Exploring Options for Flood Risk Management with Special Focus on Retention Reservoirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glinščica River Catchment and Models Used
2.2. Afforestation
2.3. Permeable Concrete
- Scenario 1: all built and similar areas (subbasins 1, 2 and 3) in the Glinščica river catchment were replaced with permeable concrete.
- Scenario 2: all built and similar areas of subbasin 1 and subbasin 2 were replaced with permeable concrete.
- Scenario 3: all built and similar areas of subbasin 1 were replaced with permeable concrete.
2.4. Retention Reservoirs
2.5. Sensitivity Analysis Using Retention Reservoirs
3. Results and Discussion
3.1. Afforestation
3.2. Permeable Concrete
3.3. Dry and Wet Retention Reservoirs
3.4. Sensitivity Analysis
3.5. Study Limitations
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andres, N.; Badoux, A. The Swiss flood and landslide damage database: Normalisation and trends. J. Flood Risk Manag. 2019, 12, e12510. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Bianchi, A.; Silva, F.B.E.; Marin Herrera, M.A.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef]
- Munich Re-NatCatSERVICE Natural Catastrophe Know-How for Risk Management and Research. Available online: https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html (accessed on 10 August 2021).
- Mikoš, M. Flood hazard in Slovenia and assessment of extreme design floods|Poplavna nevarnost v sloveniji in ocena ekstremnih projektnih poplavnih pretokov. Acta Hydrotech. 2020, 33, 43–59. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Forzieri, G.; Feyen, L.; Russo, S.; Vousdoukas, M.; Alfieri, L.; Outten, S.; Migliavacca, M.; Bianchi, A.; Rojas, R.; Cid, A. Multi-hazard assessment in Europe under climate change. Clim. Chang. 2016, 137, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Vallebona, C.; Pellegrino, E.; Frumento, P.; Bonari, E. Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: A case study in southern Tuscany, Italy. Clim. Chang. 2015, 128, 139–151. [Google Scholar] [CrossRef]
- Jelen, M.; Mikoš, M.; Bezak, N. Karst springs in Slovenia: Trend analysis|Kraški izviri v sloveniji: Analiza trendov. Acta Hydrotech. 2020, 33, 1–12. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryžanowski, A.; Brilly, M.; Rusjan, S.; Schnabl, S. Review Article: Structural flood-protection measures referring to several European case studies. Nat. Hazards Earth Syst. Sci. 2014, 14, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, T.; Slavíková, L.; McCarthy, S. Nature-Based Flood Risk Management on Private Land: Disciplinary Perspectives on a Multidisciplinary Challenge; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-23842-1. [Google Scholar]
- Hartmann, T.; Jílková, J.; Schanze, J. Land for flood risk management: A catchment-wide and cross-disciplinary perspective. J. Flood Risk Manag. 2018, 11, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Bezak, N.; Petan, S.; Kobold, M.; Brilly, M.; Bálint, Z.; Balabanova, S.; Cazac, V.; Csík, A.; Godina, R.; Janál, P.; et al. A catalogue of the flood forecasting practices in the Danube River Basin. River Res. Appl. 2021, 37, 909–918. [Google Scholar] [CrossRef]
- Adams, T.E.; Pagano, T.C. Flood Forecasting: A Global Perspective; Elsevier Science: London, UK, 2016; ISBN 9780128018842. [Google Scholar]
- Koprivšek, M.; Vihar, A.; Petan, S. Application of the Hargreaves method for calculating the potential evapotranspiration in the hydrological modelling. Acta Hydrotech. 2021, 34, 77–92. [Google Scholar] [CrossRef]
- Alves, A.; Vojinovic, Z.; Kapelan, Z.; Sanchez, A.; Gersonius, B. Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total Environ. 2020, 703, 134980. [Google Scholar] [CrossRef]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice, 1st ed.; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-56091-5. [Google Scholar]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Pudar, R.; Plavšić, J.; Todorović, A. Evaluation of Green and Grey Flood Mitigation Measures in Rural Watersheds. Appl. Sci. 2020, 10, 6913. [Google Scholar] [CrossRef]
