Predicting Behavioral Intention of Rural Inhabitants toward Economic Incentive for Deforestation in Gilgit-Baltistan, Pakistan
Abstract
:1. Introduction
2. Theoretical Model
2.1. Theory of Planned Behavior
2.2. Expectancy-Value Model
3. Materials and Methods
3.1. Study Area
3.2. Data Collection
3.3. Measurement of Variables
3.4. Analysis Methods
4. Results
4.1. Background Factors
4.2. Components of Theory of Planned Behavior
4.2.1. Components of Behavioral Intention
4.2.2. Components of Attitude
4.2.3. Components of Descriptive Norm
4.2.4. Components of PBC
4.3. Factors Predicting the Rural Residents’ Motivations Towards Deforestation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Durand, L.; Lazos, E. The Local Perception of Tropical Deforestation and its Relation to Conservation Policies in Los Tuxtlas Biosphere Reserve, Mexico. Hum. Ecol. 2008, 36, 383–394. [Google Scholar] [CrossRef]
- Duguma, L.A.; Atela, J.; Minang, P.A.; Ayana, A.N.; Gizachew, B.; Nzyoka, J.; Bernard, F. Deforestation and Forest Degradation as an Environmental Behavior: Unpacking Realities Shaping Community Actions. Land 2019, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Alcocer-Rodríguez, M.; Arroyo-Rodríguez, V.; Galán-Acedo, C.; Cristóbal-Azkarate, J.; Asensio, N.; Rito, K.F.; Hawes, J.E.; Veà, J.J.; Dunn, J.C. Evaluating extinction debt in fragmented forests: The rapid recovery of a critically endangered primate. Anim. Conserv. 2020, 1–12. [Google Scholar] [CrossRef]
- Gogoi, B.; Nath, T.; Kashyap, D.; Sarma, S.; Kalita, R. Sustainable agriculture, forestry and fishery for bioeconomy. In Current Developments in Biotechnology and Bioengineering; Elsevier Science: Amsterdam, The Netherlands, 2020; pp. 349–371. [Google Scholar]
- Osorio-González, C.S.; Suralikerimath, N.; Hegde, K.; Brar, S.K. Sustainability of Ecosystem Services (ESs). Sustainability 2020, 277–294. [Google Scholar] [CrossRef]
- Quang, N.V.; Noriko, S. Forest Allocation Policy and Level of Forest Dependency of Economic Household Groups: A Case Study in Northern Central Vietnam. Small-Scale For. 2008, 7, 49–66. [Google Scholar] [CrossRef]
- Adhikari, B.; Di Falco, S.; Lovett, J.C. Household characteristics and forest dependency: Evidence from common property forest management in Nepal. Ecol. Econ. 2004, 48, 245–257. [Google Scholar] [CrossRef]
- Luna, T.O.; Zhunusova, E.; Günter, S.; Dieter, M. Measuring forest and agricultural income in the Ecuadorian lowland rainforest frontiers: Do deforestation and conservation strategies matter? For. Policy Econ. 2020, 111, 102034. [Google Scholar] [CrossRef]
- Zeb, A.; Armstrong, G.W.; Hamann, A. Forest conversion by the indigenous Kalasha of Pakistan: A household level analysis of socioeconomic drivers. Glob. Environ. Chang. 2019, 59, 102004. [Google Scholar] [CrossRef]
- Yiwen, Z.; Kant, S.; Dong, J.; Liu, J. How communities restructured forest tenure throughout the top-down devolution reform: Using the case of Fujian, China. For. Policy Econ. 2020, 119, 102272. [Google Scholar] [CrossRef]
- Puri, L.; Nuberg, I.; Ostendorf, B.; Cedamon, E. Locally Perceived Social and Biophysical Factors Shaping the Effective Implementation of Community Forest Management Operations in Nepal. Small-Scale For. 2020, 19, 291–317. [Google Scholar] [CrossRef]
- Jannat, M.; Hossain, M.K.; Uddin, M. Socioeconomic factors of forest dependency in developing countries: Lessons learned from the Bandarban hill district of Bangladesh. Am. J. Pure Appl. Sci. 2020, 2, 77–84. [Google Scholar]
