Changes in the Frequency of Extreme Cooling Events in Winter over China and Their Relationship with Arctic Oscillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. EC Event Definitions and Calculations
2.3. Correlation Analysis
2.4. Synthetic Analysis
2.5. Linear Trend Analysis
3. Results
3.1. Temporal Variation and Spatial Pattern of EC Events
3.2. Correlation between EC Events and the AO Index
3.3. Possible Mechanisms of AO Affecting EC Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observations, Modeling, and Impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Chang. 2011, 110, 669–696. [Google Scholar] [CrossRef] [Green Version]
- Martinich, J.; Crimmins, A. Climate damages and adaptation potential across diverse sectors of the United States. Nat. Clim. Chang. 2019, 9, 397–404. [Google Scholar] [CrossRef]
- Török, I.; Croitoru, A.-E.; Man, T.-C. Assessing the Impact of Extreme Temperature Conditions on Social Vulnerability. Sustainability 2021, 13, 8510. [Google Scholar] [CrossRef]
- Schoetter, R.; Cattiaux, J.; Douville, H. Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim. Dyn. 2014, 45, 1601–1616. [Google Scholar] [CrossRef]
- Lewis, S.C.; King, A.D.; Perkins-Kirkpatrick, S.E. Defining a New Normal for Extremes in a Warming World. Bull. Am. Meteorol. Soc. 2017, 98, 1139–1151. [Google Scholar] [CrossRef]
- Sui, Y.; Lang, X.; Jiang, D. Projected signals in climate extremes over China associated with a 2 °C global warming under two RCP scenarios. Int. J. Clim. 2018, 38, e678–e697. [Google Scholar] [CrossRef]
- Zhao, N.; Chen, M. A Comprehensive Study of Spatiotemporal Variations in Temperature Extremes across China during 1960–2018. Sustainability 2021, 13, 3807. [Google Scholar] [CrossRef]
- McMichael, A.J. Globalization, Climate Change, and Human Health. N. Engl. J. Med. 2013, 368, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Barnett, A.; Yu, W.; Pan, X.; Ye, X.; Huang, C.; Tong, S. A Large Change in Temperature between Neighbouring Days Increases the Risk of Mortality. PLoS ONE 2011, 6, e16511. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhu, R.; Xu, Z.; Xu, X.; Wang, X.; Li, K.; Su, H. Temperature variation between neighboring days and mortality: A distributed lag non-linear analysis. Int. J. Public Health 2014, 59, 923–931. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, D.; Su, H.; Xie, M.; Cheng, J.; Wang, X.; Li, K.; Yang, H.; Wen, L.; Wang, B. Impact of temperature variability on childhood hand, foot and mouth disease in Huainan, China. Public Health 2016, 134, 86–94. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Wang, C.; Li, W.; Lu, J.; Shen, S.; Xia, H.; He, J.; Qiu, X. Association between Temperature Change and Outpatient Visits for Respiratory Tract Infections among Children in Guangzhou, China. Int. J. Environ. Res. Public Health 2015, 12, 439–454. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Hu, W.; Tong, S. Temperature variability and childhood pneumonia: An ecological study. Environ. Health 2014, 13, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Gu, L.; Ding, Y.; Shao, L.; Wu, Z.; Yang, X.; Li, C.; Li, Z.; Wang, X.; Cao, Y.; et al. The Great 2008 Chinese Ice Storm: Its Socioeconomic–Ecological Impact and Sustainability Lessons Learned. Bull. Am. Meteorol. Soc. 2011, 92, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wang, Q.; Yang, T. Decreases in days with sudden day-to-day temperature change in the warming world. Glob. Planet. Chang. 2020, 192, 103239. [Google Scholar] [CrossRef]