- Galli, A.; Peruzzi, C.; Beltrame, L.; Cislaghi, A.; Masseroni, D. Evaluating the infiltration capacity of degraded vs. rehabilitated urban greenspaces: Lessons learnt from a real-world Italian case study. Sci. Total Environ. 2021, 787, 147612. [Google Scholar] [CrossRef]
- Johnen, G.; Sapač, K.; Rusjan, S.; Zupanc, V.; Vidmar, A.; Bezak, N. Modelling and Evaluation of the Effect of Afforestation on the Runoff Generation Within the Glinščica River Catchment (Central Slovenia). In The Handbook of Environmental Chemistry; Springer: Berlin, Germany, 2020; pp. 1–17. [Google Scholar]
- Loučkova, B. Eastern Europe perspective on the environmental aspects in current flood risk management: The example of the Czech Republic. In The Global Water System in the Anthropocene; Springer: Berlin, Germany, 2014; pp. 183–195. [Google Scholar]
- Slavíková, L.; Raška, P.; Banasik, K.; Barta, M.; Kis, A.; Kohnová, S.; Matczak, P.; Szolgay, J. Approaches to state flood recovery funding in Visegrad Group Countries. Environ. Hazards 2020, 19, 251–267. [Google Scholar] [CrossRef]
- Sodnik, J.; Kogovšek, B.; Mikoš, M. Investments into water infrastrucutre in Slovenia and in Austria. Gradb. Vestn. 2015, 64, 1–28. [Google Scholar]
- Nester, T.; Komma, J.; Salinas, J.L.; Bloeschl, G. Monte Carlo simulations to evaluate the potential of Alpine retention measures. In Proceedings of the XXVII Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management, Golden Sands, Bulgaria, 26–28 September 2017; pp. 1–7. [Google Scholar]
- Dittrich, R.; Ball, T.; Wreford, A.; Moran, D.; Spray, C.J. A cost-benefit analysis of afforestation as a climate change adaptation measure to reduce flood risk. J. Flood Risk Manag. 2019, 12, e12482. [Google Scholar] [CrossRef] [Green Version]
- Wahren, A.; Schwärzel, K.; Feger, K.-H. Potentials and limitations of natural flood retention by forested land in headwater catchments: Evidence from experimental and model studies. J. Flood Risk Manag. 2012, 5, 321–335. [Google Scholar] [CrossRef]
- Zhu, H.; Yu, M.; Zhu, J.; Lu, H.; Cao, R. Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. Int. J. Transp. Sci. Technol. 2019, 8, 373–382. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Chen, X.; Jun, C.; Hao, J.; Tang, X.; Zhai, J. Assessment on the effectiveness of urban stormwater management. Water 2021, 13, 4. [Google Scholar] [CrossRef]
- Tembata, K.; Yamamoto, Y.; Yamamoto, M.; Matsumoto, K. Don’t rely too much on trees: Evidence from flood mitigation in China. Sci. Total Environ. 2020, 732, 138410. [Google Scholar] [CrossRef] [PubMed]
- Bezak, N.; Šraj, M.; Rusjan, S.; Mikoš, M. Impact of the rainfall duration and temporal rainfall distribution defined using the Huff curves on the hydraulic flood modelling results. Geoscience 2018, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Šraj, M.; Dirnbek, L.; Brilly, M. The influence of effective rainfall on modeled runoff hydrograph|Vplyv efekťvnych zrážok na modelovaný hydrograf odtoku. J. Hydrol. Hydromech. 2010, 58, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Brilly, M.; Rusjan, S.; Vidmar, A. Monitoring the impact of urbanisation on the Glinscica stream. Phys. Chem. Earth 2006, 31, 1089–1096. [Google Scholar] [CrossRef]
- HEC HMS. HEC HMS User’s Manual; Version 4.7; Hydrologic Engineering Center: Davis, CA, USA, 2021. [Google Scholar]
- Bezak, N.; Sodnik, J.; Mikoš, M. Impact of a random sequence of Debris flows on torrential fan formation. Geosciences 2019, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- HEC RAS. HEC-RAS User’s Manual, v. 6.0. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation.aspx (accessed on 10 August 2021).