- Sirivongs, K.; Tsuchiya, T. Relationship between local residents’ perceptions, attitudes and participation towards national protected areas: A case study of Phou Khao Khouay National Protected Area, central Lao PDR. For. Policy Econ. 2012, 21, 92–100. [Google Scholar] [CrossRef]
- Ullah, S.; Gang, T.; Rauf, T.; Sikandar, F.; Liu, J.Q.; Noor, R.S. Identifying the socio-economic factors of deforestation and degradation: A case study in Gilgit Baltistan, Pakistan. GeoJournal 2020, 1–14. [Google Scholar] [CrossRef]
- Brankov, J.; Jojić, G.T.; Pešić, A.M.; Petrović, M.D.; Tretiakova, T.N. Residents’ Perceptions of Tourism Impact on Community in National Parks in Serbia. Eur. Countrys. 2019, 11, 124–142. [Google Scholar] [CrossRef] [Green Version]
- Walde, J.; Huy, D.T.; Tappeiner, U.; Tappeiner, G. A protected area between subsistence and development. Int. J. Commons 2019, 13, 175. [Google Scholar] [CrossRef]
- Badola, R.; Barthwal, S.; Hussain, S.A. Attitudes of local communities towards conservation of mangrove forests: A case study from the east coast of India. Estuarine Coast. Shelf Sci. 2012, 96, 188–196. [Google Scholar] [CrossRef]
- John, F.A.V.S.; Edwards-Jones, G.; Jones, J.P.G. Conservation and human behaviour: Lessons from social psychology. Wildl. Res. 2011, 37, 658–667. [Google Scholar] [CrossRef]
- Khan, W.; Hore, U.; Mukherjee, S.; Mallapur, G. Human-crocodile conflict and attitude of local communities toward crocodile conservation in Bhitarkanika Wildlife Sanctuary, Odisha, India. Mar. Policy 2020, 121, 104135. [Google Scholar] [CrossRef]
- Al Idrus, A.; Syukur, A.; Zulkifli, L. The livelihoods of local communities: Evidence success of mangrove conservation on the coastal of East Lombok Indonesia. AIP Conf. Proc. 2019, 2199, 050010. [Google Scholar]
- Garekae, H.; Lepetu, J.; Thakadu, O.T.; Sebina, V.; Tselaesele, N. Community Perspective on State Forest Management Regime and its Implication on Forest Sustainability: A Case Study of Chobe Forest Reserve, Botswana. J. Sustain. For. 2020, 39, 692–709. [Google Scholar] [CrossRef]
- Waylen, K.A.; Fischer, A.; McGowan, P.J.K.; Thirgood, S.J.; Milner-Gulland, E.J. Effect of Local Cultural Context on the Success of Community-Based Conservation Interventions. Conserv. Biol. 2010, 24, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, B.; Kattel, R.R. Effects of global changes on ecosystems services of multiple natural resources in mountain agricultural landscapes. Sci. Total Environ. 2019, 676, 665–682. [Google Scholar] [CrossRef] [PubMed]
- Musavengane, R.; Kloppers, R. Social capital: An investment towards community resilience in the collaborative natural resources management of community-based tourism schemes. Tour. Manag. Perspect. 2020, 34, 100654. [Google Scholar] [CrossRef]
- Avtar, R.; Tsusaka, K.; Herath, S. REDD+ Implementation in Community-Based Muyong Forest Management in Ifugao, Philippines. Land 2019, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, B.; Ali, T.; Suleri, A.Q. A Critical Analysis of Forest Policies of Pakistan: Implications for Sustainable Livelihoods. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 441–453. [Google Scholar] [CrossRef]
- Nandigama, S. Performance of success and failure in grassroots conservation and development interventions: Gender dynamics in participatory forest management in India. Land Use Policy 2020, 97, 103445. [Google Scholar] [CrossRef]
- Sheikh, Y.; Ibrar, M.; Iqbal, J. Impact of Joint Forest Management on Rural Livelihoods in the Kalam and Siran Forest Divisions, Khyber Pakhtunkhwa Pakistan. Glob. Reg. Rev. 2019, 4, 225–237. [Google Scholar] [CrossRef]
