Non-Destructive Quality Measurement for Three Varieties of Tomato Using VIS/NIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tomato Samples Collecting
2.2. Spectral Measurements
2.3. Data Collected
2.4. Quality Parameters Test
2.5. Statistical Analysis
2.6. Spectra Pre-Processing
2.7. Principal Component Analysis (PCA)
2.8. Partial Least Squares (PLS)
2.9. Model Performance
3. Results and Discussion
3.1. Statistical Analysis
3.2. Spectral Characterization
3.3. Principal Component Analysis (PCA)
3.4. Partial Least Squares (PLS)
3.5. Soluble Solids Content (SSC)
3.6. Titratable Acidity (TA)
3.7. Taste (SSC/TA)
3.8. Firmness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arah, I.K.; Amaglo, H.; Kumah, E.K.; Ofori, H. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. Int. J. Agron. 2015, 2015, 41–47. [Google Scholar] [CrossRef] [Green Version]
- FAO. Statistical Database of the FAO. 2019. Available online: http://faostat.fao.org/site/339/default.aspx (accessed on 2 May 2021).
- Angioni, A.; Porcu, L.; Dedola, F. Determination of famoxadone, fenamidone, fenhexamid and iprodione residues in greenhouse tomatoes. Pest Manag. Sci. 2012, 68, 543–547. [Google Scholar] [CrossRef] [PubMed]
- FAO. Post-Harvest Management of Tomato for Quality and Safety Assurance; FAO: Rome, Italy, 2018. [Google Scholar]
- Radzevicius, A.; Viskelis, J.; Karkleliene, R.; Juskeviciene, D.; Viskelis, P. Determination of tomato quality attributes using near infrared spectroscopy and reference analysis. Zemdirb.-Agric. 2016, 103, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Skolik, P.; Morais, C.L.; Martin, F.L.; McAinsh, M.R. Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and Chemometrics. BMC Plant Biol. 2019, 19, 236–280. [Google Scholar] [CrossRef]
- Abu-Khalaf, N.; Bennedsen, B.S. Near infrared (NIR) technology and multivariate data analysis for sensing taste attributes of apples. Int. Agrophys. 2004, 18, 203–212. [Google Scholar]
- Lopez Camelo, A.F.; Gomez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Jamshidi, B.; Minaei, S.; Mohajerani, E.; Ghassemian, H. Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. Comput. Electron. Agric. 2012, 85, 64–69. [Google Scholar] [CrossRef]
- Yahia, E.M.; Brecht, J.K. Tomatoes. Crop Post-Harvest: Science and Technology Perishables; Blackwell Publishing Ltd.: West Sussex, UK, 2012; pp. 5–23. [Google Scholar]
- Agbemavor, W.S.K.; Torgby-Tetteh, W.; Quartey, E.K.; Nunoo, J.; Nunekpeku, W.; Owureku-Asare, M.; Agyei-Amponsah, J.; Apatey, J. Physico-chemical evaluation of fruits from the fourth filial generation of some breeding lines of tomatoes. Int. J. Food Sci. Nutr. 2014, 3, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, L.; Wu, Y.; Lu, M.; Yang, Y.; Li, L. Apple variety identification using near-infrared spectroscopy. J. Spectrosc. 2018. [Google Scholar] [CrossRef] [Green Version]
- El-Mesery, H.S.; Mao, H.; Abomohra, A.E.-F. Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors 2019, 19, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccheri, M.; Grassi, M.; Lovati, F.; Petriccione, M.; Rega, P.; Scalzo, R.L.; Cattaneo, T.M. Near infrared spectroscopy in the supply chain monitoring of Annurca apple. J. Near Infrared Spectrosc. 2019, 27, 86–92. [Google Scholar] [CrossRef]
