch | % | 96.74 | 96.6 | 75.67 | 68.53 | 66.57 | 51.57 |
Contagion index | CONTAG | The agglomeration or spreading trends of different landscape patch types | % | 94.11 | 93.85 | 53.81 | 51.36 | 52.85 | 45.28 |
Shannon diversity index | SHDI | Landscape heterogeneity | None | 0.07 | 0.07 | 0.54 | 0.57 | 0.56 | 0.64 |
Shannon’s Evenness Index | SHEI | Whether there are uniform plaque types in the area of distribution | None | 0.10 | 0.10 | 0.78 | 0.82 | 0.80 | 0.93 |
TYPE | 1980 | 1990 | 2000 | 2005 | 2010 | 2017 |
---|---|---|---|---|---|---|
Paddy field | 0.00 | 0.00 | 0.00 | 11.29 | 5.11 | 24.85 |
Dry land | 103.65 | 100.98 | 84.96 | 119.92 | 132.20 | 112.35 |
Woodland | 0.47 | 0.35 | 0.36 | 0.36 | 0.00 | 0.00 |
River | 0.00 | 0.02 | 0.02 | 0.25 | 7.06 | 4.70 |
Lake | 2.77 | 3.05 | 50.53 | 46.20 | 36.06 | 61.04 |
Reservoir and ponds | 0.31 | 0.19 | 7.30 | 8.76 | 4.94 | 8.63 |
Beach | 231.37 | 234.63 | 195.38 | 148.92 | 142.90 | 116.28 |
Residential land | 8.39 | 7.73 | 8.41 | 11.25 | 18.68 | 19.10 |
TYPE | Paddy Field | Dryland | Woodland | River | Lake | Reservoir and Ponds | Beach | Residential Land | Total |
---|---|---|---|---|---|---|---|---|---|
Dry land | 12.8 | 74.2 | 0.0 | 0.0 | 4.2 | 0.4 | 7.4 | 4.6 | 103.7 |
Woodland | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 |
Lake | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | 1.3 | 0.3 | 2.8 |
Reservoir and Ponds | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.3 |
Beach | 11.4 | 36.5 | 0.0 | 4.6 | 55.4 | 7.7 | 106.1 | 9.7 | 231.3 |
Residential land | 0.1 | 1.7 | 0.0 | 0.0 | 0.4 | 0.4 | 1.3 | 4.4 | 8.4 |
Total | 24.8 | 112.4 | 0.0 | 4.7 | 61.1 | 8.6 | 116.2 | 19.1 | 347.0 |
Net change | +24.8 | +8.7 | −0.5 | +4.7 | +58.3 | +8.3 | −115.1 | +10.7 |
Name | Importance Rank | Contribution (%) | F-Value | p-Value |
---|---|---|---|---|
Grain yield (GY) | 1 | 85.3 | 23.2 | 0.016 |
Total population (TP) | 2 | 9.3 | 5.1 | 0.034 |
Actual evapotranspiration (AET) | 3 | 4.5 | 9.8 | 0.062 |
Primary industrial output (PIO) | 4 | 0.7 | 3.8 | 0.220 |
annual average temperature (AAT) | 5 | 0.2 | <0.1 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Gong, J.; Zeng, Q.; Yang, M.; Wang, Y. Landscape Pattern Evolution Processes and the Driving Forces in the Wetlands of Lake Baiyangdian. Sustainability 2021, 13, 9747. https://doi.org/10.3390/su13179747
Zhao C, Gong J, Zeng Q, Yang M, Wang Y. Landscape Pattern Evolution Processes and the Driving Forces in the Wetlands of Lake Baiyangdian. Sustainability. 2021; 13(17):9747. https://doi.org/10.3390/su13179747
Chicago/Turabian StyleZhao, Cuiping, Jiaguo Gong, Qinghui Zeng, Miao Yang, and Ying Wang. 2021. "Landscape Pattern Evolution Processes and the Driving Forces in the Wetlands of Lake Baiyangdian" Sustainability 13, no. 17: 9747. https://doi.org/10.3390/su13179747
APA StyleZhao, C., Gong, J., Zeng, Q., Yang, M., & Wang, Y. (2021). Landscape Pattern Evolution Processes and the Driving Forces in the Wetlands of Lake Baiyangdian. Sustainability, 13(17), 9747. https://doi.org/10.3390/su13179747