- Vidmar, A.; Zabret, K.; Sapač, K.; Pergar, P.; Kryžanowski, A. Development of an application for estimating the benefits of structural and non-structural measures for flood risk reduction. In Croatianwaters in Environmental and Nature Protection, Proceedings of the 7th Croatian Water Conference with International Participation, Opatija, Croatia, 30 May–1 June 2019; Biondić, D., Holjević, D., Vizner, M., Eds.; Hrvatske Vode: Opatija, Croatia, 2019; pp. 615–624. [Google Scholar]
- Zabret, K.; Hozjan, U.; Kryžanowsky, A.; Brilly, M.; Vidmar, A. Development of model for the estimation of direct flood damage including the movable property. J. Flood Risk Manag. 2018, 11, S527–S540. [Google Scholar] [CrossRef]
- Agency, U.E.P. Guidelines for Water Reuse; Lewis Publishers: Cincinnati, OH, USA, 2004. [Google Scholar]
- Kia, A.; Wong, H.S.; Cheeseman, C.R. Clogging in permeable concrete: A review. J. Environ. Manag. 2017, 193, 221–233. [Google Scholar] [CrossRef]
- Selbig, W.R.; Buer, N. Hydraulic, Water-Quality, and Temperature Performance of Three Types of Permeable Pavement Under High Sediment Loading Conditions; U.S. Geological Survey: Reston, VA, USA, 2018.
- CNT. Green Values Strategy Guide. 2020. Available online: https://www.cnt.org/sites/default/files/publications/Green%20Values%20Strategy%20Guide.pdf (accessed on 10 August 2021).
- Houle, K.M.; Roseen, R.M.; Ballestero, T.P.; Briggs, J.F.; Houle, J.J. Examinations of pervious concrete and porous asphalt pavements performance for stormwater management in Northern climates. In Proceedings of the World Environmental and Water Resources Congress 2009: Great Rivers, Kansas City, MO, USA, 17–21 May 2009; Volume 342, pp. 1105–1122. [Google Scholar]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Briggs, J.F.; Houle, K.M. Water Quality and Hydrologic Performance of a Porous Asphalt Pavement as a Storm-Water Treatment Strategy in a Cold Climate. J. Environ. Eng. 2012, 138, 81–89. [Google Scholar] [CrossRef]
- ICPI Permeable Interlocking Concrete Pavement (PICP): Design Professionals Fact Sheet. Available online: https://projects.ncsu.edu/picp//FactSheets/DesignProfessionals-PICP.pdf (accessed on 10 August 2021).
- Repnik, P. Management of Wetlands with Emphasis on Improvement of Water Quality–Example of Flood Control Reservoir Podutik; University of Ljubljana: Ljubljana, Slovenia, 2006. [Google Scholar]
- MOL Podutik. Available online: https://www.ljubljana.si/sl/moja-ljubljana/ljubljana-zate/projekti-mol/zadrzevalnik-podutik/ (accessed on 10 August 2021).
- Hidrotehnik Podutik Reconstruction. Available online: http://www.hidrotehnik.si/zadnji-izvedeni-projekti/sanacija-rekonstrukcija-zadrzevalnika-podutik-na-glinscici (accessed on 10 August 2021).
- Connecting Nature Water Retention Reservoir-Podutik. Available online: https://connectingnature.eu/oppla-case-study/17577 (accessed on 10 August 2021).
- MOL Brdnikova. Available online: https://www.ljubljana.si/sl/moja-ljubljana/ljubljana-zate/pregled-vseh-projektov/protipoplavni-ukrepi-2/ (accessed on 10 August 2021).
- Glavan, M.; Cvejić, R.; Zupanc, V.; Knapič, M.; Pintar, M. Agricultural production and flood control dry detention reservoirs: Example from Lower Savinja Valley, Slovenia. Environ. Sci. Policy 2020, 114, 394–402. [Google Scholar] [CrossRef]
- Glavan, M.; Cvejić, R.; Udovč, A.; Pintar, M. Prostorska in ekonomsko vrednotenje vpliva suhih zadrževalnikov na kmetijstvo. In Mišičev Vodarski Dan; Vodnogospodarski Biro: Maribor, Slovenia, 2012; pp. 38–46. [Google Scholar]
- Rusjan, S.; Sapač, K.; Petrič, M.; Lojen, S.; Bezak, N. Identifying the hydrological behavior of a complex karst system using stable isotopes. J. Hydrol. 2019, 577, 123956. [Google Scholar] [CrossRef]
- Sapač, K.; Medved, A.; Rusjan, S.; Bezak, N. Investigation of low- and high-flow characteristics of karst catchments under climate change. Water 2019, 11, 925. [Google Scholar] [CrossRef] [Green Version]
- Sezen, C.; Bezak, N.; Bai, Y.; Šraj, M. Hydrological modelling of karst catchment using lumped conceptual and data mining models. J. Hydrol. 2019, 576, 98–110. [Google Scholar] [CrossRef]
- Sezen, C.; Bezak, N.; Šraj, M. Hydrological modelling of the karst Ljubljanica River catchment using lumped conceptual model. Acta Hydrotech. 2018, 31, 87–100. [Google Scholar] [CrossRef]
- CNT. CNT Calculator. Available online: https://greenvalues.cnt.org/index.php#tabtop (accessed on 10 August 2021).