- Najjar, K.; Abu-Khalaf, N. Visible/near-infrared (VIS/NIR) spectroscopy technique to detect gray mold disease in the early stages of tomato fruit: VIS/NIR spectroscopy for detecting gray mold in tomato. J. Microbiol. Biotechnol. Food Sci. 2021, e3108. [Google Scholar] [CrossRef]
- Sun, D.; Cruz, J.; Alcala, M.; Romero del Castillo, R.; Sans, S.; Casals, J. Near infrared spectroscopy determination of chemical and sensory properties in tomato. J. Near Infrared Spectrosc. 2021. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Pereira, A.G.; Gomez, A.H.; Wang, J. Nondestructive determination of tomato fruit quality characteristics using VIS/NIR spectroscopy technique. Int. J. Inf. Technol. 2005, 11, 97–108. [Google Scholar]
- Saad, A.; Jha, S.N.; Jaiswal, P.; Srivastava, N.; Helyes, L. Non-destructive quality monitoring of stored tomatoes using VIS-NIR spectroscopy. Eng. Agric. Environ. Food 2016, 9, 158–164. [Google Scholar] [CrossRef]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Application of Visible to Near-Infrared Spectroscopy for Non-Destructive Assessment of Quality Parameters of Fruit; IntechOpen: London, UK, 2018. [Google Scholar]
- Cortes, V.; Blasco, J.; Aleixos, N.; Cubero, S.; Talens, P. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci.Technol. 2019, 85, 138–148. [Google Scholar] [CrossRef]
- Trevisan, J.; Angelov, P.P.; Carmichael, P.L.; Scott, A.D.; Martin, F.L. Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: Current practices to future perspectives. Analyst 2012, 137, 3202–3215. [Google Scholar] [CrossRef] [PubMed]
- Abu-Khalaf, N.; Hmidat, M. Visible/Near Infrared (VIS/NIR) spectroscopy as an optical sensor for evaluating olive oil quality. Comput. Electron. Agric. 2020, 73, 1105445. [Google Scholar] [CrossRef]
- Taha, H.; Abu-Khalaf, N. Quality control for herbal medicinal plants using a sensor array (an electronic tongue). In Proceeding of the 7th International Conference of Biotechnology, Environment and Engineering Sciences and The International Conference of Data Mining and Software Development, Stockholm, Sweden, 26 June 2020. [Google Scholar]
- Nicolai, B.M.; Defraeye, T.; De Ketelaere, B.; Herremans, E.; Hertog, M.L.; Saeys, W.; Torricelli, A.; Vandendriessche, T.; Verboven, P. Nondestructive measurement of fruit and vegetable quality. Annu. Rev. Food Sci. Technol. 2014, 5, 285–312. [Google Scholar] [CrossRef] [Green Version]
- Mudalal, S.; Zaid, A.; Abu-Khalaf, N.; Petracci, M. Predicting the quality traits of white striped turkey breast by visible/near infra-red spectroscopy and multivariate data analysis. Ital. J. Anim. Sci. 2020, 19, 676–686. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Zaid, A.; Abu-Khalaf, N.; Mudalal, S.; Petracci, M. Differentiation between normal and white striped turkey breasts by visible/near infrared spectroscopy and multivariate data analysis. Food Sci. Anim. Resour. 2020, 40, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariani, N.C.T.; de Almeida Teixeira, G.H.; de Lima, K.M.G.; Morgenstern, T.B.; Nardini, V.; Junior, L.C.C. NIRS and iSPA-PLS for predicting total anthocyanin content in jaboticaba fruit. Food Chem. 2015, 174, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.K.; Subedi, P.P.; Walsh, K.B. Robustness of tomato quality evaluation using a portable Vis-SWNIRS for dry matter and colour. Int. J. Anal. Chem. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borba, K.R.; Aykas, D.P.; Milani, M.I.; Colnago, L.A.; Ferreira, M.D.; Rodriguez-Saona, L.E. Portable near Infrared Spectroscopy as a Tool for Fresh Tomato Quality Control Analysis in the Field. Appl. Sci. 2021, 11, 3209. [Google Scholar] [CrossRef]