- Payne, D.; Snethlage, M.; Geschke, J.; Spehn, E.M.; Fischer, M. Nature and People in the Andes, East African Mountains, European Alps, and Hindu Kush Himalaya: Current Research and Future Directions. Mt. Res. Dev. 2020, 40, A1. [Google Scholar] [CrossRef]
- Kabir, M.; Hameed, S.; Ali, H.; Bosso, L.; Din, J.U.; Bischof, R.; Redpath, S.; Nawaz, M.A. Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLoS ONE 2017, 12, e0187027. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Butt, A.R.; Uzma, F.; Ahmed, R.; Rehman, A.; Ali, M.U.; Ullah, H.; Yousaf, B. Divisional disparities on climate change adaptation and mitigation in Punjab, Pakistan: Local perceptions, vulnerabilities, and policy implications. Environ. Sci. Pollut. Res. 2019, 26, 31491–31507. [Google Scholar] [CrossRef]
- Hussain, J.; Zhou, K.; Akbar, M.; Khan, M.Z.; Raza, G.; Ali, S.; Hussain, A.; Abbas, Q.; Khan, G.; Khan, M.; et al. Dependence of rural livelihoods on forest resources in Naltar Valley, a dry temperate mountainous region, Pakistan. Glob. Ecol. Conserv. 2019, 20, e00765. [Google Scholar] [CrossRef]
- Ali, N.; Hu, X.; Hussain, J. The dependency of rural livelihood on forest resources in Northern Pakistan’s Chaprote Valley. Glob. Ecol. Conserv. 2020, 22, e01001. [Google Scholar] [CrossRef]
- Shahbaz, B.; Mbeyale, G.; Haller, T. Trees, trust and the state: A comparison of participatory forest management in Pakistan and Tanzania. J. Int. Dev. 2008, 20, 641–653. [Google Scholar] [CrossRef]
- Ali, J.; Benjaminsen, T.A. Fuelwood, Timber and Deforestation in the Himalayas. Mt. Res. Dev. 2004, 24, 312–318. [Google Scholar] [CrossRef]
- Macdonald, K.; Rudel, T.K. Sprawl and forest cover: What is the relationship? Appl. Geogr. 2005, 25, 67–79. [Google Scholar] [CrossRef]
- Jeon, S.B.; Olofsson, P.; Woodcock, C.E. Land use change in New England: A reversal of the forest transition. J. Land Use Sci. 2014, 9, 105–130. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, F. Investigating the Impact of Agricultural Land Losses on Deforestation: Evidence from a Peri-urban Area in Canada. Ecol. Econ. 2017, 139, 9–18. [Google Scholar] [CrossRef]
- de Freitas, D.; van Eeden, T.S.; Christie, L. A psychographic framework for determining South African consumers’ green hotel decision formation: Augmenting the Theory of Planned Behaviour. J. Consum. Sci. 2020, 5, 1–18. Available online: https://www.ajol.info/index.php/jfecs/article/view/195428 (accessed on 5 January 2021).
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T. Deforestation displaced: Trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 2019, 14, 055003. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Chang. 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Murshed, M.; Ferdaus, J.; Rashid, S.; Tanha, M.M.; Islam, J. The Environmental Kuznets curve hypothesis for deforestation in Bangladesh: An ARDL analysis with multiple structural breaks. Energy Ecol. Environ. 2020, 1–22. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- De Sy, V.; Herold, M.; Achard, F.; Avitabilie, V.; Baccini, A.; Carter, S.; Clevers, J.G.P.W.; Lindquist, E.; Pereira, M.; Verchot, L. Tropical deforestation drivers and associated carbon emission factors derived from remote sensing data. Environ. Res. Lett. 2019, 14, 094022. [Google Scholar] [CrossRef] [Green Version]
- Doggart, N.; Morgan-Brown, T.; Lyimo, E.; Mbilinyi, B.; Meshack, C.K.; Sallu, S.M.; Spracklen, D.V. Agriculture is the main driver of deforestation in Tanzania. Environ. Res. Lett. 2020, 15, 034028. [Google Scholar] [CrossRef]
- Diouf, B.; Miezan, E. The Biogas Initiative in Developing Countries, from Technical Potential to Failure: The Case Study of Senegal. Renew. Sustain. Energy Rev. 2019, 101, 248–254. [Google Scholar] [CrossRef]
