Postharvest Quality Evolution in Long Shelf-Life “Vesuviano” Tomato Landrace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions, Fruit Storage Conditions, and Sampling Procedure
2.2. Chemical Analyses
2.2.1. Sampling
2.2.2. Dry Matter
2.2.3. Soluble Sugars and Organic Acids
2.2.4. Volatiles (VOCs)
2.2.5. Carotenoids (CAR)
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cebolla-Cornejo, J.; Roselló, S.; Nuez, F. Phenotypic and genetic diversity of Spanish tomato landraces. Sci. Hortic. 2013, 162, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Olmos, C.; Vilanova, S.; Pascual, L.; Roselló, J.; Cebolla-Cornejo, J. SNP markers applied to the characterization of Spanish tomato (Solanum lycopersicum L.) landraces. Sci. Hortic. 2015, 194, 100–110. [Google Scholar] [CrossRef]
- Sacco, A.; Ruggieri, V.; Parisi, M.; Festa, G.; Rigano, M.M.; Picarella, M.E.; Barone, A. Exploring a tomato landraces collection for fruit related traits by the aid of a high-throughput genomic platform. PLoS ONE 2015, 10, e0137139. [Google Scholar] [CrossRef] [Green Version]
- Parisi, M.; Aversano, R.; Graziani, G.; Ruggieri, V.; Senape, V.; Sigillo, L.; Barone, A. Phenotypic and molecular diversity in a collection of ‘Pomodoro di Sorrento’ Italian tomato landrace. Sci. Hortic. 2016, 203, 143–151. [Google Scholar] [CrossRef]
- Ruggieri, V.; Francese, G.; Sacco, A.; D’Alessandro, A.; Rigano, M.M.; Parisi, M.; Milone, M.; Cardi, T.; Mennella, G.; Barone, A. An association mapping approach to identify favorable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014, 14, 337. [Google Scholar] [CrossRef] [Green Version]
- Caramante, M.; Rouphael, Y.; Corrado, G. The Genetic Diversity and Structure of Tomato Landraces from the Campania Region (Southern Italy) Uncovers a Distinct Population Identity. Agronomy 2021, 11, 564. [Google Scholar] [CrossRef]
- Cortés-Olmos, C.; Leiva-Brondo, M.; Roselló, J.; Raigón, M.D.; Cebolla-Cornejo, J. The role of traditional varieties of tomato as sources of functional compounds. J. Sci. Food Agric. 2014, 11, 2888–2904. [Google Scholar] [CrossRef]
- Davies, J.N.; Hobson, G.E. The constituents of tomato fruit—The influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Technol. 1981, 15, 205–280. [Google Scholar] [CrossRef] [PubMed]
- Hobson, G.E.; Bedford, L. The composition of cherry tomatoes and its relation to consumer acceptability. J. Hortic. Sci. 1989, 64, 321–329. [Google Scholar] [CrossRef]
- Dirinck, P.; Schreyen, L.; van Wassenhove, F.; Schamp, N. Flavour quality of tomatoes. J. Sci. Food Agric. 1976 27, 499–508. [CrossRef]
- Tandon, K.S.; Baldwin, E.A.; Shewfelt, R.L. Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum Mill.) as affected by the medium of evaluation. Postharv. Biol. Technol. 2000, 20, 261–268. [Google Scholar] [CrossRef]
- Liu, H.; Meng, F.; Miao, H.; Chen, S.; Yin, T.; Hu, S.; Shao, Z.; Liu, Y.; Gao, L.; Zhu, C.; et al. Effects of postharvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chem. 2018, 263, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Simkin, A.J.; Schwartz, S.H.; Auldridge, M.; Taylor, M.G.; Klee, H.J. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. Plant J. 2004, 40, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Przybylska, S. Lycopene–a bioactive carotenoid offering multiple health benefits: A review. Int. Food Sci. Technol. 2020, 55, 11–32. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Maguer, M.L.; Kakuda, Y.; Liptay, A.; Niekamp, F. Lycopene degradation and isomerization in tomato dehydration. Food Res. Int. 1999, 32, 15–21. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Siracusa, L.; Patanè, C.; Avola, G.; Ruberto, G. Polyphenols as chemotaxonomic markers in Italian “long-storage” tomato genotypes. J. Agric. Food Chem. 2012, 60, 309–314. [Google Scholar] [CrossRef]