- Machado, N.P.; Fachinello, J.C.; Galarca, S.P.; Betemps, D.L.; Pasa, M.S.; Schmitz, J.D. Pear quality characteristics by Vis/NIR spectroscopy. An. Acad. Bras. Cienc. 2012, 84, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Beghi, R.; Buratti, S.; Giovenzana, V.; Benedetti, S.; Guidetti, R. Electronic nose and visible-near infrared spectroscopy in fruit and vegetable monitoring. Rev. Anal. Chem. 2017, 36, 2191–2215. [Google Scholar] [CrossRef]
- Li, M.; Han, D.; Liu, W. Non-destructive measurement of soluble solids content of three melon cultivars using portable visible/near infrared spectroscopy. Biosyst. Eng. 2019, 188, 31–39. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Zhou, J.; Zhang, H.; Yang, C. Linear and nonlinear multivariate regressions for determination sugar content of intact Gannan navel orange by VIS-NIR diffuse reflectance spectroscopy. Math. Comput. Modell. 2010, 51, 1438–1443. [Google Scholar] [CrossRef]
- Clement, A.; Dorais, M.; Vernon, M. Multivariate approach to the measurement of tomato maturity and gustatory attributes and their rapid assessment by Vis-NIR spectroscopy. J. Agric. Food Chem. 2008, 56, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Abu-Khalaf, N. Sensing tomato’s pathogen using Visible/Near infrared (VIS/NIR) spectroscopy and multivariate data analysis (MVDA). Palest. Tech. Univ. Res. J. 2015, 3, 12–22. [Google Scholar] [CrossRef]
- Jaiswal, P.; Jha, S.N.; Bharadwaj, R. Non-destructive prediction of quality of intact banana using spectroscopy. Sci. Hortic. 2012, 135, 14–22. [Google Scholar] [CrossRef]
- Giovenzana, V.; Beghi, R.; Civelli, R.; Guidetti, R. Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain. Trends Food Sci. Technol. 2015, 46, 331–338. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Ali, M.M.; Bachik, N.A.; Muhadi, N.A.; Yusof, T.N.T.; Gomes, C. Non-Destructive Techniques of Detecting Plant Diseases: A Review. Physiol. Mol. Plant Pathol. 2019, 108, 101426–101470. [Google Scholar] [CrossRef]
- Beghi, R.; Giovenzana, V.; Tugnolo, A.; Guidetti, R. Application of visible/near infrared spectroscopy to quality control of fresh fruits and vegetables in large-scale mass distribution channels: A preliminary test on carrots and tomatoes. J. Sci. Food Agric. 2018, 98, 2729–2734. [Google Scholar] [CrossRef] [PubMed]
- Majidi, H.; Minaei, S.; Almasi, M.; Mostofi, Y. Total soluble solids, titratable acidity and repining index of tomato in various storage conditions. Aust. J. Basic Appl. Sci. 2011, 5, 1723–1726. [Google Scholar]
- Wang, C.Y.; Chen, C.T.; Chiang, C.P.; Young, S.T.; Chow, S.N.; Chiang, H.K. Partial least-squares discriminant analysis on autofluorescence spectra of oral carcinogenesis. Appl. Spectrosc. 1998, 52, 1190–1196. [Google Scholar] [CrossRef]