- Bezak, N.; Grigillo, D.; Urbančič, T.; Mikoš, M.; Petrovič, D.; Rusjan, S. Geomorphic response detection and quantification in a steep forested torrent. Geomorphology 2015, 291, 33–34. [Google Scholar] [CrossRef]
- Bezak, N.; Rusjan, S.; Fijavž, M.K.; Mikoš, M.; Šraj, M. Estimation of suspended sediment loads using copula functions. Water 2017, 9, 628. [Google Scholar] [CrossRef] [Green Version]
- Brilly, M.; Kryžanowski, A.; Šraj, M.; Bezak, N.; Sapač, K.; Vidmar, A.; Rusjan, S. Historical, Hydrological and Hydraulics Studies for Sustainable Flood Management. In Achievements and Challenges of Integrated River Basin Management; Intech: London, UK, 2018. [Google Scholar]
- Langergraber, G.; Dotro, G.; Nivala, J.; Rizzo, A.; Stein, O.R. Wetland Technology: Practical Information on the Design and Application of Treatment Wetlands; IWA Publishing: London, UK, 2020. [Google Scholar]
- Kuraku, Y.; Koyamada, K.; Sumi, T.; Takei, Y. Sustainable development of irrigation system with Sayama-ike reservoir. J. Hydro Environ. Res. 2019, 26, 8–13. [Google Scholar] [CrossRef]
- Beven, K.; Young, P. A guide to good practice in modeling semantics for authors and referees. Water Resour. Res. 2013, 49, 5092–5098. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Bezak, N.; Šraj, M.; Mikoš, M. Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. J. Hydrol. 2016, 541, 272–284. [Google Scholar] [CrossRef]
- Rusjan, S.; Kobold, M.; Mikoš, M. Characteristics of the extreme rainfall event and consequent flash floods in W Slovenia in September 2007. Nat. Hazards Earth Syst. Sci. 2009, 9, 947–956. [Google Scholar] [CrossRef]
- Petkovšek, A.; Fazarinc, R.; Kočevar, M.; Maček, M.; Majes, B.; Mikoš, M. The Stogovce landslide in SW Slovenia triggered during the September 2010 extreme rainfall event. Landslides 2011, 8, 499–506. [Google Scholar] [CrossRef]
- Sapač, K.; Rusjan, S.; Šraj, M. Influence of calculation criteria on the values of low-flow recession constants in a non-homogenous catchment in Slovenia|Vpliv računskih kriterijev na vrednosti recesijskih konstant nizkih pretokov v nehomogenem porečju v sloveniji. Acta Hydrotech. 2019, 32, 1–19. [Google Scholar] [CrossRef]
- Bai, Y.; Bezak, N.; Sapač, K.; Klun, M.; Zhang, J. Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model. Water Resour. Manag. 2019, 33, 4783–4797. [Google Scholar] [CrossRef]
Characteristic | Podutik | Brdnikova |
---|---|---|
Outflow method | Outflow structure | Outflow structure |
Storage Method | Elevation-Storage | Elevation-Storage |
Initial Conduction | Elevation | Inflow = Outflow |
Main Tailwater | Fixed Stage | Fixed Stage |
Number of outlets | 1 | 1 |
Number of spillways | 1 | 0 |
Main outlet characteristics | Culvert outlet, box shape, 2 m2 | Culvert outlet, box shape, 6 m2 |
Main spillway characteristics | Broad-Crested, 4 m length without gates | / |
Maximum volume (i.e., end of the elevation-storage function) [m3] | 45,000 | 470,000 |
Case | Case Description | Total Max. Volume of Reservoirs [1000 m3] |
---|---|---|
1 | Without any reservoirs | 0 |
2 | Podutik and Brdnikova reservoirs at the Glinščica river catchment | 515 |
3 | Podutik and Brdnikova reservoirs at the Glinščica river catchment and five times larger reservoir as Brdnikova located at the Gradaščica river catchment | 2865 |
4 | Podutik and Brdnikova (i.e., three times the initial volumes) reservoirs at the Glinščica river catchment and 10 times larger reservoir as Brdnikova located at the Gradaščica river catchment | 6155 |