- Günşen, H.B.; Atmiş, E. Analysis of forest change and deforestation in Turkey. Int. For. Rev. 2019, 21, 182–194. [Google Scholar] [CrossRef]
- Khan, A.M.; Hussain, A.; Siddique, S.; Khan, S.M.; Iqbal, A.; Ahmad, T.; Suliman, M.; Ali, G. Effects of deforestation on socio-economy and associated insect pests in district Swat, Pakistan. J. Entomol. Zool. Stud. 2017, 5, 36–42. [Google Scholar]
- Ali, J.; Benjaminsen, T.A.; Hammad, A.A.; Dick, Ø.B. The road to deforestation: An assessment of forest loss and its causes in Basho Valley, Northern Pakistan. Glob. Environ. Chang. 2005, 15, 370–380. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. The Influence of Attitudes on Behavior. In The Handbook of Attitudes; Albarracín, D., Johnson, B.T., Zanna, M.P., Eds.; Lawrence Erlbaum Associates Publishers: Hillsdale, NY, USA, 2005; pp. 173–221. [Google Scholar]
- Stern, P.C. New Environmental Theories: Toward a Coherent Theory of Environmentally Significant Behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Cialdini, R.B.; Petrova, P.K.; Goldstein, N.J. The hidden costs of organizational dishonesty. MIT Sloan Manag. Rev. 2004, 45, 67. [Google Scholar]
- Ajzen, I. The theory of planned behavior: Frequently asked questions. Hum. Behav. Emerg. Technol. 2020, 2, 314–324. [Google Scholar] [CrossRef]
- Si, H.; Shi, J.-G.; Tang, D.; Wu, G.; Lan, J. Understanding intention and behavior toward sustainable usage of bike sharing by extending the theory of planned behavior. Resour. Conserv. Recycl. 2020, 152, 104513. [Google Scholar] [CrossRef]
- Miniard, P.W.; Cohen, J.B. Modeling Personal and Normative Influences on Behavior. J. Consum. Res. 1983, 10, 169–180. [Google Scholar] [CrossRef]
- Daxini, A.; Ryan, M.; O’Donoghue, C.; Barnes, A.P. Understanding farmers’ intentions to follow a nutrient management plan using the theory of planned behaviour. Land Use Policy 2019, 85, 428–437. [Google Scholar] [CrossRef]
- Popa, B.; Niță, M.D.; Hălălișan, A.F. Intentions to engage in forest law enforcement in Romania: An application of the theory of planned behavior. For. Policy Econ. 2019, 100, 33–43. [Google Scholar] [CrossRef]
- Pakravan, M.H.; Maccarty, N. An Agent-Based Model for Adoption of Clean Technology Using the Theory of Planned Behavior. J. Mech. Des. 2021, 143, 021402. [Google Scholar] [CrossRef]
- Liang, Y. Toward a Sustainable Online Q & A Community Via Design Decisions Based on Individuals’ Expertise: Evidence from Simulations. Ph.D. Thesis, Michigan State University, East Landing, MI, USA, 2020. [Google Scholar]
- Ajzen, I.; Madden, T.J. Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control. J. Exp. Soc. Psychol. 1986, 22, 453–474. [Google Scholar] [CrossRef]
- Rahman, U.H.F.B.; Zafar, M.K. Factors Influencing Uber Adoption in Bangladesh and Pakistan. Open Econ. 2020, 3, 86–97. [Google Scholar] [CrossRef]
- Çoker, E.N.; van der Linden, S. Fleshing out the theory of planned of behavior: Meat consumption as an environmentally significant behavior. Curr. Psychol. 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ateş, H. Merging Theory of Planned Behavior and Value Identity Personal Norm Model to Explain Pro-Environmental Behaviors. Sustain. Prod. Consum. 2020, 24, 169–180. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Predicting and Changing Behavior: The Reasoned Action Approach; Taylor & Francis Group: New York, NY, USA, 2011. [Google Scholar]
- Nisson, C.; Earl, A. The Theories of Reasoned Action and Planned Behavior. Wiley Encycl. Health Psychol. 2020, 755–761. [Google Scholar] [CrossRef]
- Ajzen, I.; Driver, B.L. Application of the Theory of Planned Behavior to Leisure Choice. J. Leis. Res. 1992, 24, 207–224. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L. Intention of Chinese college students to use carsharing: An application of the theory of planned behavior. Transp. Res. Part F Traffic Psychol. Behav. 2020, 75, 106–119. [Google Scholar] [CrossRef]
- Kellert, S.R. Nature and Childhood Development. Building for Life: Designing and Understanding the Human-Nature Connection; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Kylkilahti, E.; Berghäll, S.; Autio, M.; Nurminen, J.; Toivonen, R.; Lähtinen, K.; Vihemäki, H.; Franzini, F.; Toppinen, A. A consumer-driven bioeconomy in housing? Combining consumption style with students’ perceptions of the use of wood in multi-storey buildings. Ambio 2020, 49, 1943–1957. [Google Scholar] [CrossRef]
- Ullah, F.; Saqib, S.E.; Ahmad, M.M.; Fadlallah, M.A. Flood risk perception and its determinants among rural households in two communities in Khyber Pakhtunkhwa, Pakistan. Nat. Hazards 2020, 104, 225–247. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). J. Acad. Mark. Sci. 2017, 45, 616–632. [Google Scholar] [CrossRef]
- Fielding, K.S.; McDonald, R.; Louis, W.R. Theory of planned behaviour, identity and intentions to engage in environmental activism. J. Environ. Psychol. 2008, 28, 318–326. [Google Scholar] [CrossRef]
- Karppinen, H. Forest owners’ choice of reforestation method: An application of the theory of planned behavior. For. Policy Econ. 2005, 7, 393–409. [Google Scholar] [CrossRef]
- Masud, M.M.; Al-Amin, A.Q.; Junsheng, H.; Ahmed, F.; Yahaya, S.R.; Ahmed, S.; Banna, H. Climate change issue and theory of planned behaviour: Relationship by empirical evidence. J. Clean. Prod. 2016, 113, 613–623. [Google Scholar] [CrossRef]
- Judge, M.; Warren-Myers, G.; Paladino, A. Using the theory of planned behaviour to predict intentions to purchase sustainable housing. J. Clean. Prod. 2019, 215, 259–267. [Google Scholar] [CrossRef]
- Oteng-Peprah, M.; De Vries, N.; Acheampong, M. Households’ willingness to adopt greywater treatment technologies in a developing country—Exploring a modified theory of planned behaviour (TPB) model including personal norm. J. Environ. Manag. 2020, 254, 109807. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, M.; Mirzaei, M.; Hosseini, S.M.P.; Zailani, S. Muslims’ willingness to pay for certified halal food: An extension of the theory of planned behaviour. J. Islam. Mark. 2019, 11, 14–30. [Google Scholar] [CrossRef]
- Yuriev, A.; Dahmen, M.; Paille, P.; Boiral, O.; Guillaumie, L. Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resour. Conserv. Recycl. 2020, 155, 104660. [Google Scholar] [CrossRef]
- Mintzer, V.J.; Schmink, M.; Lorenzen, K.; Frazer, T.K.; Martin, A.R.; Da Silva, V.M.F. Attitudes and behaviors toward Amazon River dolphins (Inia geoffrensis) in a sustainable use protected area. Biodivers. Conserv. 2015, 24, 247–269. [Google Scholar] [CrossRef]
- Zubair, M.; Garforth, C. Farm Level Tree Planting in Pakistan: The Role of Farmers’ Perceptions and Attitudes. Agrofor. Syst. 2006, 66, 217–229. [Google Scholar] [CrossRef]
- Mahmood, M.I.; Zubair, M. Farmer’s Perception of and Factors Influencing Agroforestry Practices in the Indus River Basin, Pakistan. Small-Scale For. 2020, 19, 107–122. [Google Scholar] [CrossRef]
- Tokede, A.; Banjo, A.; Ahmad, A.; Fatoki, O.; Akanni, O. Farmers’ knowledge and attitude towards the adoption of agroforestry practices in Akinyele Local Government Area, Ibadan, Nigeria. J. Appl. Sci. Environ. Manag. 2020, 24, 1775–1780. [Google Scholar] [CrossRef]
- De Boer, W.F.; Baquete, D.S. Natural resource use, crop damage and attitudes of rural people in the vicinity of the Maputo Elephant Reserve, Mozambique. Environ. Conserv. 1998, 25, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, M. Poverty reduction saves forests sustainably: Lessons for deforestation policies. World Dev. 2020, 127, 104746. [Google Scholar] [CrossRef]
- Putraditama, A.; Kim, Y.-S.; Meador, A.J.S. Community forest management and forest cover change in Lampung, Indonesia. For. Policy Econ. 2019, 106, 101976. [Google Scholar] [CrossRef]
Behavioral Intention | Do you have the intention to replace secondary forest with small-scale agriculture to get economic incentives? | |
Attitude | Do you think forest should be replaced with small-scale agriculture to get economic incentives? | |
Descriptive Norm | Do you think that rural residents in the area replacing the forest with small-scale agriculture for economic incentives? | |
Perceived Behavioral Control | In my view, law enforcement is sufficient in the regions to control rural resident’s activities? | |
Indirect evaluation of Theory of Planned Behavior constructs | ||
ATT α ∑ bsioei | Salient beliefs (bsi) | Outcome evaluation (oei) |
Rural residents think by replacing forest with small-scale agriculture will … | ||
… provide foods for family | For me, food for family is … | |
… increase livelihood | For me, revenue is … | |
… increase tourism | For me, tourism is … | |
DN α ∑ dnbi iwri | Descriptive normative beliefs (dnbi) | Identification with the referent (iwri) |
In my view people deforest in the region. | With regards to deforestation, I am not similar to people. | |
PBC α ∑ cbi pci | Control beliefs (cbi) | Power of control factors (pci) |
I think legislation is insufficient to control people’s activities in the region. | Without legislation, it is more difficult to control people’s activities in the region. | |
I think training of personnel is unsuited to control people’s activities in the region. | Without proper training, it is more difficult to control illegal activities in the region. |
Gilgit (n = 65) | Skardu (n = 73) | Astore (n = 69) | Total (n = 207) | Chi-Square Value (Χ2) | p-Value | ||
---|---|---|---|---|---|---|---|
Age | Less than 22 years | 11% | 21% | 14% | 15% | Χ2 = 6.62 | 0.577 |
23 to 35 years | 14% | 16% | 19% | 16% | |||
36 to 50 years | 38% | 25% | 32% | 32% | |||
51 to 65 years | 17% | 18% | 22% | 19% | |||
66 and Above | 20% | 21% | 13% | 18% | |||
Duration of Residence | 0 to 20 years | 15% | 22% | 19% | 19% | Χ2 = 2.01 | 0.732 |
21 to 40 years | 51% | 51% | 45% | 49% | |||
41 and above | 34% | 27% | 36% | 32% | |||
Education | Less than Primary | 35% | 24% | 22% | 27% | Χ2 = 19.33 | 0.012 * |
Primary | 16% | 30% | 12% | 19% | |||
High School | 19% | 13% | 24% | 18% | |||
Middle | 23% | 18% | 35% | 26% | |||
College | 7% | 15% | 8% | 10% | |||
Family Size | 1–4 person | 15% | 15% | 22% | 17% | Χ2 = 4.21 | 0.377 |
5–10 person | 60% | 54% | 45% | 53% | |||
11 and above | 25% | 31% | 34% | 30% | |||
Government Assistance | Yes | 20% | 36% | 25% | 27% | Χ2 = 4.55 | 0.102 |
Profession | Small-scale Agriculture | 83% | 77% | 83% | 81% | Χ2 = 1.14 | 0.565 |
Beliefs × Outcome Evaluation (Biei) | Correlations Coefficients (r) | Β—Coefficients | t-Values |
---|---|---|---|
Provide food × food for family | 0.396 ** | 0.297 ** | 3.838 |
Increase livelihood × increase revenue is | 0.327 ** | 0.138 ** | 1.767 |
Increase tourism × tourism is | 0.223 * | 0.069 | 0.984 |
Model | B | t | Sig | R2 | Multicollinearity |
---|---|---|---|---|---|
Duration of Residence and Age | 0.801 | 12.779 | 0.000 * | 0.642 | VIF < 1 |