- Saad, A.G.; Jaiswal, P.; Jha, S.N. Non-destructive quality evaluation of intact tomato using VIS-NIR spectroscopy. Int. J. Adv. Res. 2014, 2, 632–639. [Google Scholar]
- Dull, G.G. Nondestructive evaluation of fruit quality: Use of near infrared spectrophotometry to measure soluble solids in intact honeydew melons. HortScience 1989, 24, 754. [Google Scholar]
- Feng, L.; Zhang, M.; Adhikari, B.; Guo, Z. Nondestructive detection of postharvest quality of cherry tomatoes using a portable NIR spectrometer and chemometric algorithms. Food Anal. Methods 2019, 12, 914–925. [Google Scholar] [CrossRef]
- Beghi, R.; Spinardi, A.; Bodria, L.; Mignani, I.; Guidetti, R. Apples nutraceutic properties evaluation through a visible and near-infrared portable system. Food Bioprocess Technol. 2013, 6, 2547–2554. [Google Scholar] [CrossRef]
Quality Parameters * | Tomato Varieties | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ekram | Harver | Izmer | ||||||||||||||
Mean | SD ** | Max | Min | Range | Mean | SD ** | Max | Min | Range | Mean | SD ** | Max | Min | Range | p | |
SSC (Brix°) | 5.1 | 0.4 | 5.9 | 4.3 | 5.1 | 3.9 | 0.4 | 4.8 | 3 | 3.9 | 4.6 | 0.5 | 5.7 | 4 | 4.8 | <0.05 |
TA (%) | 1.3 | 0.2 | 1.7 | 0.9 | 1.3 | 0.4 | 0.1 | 0.6 | 0.1 | 0.3 | 0.4 | 0.1 | 0.6 | 0.1 | 3.4 | 0.05 |
Taste (SSC/TA) (dimensionless) | 3.4 | 0.7 | 5 | 2.8 | 3.9 | 11 | 3.7 | 21 | 6.5 | 13.7 | 11 | 4.4 | 22 | 5.5 | 13.7 | ˂0.04 |
Firmness (N) | 17.5 | 2.7 | 23 | 12.6 | 17.8 | 13.6 | 1.3 | 16 | 11.5 | 13.7 | 14.9 | 2.3 | 19 | 11 | 15 | <0.05 |
Model Parameters | SSC | TA | Taste (SSC/TA) | Firmness | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ekram | Harver | Izmer | Ekram | Harver | Izmer | Ekram | Harver | Izmer | Ekram | Harver | Izmer | |
R2 | 0.97 | 0.98 | 0.98 | 0.98 | 0.91 | 0.91 | 0.94 | 0.91 | 0.92 | 0.70 | 0.74 | 0.72 |
Slope | 0.98 | 0.99 | 0.98 | 0.88 | 0.99 | 0.95 | 1.01 | 1.0 | 0.96 | 0.96 | 1.06 | 1.07 |
RMSE | 0.12 | 0.14 | 0.18 | 0.09 | 0.05 | 0.06 | 0.2 | 1.1 | 1.3 | 2 | 0.7 | 1.6 |
RE% | 2 | 3 | 3 | 7 | 12 | 1 | 10 | 8 | 11 | 10 | 10 | 10 |
RPD | 3.4 | 3.2 | 3 | 2.7 | 3 | 2.8 | 3.2 | 3.3 | 3 | 1.5 | 2 | 1.9 |
Model Parameters | SSC | TA | Taste (SSC/TA) | Firmness |
---|---|---|---|---|
R2cal | 0.97 | 0.90 | 0.94 | 0.7 |
Slopecal | 0.99 | 0.95 | 0.93 | 0.99 |
RMSEC | 0.18 | 0.17 | 1.0 | 0.6 |
REcal % | 0 | 16 | 9 | 0 |
RPDcal | 3.7 | 3 | 4.1 | 1.7 |
R2val | 0.98 | 0.89 | 0.94 | 0.71 |
Slopeval | 1.04 | 0.93 | 1.06 | 1.05 |
RMSEV | 0.22 | 0.20 | 1.5 | 0.7 |
REval % | 4 | 19 | 11 | 4 |
RPDval | 3.4 | 2.8 | 3.9 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations All authors have read and agreed to the published version of the manuscript.. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najjar, K.; Abu-Khalaf, N. Non-Destructive Quality Measurement for Three Varieties of Tomato Using VIS/NIR Spectroscopy. Sustainability 2021, 13, 10747. https://doi.org/10.3390/su131910747
Najjar K, Abu-Khalaf N. Non-Destructive Quality Measurement for Three Varieties of Tomato Using VIS/NIR Spectroscopy. Sustainability. 2021; 13(19):10747. https://doi.org/10.3390/su131910747
Chicago/Turabian StyleNajjar, Khadija, and Nawaf Abu-Khalaf. 2021. "Non-Destructive Quality Measurement for Three Varieties of Tomato Using VIS/NIR Spectroscopy" Sustainability 13, no. 19: 10747. https://doi.org/10.3390/su131910747