- Gao, W.; Duan, K.; Li, S. Spatial-temporal variations in cold surge events in northern China during the period 1960–2016. J. Geogr. Sci. 2019, 29, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Wu, R. Processes for Occurrence of Strong Cold Events over Eastern China. J. Clim. 2017, 30, 9247–9266. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Ma, Y.; Du, H.; Wen, K. Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos. Res. 2018, 212, 259–272. [Google Scholar] [CrossRef]
- Ting, D.; Wei-Hong, Q.; Zhong-Wei, Y. Characteristics and Changes of Cold Surge Events over China during 1960–2015. Atmos. Ocean. Sci. Lett. 2009, 2, 339–344. [Google Scholar] [CrossRef]
- Xu, M.; Guan, Z.; Cai, Q. Spatial and temporal evolution features of cooling extremes in China during winter half year from 1960 to 2015. J. Meteorol. Sci. 2020, 40, 733–743. (In Chinese) [Google Scholar]
- Zhai, P.; Pan, X. Change in extreme temperature and precipitation over northern China during the second half of the 20th century. Acta Geogr. Sin. 2003, 58, 1–10. (In Chinese) [Google Scholar]
- Cai, Q.; Guan, Z.; Xu, M. Temporal and spatial characteristics of extreme cooling events in eastern China in winter monsoon period during 1960 and 2012. Trans. Atmos. Sci. 2020, 43, 458–468. (In Chinese) [Google Scholar]
- Thompson, D.W.J.; Wallace, J.M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Ambaum, M.H.P.; Hoskins, B.J.; Stephenson, D.B. Arctic Oscillation or North Atlantic Oscillation? J. Clim. 2001, 14, 3495–3507. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Gong, H.; Lan, X. Interdecadal variation of the Arctic Oscillation and its influence on climate. Trans. Atmos. Sci. 2021, 44, 50–60. (In Chinese) [Google Scholar]
- Ghasemi, A.R.; Khalili, D. The influence of the Arctic Oscillation on winter temperatures in Iran. Theor. Appl. Clim. 2006, 85, 149–164. [Google Scholar] [CrossRef]
- He, S.; Wang, H. Impact of the November/December Arctic Oscillation on the following January temperature in East Asia. J. Geophys. Res. Atmos. 2013, 118, 12981–12998. [Google Scholar] [CrossRef]
- Gong, D.-Y.; Wang, S.-W.; Zhu, J.-H. East Asian Winter Monsoon and Arctic Oscillation. Geophys. Res. Lett. 2001, 28, 2073–2076. [Google Scholar] [CrossRef]
- Wettstein, J.J.; Mearns, L.O. The Influence of the North Atlantic–Arctic Oscillation on Mean, Variance, and Extremes of Temperature in the Northeastern United States and Canada. J. Clim. 2002, 15, 3586–3600. [Google Scholar] [CrossRef]
- Li, F.; Wang, H. Autumn Sea Ice Cover, Winter Northern Hemisphere Annular Mode, and Winter Precipitation in Eurasia. J. Clim. 2012, 26, 3968–3981. [Google Scholar] [CrossRef]
- Park, T.-W.; Ho, C.-H.; Yang, S. Relationship between the Arctic Oscillation and Cold Surges over East Asia. J. Clim. 2011, 24, 68–83. [Google Scholar] [CrossRef]
- Thompson, D.W.J. Regional Climate Impacts of the Northern Hemisphere Annular Mode. Science 2001, 293, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, W.; Yu, B. The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models. Clim. Dyn. 2017, 48, 2949–2965. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Miller, A.J.; Wang, J.; Angell, J.K. Trends of NAO and AO and their associations with stratospheric processes. Geophys. Res. Lett. 2001, 28, 4107–4110. [Google Scholar] [CrossRef]
- Peings, Y.; Brun, E.; Mauvais, V.; Douville, H. How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophys. Res. Lett. 2013, 40, 183–188. [Google Scholar] [CrossRef]