Govt Assistance and Agriculture | 0.789 | 12.252 | 0.000 * | 0.623 | VIF < 1 |
Education and Agriculture | 0.661 | 8.411 | 0.000 * | 0.437 | VIF < 1 |
Education and Govt Assistance | 0.663 | 8.445 | 0.000 * | 0.439 | VIF < 1 |
Duration of Residence and Govt Assistance | 0.797 | 12.582 | 0.000 * | 0.635 | VIF < 1 |
Age and Govt Assistance | 0.789 | 12.252 | 0.000 * | 0.623 | VIF < 1 |
Control Beliefs (cbi) × Power of Control Factors (pci) | Correlations Coefficients (r) | Β—Coefficients | t-Values |
---|---|---|---|
Legislations insufficient × without legislation | 0.501 ** | 0.401 ** | 5.425 |
Training of personnel unsuited × without proper training | 0.405 ** | 0.170 ** | 2.305 |
Mean | Standard Deviation | BI | ATT | ∑bsioei | DN | ∑dnbiirwi | PBC | ∑cbipci | |
---|---|---|---|---|---|---|---|---|---|
BI | 3.32 | 0.740 | 1.000 | ||||||
ATT | 3.53 | 0.621 | 0.611 ** | 1.000 | |||||
∑bsioei | 11 | 2.388 | 0.276 ** | 0.413 ** | 1.000 | ||||
DN | 3.14 | 0.770 | 0.511 ** | 0.326 ** | 0.222 ** | 1.000 | |||
∑dnbiirwi | 10.00 | 4.211 | 0.508 ** | 0.359 ** | 0.333 ** | 0.455 ** | 1.000 | ||
PBC | 3.29 | 0.785 | 0.539 ** | 0.334 ** | 0.113 * | 0.391 ** | 0.204 ** | 1.000 | |
∑cbipci | 11.442 | 3.067 | 0.458 ** | 0.291 ** | 0.310 ** | 0.197 * | 0.381 ** | 0.508 ** | 1.000 |
Variables | β -Coefficients (t-Values) | Model Features | |||||
---|---|---|---|---|---|---|---|
ATT | DN | PBC | ∑bsioei | ∑dnbiirwi | ∑cbipci | ||
Basic model | 0.436 ** (8.390) | 0.256 ** (4.887) | 0.295 ** (5.623) | - | - | - | F = 83.455 Significance Level = 0.000 R2 = 0.552 |
Model 1 | 0.429 ** (8.333) | 0.318 ** (6.339) | - | - | - | 0.270 ** (5.447) | F = 82.201 Significance Level = 0.000 R2 = 0.548 |
Model 2 | 0.452 ** (8.460) | - | - | - | 0.259 ** (4.691) | 0.228 ** (4.227) | F = 71.000 Significance Level = 0.000 R2 = 0.512 |
Model 3 | 0.388 ** (7.592) | - | 0.348 ** (7.153) | - | 0.297 ** (6.047) | - | F = 91.905 Significance Level = 0.000 R2 = 0.576 |
Model 4 | - | 0.321 ** (5.428) | 0.395 ** (6.810) | 0.160 * (2.927) | - | - | F = 49.282 Significance Level =0.000 R2 = 0.421 |
Model 5 | - | 0.426 ** (7.554) | - | 0.073 * (1.248) | - | 0.351 ** (6.079) | F = 44.861 Significance Level = 0.000 R2 = 0.399 |
Model 6 | - | - | - | 0.059 * (0.955) | 0.375 ** (5.915) | 0.297 ** (4.717) | F = 35.313 Significance Level = 0.000 R2 = 0.343 |
Model 7 | - | - | 0.449 ** (8.553) | 0.098 * (1.791) | 0.384 ** (6.925) | - | F= 58.583 Significance Level = 0.000 R2 = 0.464 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, S.; Abid, A.; Aslam, W.; Noor, R.S.; Waqas, M.M.; Gang, T. Predicting Behavioral Intention of Rural Inhabitants toward Economic Incentive for Deforestation in Gilgit-Baltistan, Pakistan. Sustainability 2021, 13, 617. https://doi.org/10.3390/su13020617
Ullah S, Abid A, Aslam W, Noor RS, Waqas MM, Gang T. Predicting Behavioral Intention of Rural Inhabitants toward Economic Incentive for Deforestation in Gilgit-Baltistan, Pakistan. Sustainability. 2021; 13(2):617. https://doi.org/10.3390/su13020617
Chicago/Turabian StyleUllah, Saif, Ali Abid, Waqas Aslam, Rana Shahzad Noor, Muhammad Mohsin Waqas, and Tian Gang. 2021. "Predicting Behavioral Intention of Rural Inhabitants toward Economic Incentive for Deforestation in Gilgit-Baltistan, Pakistan" Sustainability 13, no. 2: 617. https://doi.org/10.3390/su13020617
APA StyleUllah, S., Abid, A., Aslam, W., Noor, R. S., Waqas, M. M., & Gang, T. (2021). Predicting Behavioral Intention of Rural Inhabitants toward Economic Incentive for Deforestation in Gilgit-Baltistan, Pakistan. Sustainability, 13(2), 617. https://doi.org/10.3390/su13020617