5 | Podutik and Brdnikova (i.e., 10 times the initial volumes) reservoirs at the Glinščica river catchment and 20 times larger reservoir as Brdnikova located at the Gradaščica river catchment | 14,145 |
6 | Podutik and Brdnikova (i.e., 20 times the initial volumes) reservoirs at the Glinščica river catchment and 40 times larger reservoir as Brdnikova located at the Gradaščica river catchment | 28,245 |
Parameter | 2-Years | 10-Years | 25-Years |
---|---|---|---|
Baseline scenario: peak discharge [m3/s] | 16 m3/s | 29 m3/s | 36 m3/s |
Afforestation in subbasins 1 and 2: peak discharge decrease [%] | 9% | 9% | 8% |
Afforestation in subbasin 3: peak discharge decrease [%] | 4% | 2% | 1% |
Afforestation in subbasins 1, 2 and 3: peak discharge decrease [%] | 10% | 10% | 8% |
Baseline scenario: flood damage [EUR] | 28,000 EUR | 84,000 EUR | 610,000 EUR |
Afforestation in subbasins 1 and 2: flood damage decrease [%] | 29% | 21% | 78% |
Afforestation in subbasin 3: flood damage decrease [%] | 29% | 5% | 45% |
Afforestation in subbasins 1, 2 and 3: flood damage decrease [%] | 29% | 20% | 80% |
Parameter | 2-Years | 10-Years | 25-Years |
---|---|---|---|
Scenario 1 (CN 74, 50): peak discharge % decrease | 20%, 42% | 19%, 37% | 18%, 34% |
Scenario 2 (CN 74, 50): peak discharge % decrease | 14%, 27% | 13%, 25% | 13%, 22% |
Scenario 3 (CN 74, 50): peak discharge % decrease | 7%, 13% | 7%, 12% | 7%, 12% |
Scenario 1 (CN 74, 50): flood damage % decrease | 49%,62% | 40%, 57% | 69%, 83% |
Scenario 2 (CN 74, 50): flood damage % decrease | 39%, 53% | 34%, 46% | 65%, 76% |
Scenario 3 (CN 74, 50): flood damage % decrease | 20%, 36% | 22%, 33% | 32%, 65% |
Parameter | 2-Years | 10-Years | 25-Years |
---|---|---|---|
Peak discharge % decrease | 33% | 43% | 46% |
Flood damage % decrease | 57% | 71% | 95% |
Case | Glinščica (17 km2) | Glinščica and Gradaščica (175 km2) | Glinščica, Gradaščica and Ljubljanica (1760 km2) |
---|---|---|---|
1 | 22 m3/s | 225 m3/s | 405 m3/s |
2 | 11% | 1% | −2% |
3 | 11% | 15% | 1% |
4 | 20% | 30% | 4% |
5 | 32% | 37% | 13% |
6 | 37% | 65% | 25% |
Case | Glinščica (17 km2) | Glinščica and Gradaščica (175 km2) | Glinščica, Gradaščica, and Ljubljanica (1760 km2) |
---|---|---|---|
1 | 6 m3/s | 57 m3/s | 84 m3/s |
2 | 3% | 0% | −1% |
3 | 3% | 10% | 0% |
4 | 7% | 14% | 1% |
5 | 15% | 29% | 11% |
6 | 27% | 54% | 20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezak, N.; Kovačević, M.; Johnen, G.; Lebar, K.; Zupanc, V.; Vidmar, A.; Rusjan, S. Exploring Options for Flood Risk Management with Special Focus on Retention Reservoirs. Sustainability 2021, 13, 10099. https://doi.org/10.3390/su131810099
Bezak N, Kovačević M, Johnen G, Lebar K, Zupanc V, Vidmar A, Rusjan S. Exploring Options for Flood Risk Management with Special Focus on Retention Reservoirs. Sustainability. 2021; 13(18):10099. https://doi.org/10.3390/su131810099
Chicago/Turabian StyleBezak, Nejc, Martina Kovačević, Gregor Johnen, Klaudija Lebar, Vesna Zupanc, Andrej Vidmar, and Simon Rusjan. 2021. "Exploring Options for Flood Risk Management with Special Focus on Retention Reservoirs" Sustainability 13, no. 18: 10099. https://doi.org/10.3390/su131810099
APA StyleBezak, N., Kovačević, M., Johnen, G., Lebar, K., Zupanc, V., Vidmar, A., & Rusjan, S. (2021). Exploring Options for Flood Risk Management with Special Focus on Retention Reservoirs. Sustainability, 13(18), 10099. https://doi.org/10.3390/su131810099