- Mercati, F.; Longo, C.; Poma, D.; Araniti, F.; Lupini, A.; Mammano, M.M.; Fiore, M.C.; Abenavoli, M.R.; Sunseri, F. Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Gen. Res. Crop Evol. 2015, 62, 721–732. [Google Scholar] [CrossRef]
- Tranchida-Lombardo, V.; Mercati, F.; Avino, M.; Punzo, P.; Fiore, M.C.; Poma, I.; Patanè, C.; Guarracino, M.R.; Sunseri, F.; Tucci, M.; et al. Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array. Plant Biosyst. 2019, 153, 288–297. [Google Scholar] [CrossRef]
- Conesa, M.À.; Fullana-Pericàs, M.; Granell, A.; Galmés, J. Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement. Front. Pl. Sci. 2020, 10, 1651. [Google Scholar] [CrossRef]
- Casals, J.; Cebolla-Cornejo, J.; Rosellò, S.; Beltràn, J.; Casaňas, F.; Nuez, F. Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. Eur. Food Res. Technol. 2011, 233, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Durante, M.; Gonnella, M.; Buttaro, D.; D’Imperio, M.; Mita, G.; Serio, F. Quality and nutritional evaluation of regina tomato, a traditional long-storage landrace of Puglia (southern Italy). Agriculture 2018, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Patanè, C.; Scordia, D.; Testa, G.; Cosentino, S.L. Physiological screening for drought tolerance in Mediterranean long-storage tomato. Plant Sci. 2016, 249, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Giorio, P.; Guida, G.; Mistretta, C.; Sellami, M.H.; Oliva, M.; Punzo, P.; Iovieno, P.; Arena, C.; De Maio, A.; Grillo, S.; et al. Physiological, biochemical and molecular responses to water stress and rehydration in Mediterranean adapted tomato landraces. Plant Biol. 2018, 20, 995–1004. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.À.; Douthe, C.; El Aou-ouad, H.; Ribas-Carbó, M.; Galmés, J. Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agric. Water Manag. 2019, 223, 105722. [Google Scholar] [CrossRef]
- Rosa-Martínez, E.; Adalid, A.M.; Alvarado, L.E.; Burguet, R.; García-Martínez, M.D.; Pereira-Dias, L.; Casanova, C.; Soler, E.; Figàs, M.R.; Plazas, M.; et al. Variation for Composition and Quality in a Collection of the Resilient Mediterranean ‘de penjar’ Long Shelf-Life Tomato Under High and Low N Fertilization Levels. Front. Plant Sci. 2021, 12, 633957. [Google Scholar] [CrossRef]
- Fratianni, F.; Cozzolino, A.; d’Acierno, A.; Nazzaro, F.; Riccardi, R.; Spigno, P. Qualitative Aspects of Some Traditional Landraces of the Tomato “Piennolo” (Solanum lycopersicum L.) of the Campania Region, Southern Italy. Antioxidants 2020, 9, 565. [Google Scholar] [CrossRef]
- Parisi, M.; Pentangelo, A.; D’Onofrio, B.; Villari, G.; Giordano, I. Studi su ecotipi campani di pomodorino “Corbarino” e “Vesuviano” in due ambienti. Italus Hortus 2006, 13, 775–778. [Google Scholar]
- Sinesio, F.; Moneta, E.; Peparaio, M. Sensory characteristics of traditional field grown in southern Italy tomato genotypes. J. Food Qual. 2007, 30, 878–895. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Piombino, P.; Genovese, A.; Pessina, R.; Moio, L. Traditional Italian tomato (Lycopersicon esculentum Mill.) cultivars and their commercial homologues: Differences in volatile composition. Ital. J. Food Sci. 2008, 20, 333–350. [Google Scholar]
- Carillo, P.; Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; dell’Aversana, E.; D’Amelia, L.; Colla, G.; Caruso, G.; De Pascale, S.; Rouphael, Y. Sensory and functional quality characterization of protected designation of origin ‘Piennolo del Vesuvio’ cherry tomato landraces from Campania-Italy. Food Chem. 2019, 292, 166–175. [Google Scholar] [CrossRef]
- Carrieri, R.; Parisi, M.; Di Dato, F.; Tarantino, P.; De Vita, F.; