Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. Analysis of Impact Factors
3.2.2. Subsection
3.2.3. Geohazard Susceptibility Analysis
4. Results
4.1. Disaster-Prone Regions of Slope Geohazards
4.2. The Temporal Evolution of Slope Geohazards
5. Discussion
5.1. Locomotion of Slope Geohazards in the QTP and Its Adjacent Regions
5.2. Comparison of Two Slope Geohazard Clusters
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Andres, N.; Badoux, A. The Swiss flood and landslide damage database: Normalisation and trends. J. Flood Risk Manag. 2018, 12, e12510. [Google Scholar] [CrossRef] [Green Version]
- Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Saez, J.L.; Corona, C.; Stoffel, M.; Berger, F. Climate change increases frequency of shallow spring landslides in the French Alps. Geology 2013, 41, 619–622. [Google Scholar] [CrossRef]
- Stoffel, M.; Tiranti, D.; Huggel, C. Climate change impacts on mass movements—Case studies from the European Alps. Sci. Total Environ. 2014, 493, 1255–1266. [Google Scholar] [CrossRef]
- Vergara Dal Pont, I.; Moreiras, S.M.; Santibañez Ossa, F.; Araneo, D.; Ferrando, F. Debris flows triggered from melt of seasonal snow and ice within the active layer in the semi-arid Andes. Permafr. Periglac. Process. 2019, 31, 57–68. [Google Scholar] [CrossRef]
- Schar, C.; Vidale, P.L.; Luthi, D.; Haberli, C.F.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef]
- Kääb, A.; Chiarle, M.; Raup, B.; Schneider, C. Climate change impacts on mountain glaciers and permafrost. Glob. Planet. Chang. 2007, 56, vii–ix. [Google Scholar] [CrossRef]
- Noetzli, J.; Huggel, C.; Hoelzle, M.; Haeberli, W. GIS-based modelling of rock-ice avalanches from Alpine permafrost areas. Comput. Geosci. 2006, 10, 161–178. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.C.R.; Hamza, O.; Harris, C. The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafr. Periglac. Process. 2001, 12, 137–144. [Google Scholar] [CrossRef]
- Chiarle, M.; Mortara, G. Geomorphological impact of climate change on alpine glacial and periglacialareas. Conf. Proc. 2008, 2, 111–122. [Google Scholar]
- Qiu, H.; Cui, Y.; Hu, S.; Yang, D.; Pei, Y.; Yang, W. Temporal and spatial distributions of landslides in the Qinba Mountains, Shaanxi Province, China. Geomat. Nat. Hazards Risk 2019, 10, 599–621. [Google Scholar] [CrossRef]
- Climate Change Could Trigger More Landslides in High Mountain Asia. Available online: https://climate.nasa.gov/news/2951/climate-change-could-trigger-more-landslides-in-high-mountain-asia/ (accessed on 5 July 2021).
- Tokashiki, N.; Aydan, O. Kita-Uebaru natural rock slope failure and its back analysis. Environ. Earth Sci 2011, 62, 25–31. [Google Scholar] [CrossRef]
- Tonini, M.; Cama, M. Spatio-temporal pattern distribution of landslides causing damage in Switzerland. Landslides 2019, 16, 2103–2113. [Google Scholar] [CrossRef]
- Khan, M.S.; Hossain, S.; Ahmed, A.; Faysal, M. Investigation of a shallow slope failure on expansive clay in Texas. Eng. Geol. 2017, 219, 118–129. [Google Scholar] [CrossRef]
- Winter, M.G.; Dixon, N.; Wasowski, J.; Dijkstra, T.A. Introduction to land-use and climate change impacts on landslides. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 367–370. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M. Vulnerability curves vs. vulnerability indicators: Application of an indicator-based methodology for debris-flow hazards. Nat. Hazards Earth Syst. Sci. 2016, 16, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Chen, F.; Pan, D. Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018. Int. J. Environ. Res. Public Health 2019, 16, 4707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Cheng, G.; Jin, H.; Kang, E.; Che, T.; Jin, R.; Wu, L.; Nan, Z.; Wang, J.; Shen, Y. Cryospheric change in China. Glob. Planet. Chang. 2008, 62, 210–218. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Hao, J.; Zhao, L.; Li, R.; Xie, C.; Wu, T.; Wu, X.; Hu, G.; Zou, D.; Zhu, X.; Ni, J.; et al. Investigation of a Small Landslide in the Qinghai-Tibet Plateau by InSAR and Absolute Deformation Model. Remote Sens. 2019, 11, 2126. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Shang, J.; Zhang, T.; Fan, C.; Wang, S.; Peng, X.; Zhong, W.; Zhang, F.; Mu, M.; Jia, L. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides 2020, 17, 1051–1062. [Google Scholar] [CrossRef]
