Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia
Abstract
:1. Introduction
2. Literature Review
2.1. Use of Social Media in Early Detection of and Warning of Disaster Events
2.2. Indonesian Agencies’ Fire-Related Warnings
2.3. Social-Media Based Fire Detection
2.4. Meteorological Factors
3. Materials and Methods
3.1. Satellite Data Collection, Construction and Analysis
3.2. Meteorological Data Collection, Construction and Analysis
3.3. Newspaper Data Collection, Construction and Analysis
3.4. Twitter Data Collection, Construction and Analysis
4. Results and Discussion
4.1. The Analysis of Meteorological and Climatological Conditions and Drought Effects
4.2. The Analysis of the Newspaper Data
4.3. Analysis of Twitter Data
4.4. Empirical Analysis of Social Media Response
5. Conclusions
5.1. Managerial Implication
5.2. Practical/Social Implications
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tacconi, L. Fires in Indonesia: Causes. Cost Policy Implic. Bogor CIFOR 2003. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Sexton, J.O.; Townshend, J.R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 2015, 42, 3495–3501. [Google Scholar] [CrossRef]
- Holmgren, P. Fire and haze in Riau: Looking beyond the hotspots. Cent. Int. For. Res. Bogor Indones. 2013. Available online: https://www2.cifor.org/forestsasia/fire-haze-riau-looking-beyond-hotspots/index.html (accessed on 10 January 2020).
- Kibanov, M.; Stumme, G.; Amin, I.; Lee, J.G. Mining social media to inform peatland fire and haze disaster management. Soc. Netw. Anal. Min. 2017, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, E.; McKee, D.; Thomas, D. Health consequences of forest fires in Indonesia. Demography 2005, 42, 109–129. [Google Scholar] [CrossRef] [Green Version]
- Ulya, N.A.; Yunardy, S. Analisis dampak kebakaran hutan di Indonesia terhadap distribusi pendapatan masyarakat. J. Penelit. Sos. Dan Ekon. Kehutan. 2006, 3, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D.; Tsirkunov, V. Costs and benefits of early warning systems. Global Assessment Report, 1 January 2011. [Google Scholar]
- Hallegatte, S. A cost effective solution to reduce disaster losses in developing countries: Hydro-meteorological services, early warning, and evacuation. World Bank Policy Res. Work. Pap. 2012. Available online: https://openknowledge.worldbank.org/handle/10986/9359 (accessed on 10 January 2020).
- Kalogeropoulos, A.; Negredo, S.; Picone, I.; Nielsen, R.K. Who shares and comments on news?: A cross-national comparative analysis of online and social media participation. Soc. Media Soc. 2017, 3, 2056305117735754. [Google Scholar] [CrossRef] [Green Version]
- Biswas, M. An exploratory research: A comparative analysis of mainstream and ethnic media coverage of social policy issues in the economic stimulus plan debate. J. Comp. Soc. Welf. 2010, 26, 13–26. [Google Scholar] [CrossRef]
- Stieglitz, S.; Dang-Xuan, L. Social media and political communication: A social media analytics framework. Soc. Netw. Anal. Min. 2013, 3, 1277–1291. [Google Scholar] [CrossRef]
- Sinnenberg, L.; Buttenheim, A.M.; Padrez, K.; Mancheno, C.; Ungar, L.; Merchant, R.M. Twitter as a tool for health research: A systematic review. Am. J. Public Health 2017, 107, e1–e8. [Google Scholar] [CrossRef]