- Lei, X.; Liu, L.; Chen, R.; Liu, C.; Hong, J.; Cao, L.; Lu, Y.; Dong, X.; Chen, X.; Qiu, X.; et al. Temperature changes between neighboring days and childhood asthma: A seasonal analysis in Shanghai, China. Int. J. Biometeorol. 2021, 65, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Song, L. Recent Strengthened Impact of the Winter Arctic Oscillation on the Southeast Asian Surface Air Temperature Variation. Atmosphere 2019, 10, 164. [Google Scholar] [CrossRef] [Green Version]
- Tokarska, K.B.; Stolpe, M.B.; Sippel, S.; Fischer, E.M.; Smith, C.J.; Lehner, F.; Knutti, R. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 2020, 6, eaaz9549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Duan, K.; Li, S. A spatial–temporal analysis of cold surge days in northern China during 1960–2016. Nat. Hazards 2021, 108, 147–162. [Google Scholar] [CrossRef]
- Chen, S.; Chen, W.; Wei, K. Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Adv. Atmos. Sci. 2013, 30, 1712–1724. [Google Scholar] [CrossRef]
- Zuo, J.; Ren, H.-L.; Wu, B.; Li, W. Predictability of winter temperature in China from previous autumn Arctic sea ice. Clim. Dyn. 2016, 47, 2331–2343. [Google Scholar] [CrossRef]
- Jia, Z.; Bollasina, M.A.; Li, C.; Doherty, R.; Wild, O. Changes in the relationship between ENSO and the East Asian winter monsoon under global warming. Environ. Res. Lett. 2020, 15, 124056. [Google Scholar] [CrossRef]
Mean (d) | Trends (d/10 y) | Positive | Negative | |
---|---|---|---|---|
Northeast China | 4.373 (4.105~4.632) | −0.196 * (−0.720~0.354) | 18 (1) | 117 (42) |
Northwest China | 4.334 (3.930~4.667) | −0.127 * (−1.081~0.450) | 48 (6) | 120 (43) |
North China | 4.240 (3.719~4.456) | −0.194 * (−0.691~0.310) | 19 (2) | 94 (37) |
East China | 4.221 (3.789~4.579) | −0.162 (−0.544~0.231) | 32 (0) | 207 (64) |
South China | 4.059 (3.702~4.333) | −0.075 (−0.373~0.338) | 30 (1) | 81 (7) |
Central China | 4.250 (3.860~4.509) | −0.115 (−0.384~0.419) | 26 (2) | 130 (17) |
Southwest China | 4.335 (3.895~4.719) | −0.040 (−0.785~0.480) | 82 (17) | 109 (30) |
China | 4.265 (3.702~4.719) | −0.128 (−1.081~0.480) | 255 (29) | 858 (240) |
Northeast China | Northwest China | North China | East China | South China | Central China | Southwest China | China | |
---|---|---|---|---|---|---|---|---|
−0.237 | −0.471 *** | −0.374 *** | −0.390 *** | −0.285 ** | −0.389 *** | −0.302 ** | −0.421 *** | |
−0.237 | −0.471 *** | −0.374 *** | −0.386 *** | −0.278 ** | −0.381 *** | −0.295 ** | −0.418 *** | |
−0.244 | −0.485 *** | −0.385 *** | −0.398 *** | −0.286 ** | −0.392 *** | −0.303 ** | −0.431 *** | |
−0.286 ** | −0.514 *** | −0.421 *** | −0.427 *** | −0.301 ** | −0.408 *** | −0.315 ** | −0.459 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Yan, X. Changes in the Frequency of Extreme Cooling Events in Winter over China and Their Relationship with Arctic Oscillation. Sustainability 2021, 13, 11491. https://doi.org/10.3390/su132011491
Song S, Yan X. Changes in the Frequency of Extreme Cooling Events in Winter over China and Their Relationship with Arctic Oscillation. Sustainability. 2021; 13(20):11491. https://doi.org/10.3390/su132011491
Chicago/Turabian StyleSong, Shuaifeng, and Xiaodong Yan. 2021. "Changes in the Frequency of Extreme Cooling Events in Winter over China and Their Relationship with Arctic Oscillation" Sustainability 13, no. 20: 11491. https://doi.org/10.3390/su132011491
APA StyleSong, S., & Yan, X. (2021). Changes in the Frequency of Extreme Cooling Events in Winter over China and Their Relationship with Arctic Oscillation. Sustainability, 13(20), 11491. https://doi.org/10.3390/su132011491