Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope of the LCA
2.2. Marginal Lands
3. Life Cycle Inventory
3.1. Willow Yield and Plantation Lifetime
3.2. Tractor Operations
3.3. Fertilizers and Herbicides
3.4. Willow Drying
3.5. Chipping and Transportation
3.6. Slow Pyrolysis
3.7. Transportation
3.8. Application to Soil
3.9. Biochar Stability and Carbon Content
4. Results and Discussion
4.1. Carbon Footprint of Willow Biochar
4.2. Compensation Potential of Marginal Lands Used for Willow Cultivation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Process | Input/Output Flow | Unit | Amount | Data Source |
---|---|---|---|---|
Cultivation | Inputs | |||
Diesel | kg | 5.55 | [36,37,38] | |
Nitrogen | kg | 25.61 | [41] | |
Phosphorus pentoxide | kg | 8.22 | [41] | |
Potassium oxide | kg | 22.22 | [41] | |
Glyphosate | l | 0.16 | [34,39] | |
Metazachlor | l | 0.03 | [34] | |
Outputs | ||||
Willow rods (52% moist.) | kg | 6136.48 | [30,31,32] | |
N2O emissions | kg | 0.40 | [67] | |
Natural drying | Inputs | |||
Willow rods (52% moist.) | kg | 6136.48 | Calculated | |
Outputs | ||||
Willow rods (26% moist.) | kg | 3861.00 | [40,44] | |
Roadside chipping | Inputs | |||
Willow rods (26% moist.) | kg | 3861.00 | Calculated | |
Diesel | kg | 7.63 | [47] | |
Outputs | ||||
Willow chips (26% moist.) | kg | 3861.00 | Calculated | |
CO2 emissions | kg | 24.55 | [43] | |
Transportation | Transport distance | km | 68.00 | [48] |
Artificial drying | Inputs | |||
Willow chips (26% moist.) | kg | 3861.00 | Calculated | |
Heat energy | kWh | 858.69 | [45,46] | |
Electricity | kWh | 48.05 | [45,46] | |
Outputs | ||||
Dried willow chips (10% moist.) | kg | 3174.60 | ||
Slow pyrolysis | Inputs | |||
Dried willow chips (10% moist.) | kg | 3174.60 | [53,54] | |
Electricity | kWh | 400.00 | [51,52] | |
Outputs | ||||
Dry biochar | kg | 1000.00 | Calculated | |
Excess heat to artificial drying | kWh | 858.69 | [53,54] | |
Excess heat to district heating | kWh | 3422.25 | [53,54] | |
Biochar moistening | Inputs | |||
Dry biochar | kg | 1000.00 | Calculated | |
Water | kg | 176.47 | [57] | |
Outputs | ||||
Wet biochar (15% moist.) | kg | 1176.47 | Calculated | |
Transportation | Transport | km | 68.00 | [48] |
Soil amendment | Inputs | |||
Diesel | kg | 0.81 | [37,59] | |
Wet biochar | kg | 1176.47 | Calculated | |
Outputs | ||||
Wet biochar in soil | kg | 1176.47 | Calculated |
Process | Frequency [Times Lifetime−1] | Fuel Consumption [l ha−1] | Reference |
---|---|---|---|
Ploughing | 1 | 23.97 | [36,37,38] |
Power harrowing | 1 | 6.00 | [37] |
Rolling | 1 | 3.64 | [37,38] |
Herbicide spraying | 3 | 2.03 | [37,38] |
Fertilization | 6 | 2.00 | [37] |
Planting | 1 | 10.60 | [38] |
Harvesting | 6 | 50.00 | [38] |
Mulching | 1 | 12.90 | [37] |
References
- Haszeldine, R.S.; Flude, S.; Johnson, G.; Scott, V. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2018, 376, 20160447. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009; ISBN 978-1-84407-658-1. [Google Scholar]
- Zhang, C.; Zeng, G.; Huang, D.; Lai, C.; Chen, M.; Cheng, M.; Tang, W.; Tang, L.; Dong, H.; Huang, B.; et al. Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chem. Eng. J. 2019, 373, 902–922. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Jawad, S. The Cumulative Benefits of Biochar in Agriculture. Bachelor’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018. [Google Scholar]
- Söderqvist, H. Carbon Stability of Biochar Methods for Assessment and Indication. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019. [Google Scholar]
- Qian, X.; Xue, J.; Yang, Y.; Lee, S.W. Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues. Energies 2021, 14, 4619. [Google Scholar] [CrossRef]
- Qian, X. Statistical Analysis and Evaluation of the Advanced Biomass and Natural Gas Co-Combustion Performance. Ph.D. Thesis, Morgan State University, Baltimore, MD, USA, 2019. [Google Scholar]
- Pohjonen, V. Pajukko Nielee, Hiilen ja Pääravinteiden Kierrätys Biomassapajuilla. Available online: https://pohjonen.org/veli/vprefs/2016/2016%2010%2025%20Veli%20Pohjonen%20Pajukko%20nielee.pdf (accessed on 21 March 2021).
- Rasa, K.; Heikkinen, J.; Hannula, M.; Arstila, K.; Kulju, S.; Hyväluoma, J. How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenerg. 2018, 119, 346–353. [Google Scholar] [CrossRef]
- Tisserant, A.; Cherubini, F. Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land 2019, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.; Shackley, S.; Sohi, S.; Brownsort, P. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 2011, 39, 2646–2655. [Google Scholar] [CrossRef]
- Hamedani, S.R.; Kuppens, T.; Malina, R.; Bocci, E.; Colantoni, A.; Villarini, M. Life cycle assessment and environmental valuation of biochar production: Two case studies in belgium. Energies 2019, 12, 2166. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, V.; Leino, M. Neutralizing global warming impacts of crop production using biochar from side flows and buffer zones: A case study of oat production in the boreal climate zone. J. Clean. Prod. 2019, 227, 48–57. [Google Scholar] [CrossRef]
- Runge, C.F.; Senauer, B. How biofuels could starve the poor. Foreign Aff. 2007, 86, 41–53. [Google Scholar]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef]
- Qin, Z.; Zhuang, Q.; Zhu, X.; Cai, X.; Zhang, X. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China. Environ. Sci. Technol. 2011, 45, 10765–10772. [Google Scholar] [CrossRef]
- Skevas, T.; Swinton, S.M.; Hayden, N.J. What type of landowner would supply marginal land for energy crops? Biomass Bioenerg. 2014, 67, 252–259. [Google Scholar] [CrossRef]
- Finnish Standards Association SFS. Environmental Management. Life Cycle Assessment. Principles and Framework; SFS-EN ISO 14040:2006; Approved 18 December 2006; Finnish Standards Association SFS: Helsinki, Finland, 2006. [Google Scholar]
- Finnish Standards Association SFS. Environmental Management. Life Cycle Assessment. Requirements and Guidelines; SFS-EN ISO 14044:2006; Approved 18 December 2006; Finnish Standards Association SFS: Helsinki, Finland, 2006. [Google Scholar]
- Finnish Standards Association SFS. Greenhouse Gases. Carbon Footprint of Products. Requirements and Guidelines for Quantification; SFS-EN ISO 14067:2018; Approved 5 October 2018; Finnish Standards Association SFS: Helsinki, Finland, 2018. [Google Scholar]
- Lumperoinen, M.; Hämäläinen, M. Metsitys Kestävästi 2020, Joutoalueiden Määrittäminen—Paikkatietoanalyysin Tulokset, 24.4.2020. Tapio. Available online: https://mmm.fi/documents/1410837/22015134/Arvio+joutoalueiden+metsityspotentiaalista+24_04_2020.pdf/a34c023e-4dd6-e40d-bc57-2bf8d5a4f2a2/Arvio+joutoalueiden+metsityspotentiaalista+24_04_2020.pdf (accessed on 21 March 2021).
- Rajaniemi, M.; Mikkola, H.; Ahokas, J. Greenhouse gas emissions from oats, barley, wheat and rye production. Agron. Res. 2011, 9, 189–195. [Google Scholar]
- Heusala, H.; Sinkko, T.; Sözer, N.; Hytönen, E.; Mogensen, L.; Knudsen, M.T. Carbon footprint and land use of oat and faba bean protein concentrates using a life cycle assessment approach. J. Clean. Prod. 2020, 242, 118376. [Google Scholar] [CrossRef]
- Natural Resources Institute Finland. Luke Official Variety Trials. Available online: https://www.luke.fi/avoin-tieto/maa-ja-elintarviketalous/uusien-peltokasvilajikkeiden-viljelyarvo/ (accessed on 23 March 2021).
- Fridrihsone, A.; Romagnoli, F.; Cabulis, U. Environmental life cycle assessment of rapeseed and rapeseed oil produced in Northern Europe: A Latvian case study. Sustainability 2020, 12, 5699. [Google Scholar] [CrossRef]
- Pulkkinen, H.; Kemppainen, M.; Markus, A.; Virtanen, E. Perunan Ilmastovaikutukset. MTT Raportti; MTT Jokioinen. Available online: https://jukuri.luke.fi/bitstream/handle/10024/438285/mttraportti73.pdf?sequence=1&isAllowed=y (accessed on 23 March 2021).
- Mola-Yudego, B. Regional potential yields of short rotation willow plantations on agricultural land in Northern Europe. Silva. Fenn. 2010, 44, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Laasasenaho, K.; Lensu, A.; Rintala, J.; Lauhanen, R. Landowners’ willingness to promote bioenergy production on wasteland—Future impact on land use of cutaway peatlands. Land Use Policy 2017, 69, 167–175. [Google Scholar] [CrossRef]
- Pajupojat Oy—WillowPartners. Ravinteiden Kierrätyksen Edistämistä ja Saaristomeren Tilan Parantamista Koskeva Hanke: Pajureaktorit, Pajupojat Oy—WillowPartners, Loppuraportti. Available online: https://www.ym.fi/download/noname/%7B4514563C-EDB0-4361-895F-9EC022900F14%7D/129347 (accessed on 23 March 2021).
- Alakangas, E.; Hurskainen, M.; Laatikainen-Luntama, J.; Korhonen, J. Suomessa Käytettävien Polttoaineiden Ominaisuuksia. VTT Technical Research Centre of Finland, 2016, 263. Available online: https://www.vttresearch.com/sites/default/files/pdf/technology/2016/T258.pdf (accessed on 23 March 2021).
- Niemi, A. Energiapajun Viljely ja Käyttö Vesien Puhdistuksessa—Teknis-Taloudellinen Tarkastelu. Master’s Thesis, University of Jyväskylä, Jyväskylä, Finland, 2014. [Google Scholar]
- Hytönen, J. Biomass Production and Nutrition of Short Rotation Plantations; The Finnish Forest Research Institute: Kannus, Finland, 1996; Volume 61. [Google Scholar]
- Ahokas, J. Polttoaineen Kulutus Peltotöissä; University of Helsinki: Helsinki, Finland, 2013; ISBN 978-952-10-8885-8. [Google Scholar]
- Handler, F.; Nadlinger, M. D 3.8 Strategies for Saving Fuel with Tractors, Trainer Handbook; EU Projekt Intelligent Energy Europe, Efficient 20, IEE/09/764/SI2.558250; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Murphy, F.; Devlin, G.; McDonnell, K. Energy requirements and environmental impacts associated with the production of short rotation willow (Salix sp.) chip in Ireland. GCB Bioenergy 2014, 6, 727–739. [Google Scholar] [CrossRef] [Green Version]
- Caslin, B.; Finnan, J.; Johnston, C.; McCracken, A.; Walsh, L. Short Rotation Coppice Willow, Best Practice Guidelines; Teagasc, Agriculter and Food Development Authority: Carlow, Ireland, 2015; Volume 128, ISBN 1-84170-610-8. [Google Scholar]
- Sihvonen, J.; Leinonen, A.; Villa, A. Pajun Korjuu, Varastointija Toimitus Laitokselle—Tehtäväraportti; VTT Technical Research Centre of Finland: Jyväskylä, Finland, 2013. [Google Scholar]
- Tahvanainen, L. Pajun Viljelyn Perusteet; Joensuun Yliopisto: Joensuu, Finland, 1995; ISBN 951-708-308-4. [Google Scholar]
- European Commission Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilizers. Off. J. Eur. Communities 2003. Available online: http://data.europa.eu/eli/reg/2003/2003/oj (accessed on 8 September 2021).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html (accessed on 21 March 2021).