- Power, R.; Robinson, B.; Colton, J.; Cameron, M.A. A Case Study for Monitoring Fires with Twitter. In Proceedings of the ISCRAM, Kristiansand, Norway, 24–27 May 2015. [Google Scholar]
- Anderson, M. Integrating social media into traditional emergency management command and control structures: The square peg into the round hole. In Proceedings of the Disaster and Emergency Management Conference Proceedings, Brisbane, Australia, 16–18 April 2012; pp. 18–34. [Google Scholar]
- Lindsay, B.R. Social Media and Disasters: Current Uses, Future Options, and Policy Considerations; UNT Library: Denton, TX, USA, 2011. [Google Scholar]
- Sakaki, T.; Okazaki, M.; Matsuo, Y. Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 2012, 25, 919–931. [Google Scholar] [CrossRef]
- Robinson, B.; Power, R.; Cameron, M. A sensitive twitter earthquake detector. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 999–1002. [Google Scholar]
- Avvenuti, M.; Cresci, S.; Marchetti, A.; Meletti, C.; Tesconi, M. Ears (earthquake alert and report system) a real time decision support system for earthquake crisis management. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1749–1758. [Google Scholar]
- de Bruijn, J.A.; de Moel, H.; Jongman, B.; Wagemaker, J.; Aerts, J.C. TAGGS: Grouping tweets to improve global geoparsing for disaster response. J. Geovisualization Spat. Anal. 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Power, R.; Robinson, B.; Ratcliffe, D. Finding fires with twitter. In Proceedings of the Australasian Language Technology Association Workshop 2013 (ALTA 2013), Brisbane, Australia, 4–6 December 2013; pp. 80–89. [Google Scholar]
- Reid, J.; Xian, P.; Hyer, E.; Flatau, M.; Ramirez, E.; Turk, F.; Sampson, C.; Zhang, C.; Fukada, E.; Maloney, E. Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent. Atmos. Chem. Phys. 2012, 12, 2117–2147. [Google Scholar] [CrossRef] [Green Version]
- Shawki, D.; Field, R.D.; Tippett, M.K.; Saharjo, B.H.; Albar, I.; Atmoko, D.; Voulgarakis, A. Long-lead prediction of the 2015 fire and haze episode in Indonesia. Geophys. Res. Lett. 2017, 44, 9996–10005. [Google Scholar] [CrossRef]
- Pan, X.; Chin, M.; Ichoku, C.M.; Field, R.D. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean dipole during 1979–2016. J. Geophys. Res. Atmos. 2018, 123, 7974–7988. [Google Scholar] [CrossRef]
- Forsyth, T. Public concerns about transboundary haze: A comparison of Indonesia, Singapore, and Malaysia. Glob. Environ. Chang. 2014, 25, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Panjaitan, R.B.; Sumartono, S.; Sarwono, S.; Saleh, C. The role of central government and local government and the moderating effect of good governance on forest fire policy in Indonesia. Benchmarking Int. J. 2019, 26, 147–159. [Google Scholar] [CrossRef]
- Mustaqim, T.; Umam, K.; Muslim, M. Twitter Text Mining for Sentiment Analysis on Government’s Response to Forest Fires with Vader Lexicon Polarity Detection and K-Nearest Neighbor Algorithm; IOP Publishing: Bristol, UK, 2020; Volume 1567, p. 032024. [Google Scholar]
- Carvalho, J.; Plastino, A. On the evaluation and combination of state-of-the-art features in Twitter sentiment analysis. Artif. Intell. Rev. 2021, 54, 1887–1936. [Google Scholar] [CrossRef]
- Carley, K.M.; Malik, M.M.; Kowalchuck, M.; Pfeffer, J.; Landwehr, P. Twitter Usage in Indonesia 2015. Available online: https://ssrn.com/abstract=2720332 (accessed on 23 September 2021).