- Gao, Y.J.; Cheng, N.S.; Hu, G.S.; Deng, M.S. Temporal and Spatial Coupling Relationship Between Debris Flow and El Nino-La Nina Event in Southwest China. J. Yangtze River Sci. Res. Inst. 2019, 36, 43–48. [Google Scholar] [CrossRef]
- Wei, R.; Zeng, Q.; Davies, T.; Yuan, G.; Wang, K.; Xue, X.; Yin, Q. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Eng. Geol. 2018, 233, 172–182. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Jin, H.; Wang, Q.; Huang, Y.; Luo, D.; Gao, S.; Jin, X. Delineating the hydrological processes and hydraulic connectivities under permafrost degradation on Northeastern Qinghai-Tibet Plateau, China. J. Hydrol. 2019, 569, 359–372. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Zhang, Y.; Fan, J.; et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci Bull. 2015, 60, 3025–3035. [Google Scholar] [CrossRef]
- Yang, F.; Wang, W.; Wang, H.; Li, X.; Jiang, W. The Distribution Characters of the Stratospheric Zonal Mean Temperature and Water Vapor during 1979–2011. Plateau Mt. Meteorol. Res. 2016, 36, 63–67. [Google Scholar]
- Zhang, Y.; Guo, C.; Yao, X.; Yang, Z.; Wu, R.; Du, G. Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau. Acta Geosci. Sin. 2016, 37, 277–286. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, P.; Hao, M. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Cui, P.; Chen, R.; Xiang, L.; Su, F. Risk analysis of mountain hazards in Tibetan Plateau under the global warming. Progress. Inquisitiones De Mutat. Clim. 2014, 10, 103–109. [Google Scholar] [CrossRef]
- Deng, J.; Dai, F.; Wen, B. Catastrophic mechanisms and risk control of major landslides in Tibetan Plateau. Adv. Eng. Sci. 2019, 52, 1–8. [Google Scholar] [CrossRef]
- Dong, A.; Wen, K. Chinese Meteorological Disasters Ceremony (Gansu Volume); China Meteorological Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Liu, G.; Wen, K. Chinese Meteorological Disasters Ceremony (Tibet Volume); China Meteorological Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Liu, J.; Wen, K. Chinese Meteorological Disasters Ceremony (Yunnan Volume); China Meteorological Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Shi, Y.; Wen, K. Chinese Meteorological Disasters Ceremony (Xinjiang Volume); China Meteorological Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Wang, X.; Wen, K. Chinese Meteorological Disasters Ceremony (Qinghai Volume); China Meteorological Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Zhan, Z.; Wen, K. Chinese Meteorological Disasters Ceremony (Sichuan Volume) (in Chinese); China Meteorological Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Liu, C.; Liu, X.; Chen, Q.; Gao, W. Impact of DEM spatial resolution on landslide extraction using object-oriented methods. Remote Sens. Technol. Appl. 2014, 29, 631–638. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Min, J.; Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 2016, 36, 2660–2670. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Chen, M.; Luo, Y.; Liang, R.; Li, J. Typical characteristics of large-scale landslides in the transition belt between the Qinghai-Tibet Plateau and the Loess Plateau. Arab. J. Geosci. 2019, 12, 470. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Petley, D.N. Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat. Hazards Earth Syst. Sci. 2015, 15, 1821–1833. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Lu, P.; Thiebes, B. Comparing characteristics of rainfall- and earthquake-triggered landslides in the Upper Minjiang catchment, China. Eng. Geol. 2020, 268, 105518. [Google Scholar] [CrossRef]