- Nurmi, J. The effect of whole-tree storage on the fuelwood properties of short-rotation Salix crops. Biomass Bioenerg 1995, 8, 245–249. [Google Scholar] [CrossRef]
- Roitto, J. Puuhakkeen Käsittely- ja Poltto-Ominaisuuksien Parantaminen. Master’s Thesis, LUT University, Lappeenranta, Finland, 2014. [Google Scholar]
- Pääkkönen, P. Kuivuritekniikan Selvitys. Micropolis: Ii, Finland, 2020, 35. Available online: https://docplayer.fi/18487143-Kuivuritekniikan-selvitys-dokumentti-nro.html (accessed on 8 September 2021).
- Spinelli, R.; Magagnotti, N.; Paletto, G.; Preti, C. Determining the impact of some wood characteristics on the performance of a mobile chipper. Silva. Fenn. 2011, 45, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Statistics Finland. Tieliikenteen Tavarankuljetukset, Liitetaulukko 10. Keskimääräinen Kuljetusmatka ja Kuormausaste Kotimaan Liikenteessä Tavaralajeittain Vuonna. 2017. Available online: http://www.stat.fi/til/kttav/2017/kttav_2017_2018-04-26_tau_010_fi.html (accessed on 18 May 2020).
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Crombie, K.; Mašek, O. Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions. Bioresour. Technol. 2014, 162, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Harsono, S.S.; Grundman, P.; Lau, L.H.; Hansen, A.; Salleh, M.A.M.; Meyer-Aurich, A.; Idris, A.; Ghazi, T.I.M. Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resour. Conserv. Recycl. 2013, 77, 108–115. [Google Scholar] [CrossRef]
- Lu, H.R.; El Hanandeh, A. Assessment of bioenergy production from mid-rotation thinning of hardwood plantation: Life cycle assessment and cost analysis. Clean Technol. Environ. Policy 2017, 19, 2021–2040. [Google Scholar] [CrossRef]
- Klinar, D. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment. Bioresour. Technol. 2016, 206, 112–120. [Google Scholar] [CrossRef]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef]
- Alakangas, E.; Impola, R. Puupolttoaineiden Laatuohje; Bioenergia ry: Helsinki, Finland, 2014; ISBN 978-952-93-3223-6. [Google Scholar]
- Motiva. CO2-Päästökertoimet. Available online: https://www.motiva.fi/ratkaisut/energiankaytto_suomessa/co2-laskentaohje_energiankulutuksen_hiilidioksidipaastojen_laskentaan/co2-paastokertoimet (accessed on 21 July 2020).
- Major, J. Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems; International Biochar Initiative: Westerville, OH, USA, 2010; Volume 23, Available online: https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Application.pdf (accessed on 21 July 2020).
- Silva, F.C.; Borrego, C.; Keizer, J.J.; Amorim, J.H.; Verheijen, F.G.A. Effects of moisture content on wind erosion thresholds of biochar. Atmos. Environ. 2015, 123, 121–128. [Google Scholar] [CrossRef]
- Brandstaka, T.; Helenius, J.; Hovi, J.; Kivelä, J.; Koppelmäki, K.; Simojoki, A.; Soinne, H.; Tammeorg, P. Biochar Filter: Use of Biochar in Agriculture as Soil Conditioner; Baltic Sea Action Summit; University of Helsinki: Helsinki, Finland, 2010. [Google Scholar]
- Mašek, O.; Budarin, V.; Gronnow, M.; Crombie, K.; Brownsort, P.; Fitzpatrick, E.; Hurst, P. Microwave and slow pyrolysis biochar—Comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 2013, 100, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Finnish Environment Institute. SYKE—Kuntien ja Alueiden Khk-Päästöt. Available online: https://paastot.hiilineutraalisuomi.fi/ (accessed on 21 October 2020).