- Baranowski, D.B.; Flatau, M.K.; Flatau, P.J.; Karnawati, D.; Barabasz, K.; Labuz, M.; Latos, B.; Schmidt, J.M.; Paski, J.A. Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aditya, T.; Laksono, D.; Izzahuddin, N. Crowdsourced hotspot validation and data visualisation for location-based haze mitigation. J. Locat. Based Serv. 2019, 13, 239–269. [Google Scholar] [CrossRef]
- Goldammer, J.G. History of equatorial vegetation fires and fire research in Southeast Asia before the 1997–98 episode: A reconstruction of creeping environmental changes. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 13–32. [Google Scholar] [CrossRef]
- Goldammer, J.G.; Seibert, B. The impact of droughts and forest fires on tropical lowland rain forest of East Kalimantan. In Fire in the Tropical Biota; Springer: Berlin/Heidelberg, Germany, 1990; pp. 11–31. [Google Scholar]
- Simorangkir, D. Fire use: Is it really the cheaper land preparation method for large-scale plantations? Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 147–164. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Kao, H.-Y.; Lee, T.; Kim, S.T. Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol. 2011, 103, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Yeh, S.-W.; Kug, J.-S.; Dewitte, B.; Kwon, M.-H.; Kirtman, B.P.; Jin, F.-F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef]
- Ashok, K.; Yamagata, T. The El Niño with a difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kim, S.T. Identifying the types of major El Niño events since 1870. Int. J. Climatol. 2013, 33, 2105–2112. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, C. Different impacts of various El Niño events on the Indian Ocean Dipole. Clim. Dyn. 2014, 42, 991–1005. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Jin, F.; Stuecker, M.F.; Turner, A.G. Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett. 2015, 42, 8570–8576. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Morton, D.C.; Andela, N.; Van Der Werf, G.R.; Giglio, L.; Randerson, J.T. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Chang. 2017, 7, 906–911. [Google Scholar] [CrossRef]
- Fanin, T.; Werf, G.R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 2017, 14, 3995–4008. [Google Scholar] [CrossRef] [Green Version]
- Field, R.D.; Van Der Werf, G.R.; Fanin, T.; Fetzer, E.J.; Fuller, R.; Jethva, H.; Levy, R.; Livesey, N.J.; Luo, M.; Torres, O. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. USA 2016, 113, 9204–9209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wooster, M.; Perry, G.; Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 2012, 9, 317–340. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Ciais, P.; Chevallier, F.; Van der Werf, G.R.; Fanin, T.; Broquet, G.; Boesch, H.; Cozic, A.; Hauglustaine, D.; Szopa, S. Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophys. Res. Lett. 2016, 43, 10–472. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; McPhaden, M.J. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Saji, N.; Goswami, B.N.; Vinayachandran, P.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- de Bruijn, J.A.; de Moel, H.; Jongman, B.; de Ruiter, M.C.; Wagemaker, J.; Aerts, J.C. A global database of historic and real-time flood events based on social media. Sci. Data 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Saura, J.R.; Palacios-Marqués, D.; Iturricha-Fernández, A. Ethical design in social media: Assessing the main performance measurements of user online behavior modification. J. Bus. Res. 2021, 129, 271–281. [Google Scholar] [CrossRef]
- Ribeiro-Navarrete, S.; Saura, J.R.; Palacios-Marqués, D. Towards a new era of mass data collection: Assessing pandemic surveillance technologies to preserve user privacy. Technol. Forecast. Soc. Chang. 2021, 167, 120681. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Meehl, G.A.; Pulwarty, R.; Hobbins, M.; Hoell, A.; AghaKouchak, A.; Bonfils, C.J.; Gallant, A.J.; Hoerling, M.; Hoffmann, D. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 2020, 10, 191–199. [Google Scholar] [CrossRef]
Year | Tweet–Hotspot Correlation (January–December) | Tweet–Hotspot Correlation (August–October) |
---|---|---|
2015 | 0.2714 | 0.2091 |
2016 | 0.3847 | 0.4739 |
2017 | 0.0535 | 0.2091 |
2018 | 0.0421 | 0.4739 |
2019 | 0.3873 | 0.2060 |
Year | Monthly Hotspot–Monthly Twitter Correlation | Total Burnt Area (in 100,000) |
---|---|---|
2015 | 0.7094 | 1.8381 |
2016 | 0.8567 | 0.8522 |
2017 | 0.3330 | 0.0687 |
2018 | 0.1094 | 0.3724 |
2019 | 0.8435 | 0.9055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitriany, A.A.; Flatau, P.J.; Khoirunurrofik, K.; Riama, N.F. Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia. Sustainability 2021, 13, 11188. https://doi.org/10.3390/su132011188
Fitriany AA, Flatau PJ, Khoirunurrofik K, Riama NF. Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia. Sustainability. 2021; 13(20):11188. https://doi.org/10.3390/su132011188
Chicago/Turabian StyleFitriany, Anni Arumsari, Piotr J. Flatau, Khoirunurrofik Khoirunurrofik, and Nelly Florida Riama. 2021. "Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia" Sustainability 13, no. 20: 11188. https://doi.org/10.3390/su132011188
APA StyleFitriany, A. A., Flatau, P. J., Khoirunurrofik, K., & Riama, N. F. (2021). Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia. Sustainability, 13(20), 11188. https://doi.org/10.3390/su132011188