- Huang, R. Some catastrophic landslides since the twentieth century in the southwest of China. Landslides 2009, 6, 69–81. [Google Scholar] [CrossRef]
- Bai, Y.; Ni, H.; Ge, H. Advances research progress on geohazard effect of active faults on the southeastern margin of the Tibetan Plateau. J. Geomech. 2019, 25, 1116–2019. [Google Scholar] [CrossRef]
- Luo, F.; Ren, G.; Li, H.; Li, Y. Development rules of landslides and collapses along provincial highway S216 in Sichuan. J. Yangtze River Sci. Res. Inst. 2019, 36, 37–41. [Google Scholar]
- Ma, W.; Niu, F.; Satoshi, A.; Jin, D. Slope instability phenomena in permafrost regions of Qinghai-Tibet Plateau, China. Landslides 2006, 3, 260–264. [Google Scholar] [CrossRef]
- Petley, D.N. On the impact of climate change and population growth on the occurrence of fatal landslides in South, East and SE Asia. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 487–496. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Du, J.; Zhang, L.; Song, Y.; Sun, G. Multi-geohazards susceptibility mapping based on machine learning—A case study in Jiuzhaigou, China. Nat. Hazards 2020, 102, 851–871. [Google Scholar] [CrossRef]
- Niu, F.; Luo, J.; Lin, Z.; Fang, J.; Liu, M. Thaw-induced slope failures and stability analyses in permafrost regions of the Qinghai-Tibet Plateau, China. Landslides 2016, 13, 55–65. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the Beiluhe Region. Geomorphology 2019, 341, 79–85. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, Y.; Glade, T.; Zhang, J.; Zhang, Y. Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China. Clim. Chang. 2020, 162, 761–779. [Google Scholar] [CrossRef]
- Kui, Z. The study of geological emergence of susceptible division in Yunan district-based on Arcgis. J. Geol. Hazards Environ. Preserv. 2020, 31, 38–42. [Google Scholar]
- Stoffel, M.; Mendlik, T.; Schneuwly-Bollschweiler, M.; Gobiet, A. Possible impacts of climate change on debris-flow activity in the Swiss Alps. Clim. Chang. 2013, 122, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Li, P.; Wang, H. Forming Mechanism of Landslides in the Seasonal Frozen Loess Region in China. In Landslides in Cold Regions in the Context of Climate Change; Springer International Publishing: New York, NY, USA, 2014; pp. 41–51. [Google Scholar]
- Zhao, D.; Lancuo, Z.; Hou, G.; Xu, C.; Li, W. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province. J. Geomech. 2021, 27, 84–95. [Google Scholar]
- Wei, G.; Yin, Z.; Shi, L.; Ma, W.; Cui, X. Zoning of geological disasters of Hualong county in Qinghai province. Chin. J. Geol. Hazard. Control. 2013, 24, 86–92. [Google Scholar] [CrossRef]
- Wang, J.; Tian, T.; Zou, Y.; Wang, J.; Fu, X. Mechanical Mechanism of the Rainfall-inducing Deposit Slope Failure in Yunnan Region. J. Water Resour. Archit. Eng. 2020, 18, 204–227. [Google Scholar]
- He, R.; Lin, Q.; Wang, Y.; Song, C. Factors and high risk area analysis of geological hazards in Yunnan. J. Catastrophology 2015, 30, 208–213. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Liu, J.; Guo, L.; Deng, Z.; Li, J.; Zheng, H. Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions. Sustainability 2021, 13, 10488. https://doi.org/10.3390/su131910488
Jia Y, Liu J, Guo L, Deng Z, Li J, Zheng H. Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions. Sustainability. 2021; 13(19):10488. https://doi.org/10.3390/su131910488
Chicago/Turabian StyleJia, Yiru, Jifu Liu, Lanlan Guo, Zhifei Deng, Jiaoyang Li, and Hao Zheng. 2021. "Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions" Sustainability 13, no. 19: 10488. https://doi.org/10.3390/su131910488
APA StyleJia, Y., Liu, J., Guo, L., Deng, Z., Li, J., & Zheng, H. (2021). Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions. Sustainability, 13(19), 10488. https://doi.org/10.3390/su131910488