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; Kammann, C.; Abalos, D. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biol. Biochem. 2016, 101, 251–258. [Google Scholar] [CrossRef]
- Ministry of the Environment. Luonnon Monimuotoisuudelle Haitalliset Tuet, Taustaselvitys; Ministry of Environment: Helsinki, Finland, 2015; ISBN 978-952-11-4450-9. [Google Scholar]
- FAO, Food and Agriculture Organization of the United Nations. Global Database of GHG Emissions Related to Feed Crops: Methodology; Version 1; Livestock Environmental Assessment and Performance Partnership: Rome, Italy, 2017. [Google Scholar]
Parameter. | Change | Result [kgCO2eq per 1 t of Biochar] |
---|---|---|
Willow yield | 6.9 → 8 t DM ha−1 a−1 | −1904 (−1.5%) |
6.9 → 5.8 t DM ha−1 a−1 | −1835 (+2.1%) | |
Heat to district heating | 3422 → 0 kWh | −1348 (+28.1%) |
Biochar yield | 35 → 25% | −1946 (−3.8%) |
35 → 45% | −1835 (+2.1%) | |
Carbon content | 72 → 62% | −1639 (+12.6%) |
72 → 82% | −2112 (−12.6%) | |
Amount of stable carbon | 68 → 58% | −1625 (+13.3%) |
68 → 78% | −2126 (−13.4%) |
County | Agricultural Emissions 2018 [ktCO2eq a−1] | Marginal Lands [ha] | Carbon Sequestration pot. [ktCO2eq a−1] | Compensation Potential [%] |
---|---|---|---|---|
North Ostrobothnia | 1048.4 | 20,447 | −86.2 | 8.2 |
Lapland | 320.1 | 15,545 | −65.5 | 20.5 |
Kainuu | 121.2 | 10,373 | −43.7 | 36.1 |
North Karelia | 293.6 | 8144 | −34.3 | 11.7 |
Central Finland | 273.7 | 7694 | −32.4 | 11.9 |
North Savo | 597.9 | 7547 | −31.8 | 5.3 |
Pirkanmaa | 371.8 | 7185 | −30.3 | 8.1 |
South Savo | 229.9 | 6901 | −29.1 | 12.7 |
Uusimaa | 226.5 | 6362 | −26.8 | 11.8 |
Southwest Finland | 466.5 | 5469 | −23.1 | 4.9 |
South Ostrobothnia | 873.3 | 5366 | −22.6 | 2.6 |
Satakunta | 315.4 | 4139 | −17.5 | 5.5 |
South Karelia | 143.6 | 3438 | −14.5 | 10.1 |
Kymenlaakso | 141.6 | 2407 | −10.1 | 7.2 |
Kanta-Häme | 199.2 | 2271 | −9.6 | 4.8 |
Päijät-Häme | 159.4 | 1950 | −8.2 | 5.2 |
Ostrobothnia | 393.7 | 1910 | −8.1 | 2.0 |
Central Ostrobothnia | 346.7 | 1537 | −6.5 | 1.9 |
Total | 6523.5 | 118,685 | −500.4 | 7.7 |
Cultivation Emissions [kgCO2eq ha−1] | Willow Buffer Zone [ha] | |
---|---|---|
Wheat | 2330 | 0.55 |
Rye | 2270 | 0.54 |
Barley | 1930 | 0.46 |
Oat | 1800 | 0.43 |
Fava bean | 828 | 0.20 |
Spring rapeseed | 3170 | 0.75 |
Potato | 4760 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leppäkoski, L.; Marttila, M.P.; Uusitalo, V.; Levänen, J.; Halonen, V.; Mikkilä, M.H. Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland. Sustainability 2021, 13, 10097. https://doi.org/10.3390/su131810097
Leppäkoski L, Marttila MP, Uusitalo V, Levänen J, Halonen V, Mikkilä MH. Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland. Sustainability. 2021; 13(18):10097. https://doi.org/10.3390/su131810097
Chicago/Turabian StyleLeppäkoski, Lauri, Miika P. Marttila, Ville Uusitalo, Jarkko Levänen, Vilma Halonen, and Mirja H. Mikkilä. 2021. "Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland" Sustainability 13, no. 18: 10097. https://doi.org/10.3390/su131810097
APA StyleLeppäkoski, L., Marttila, M. P., Uusitalo, V., Levänen, J., Halonen, V., & Mikkilä, M. H. (2021). Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland. Sustainability, 13(18), 10097. https://doi.org/10.3390/su131810097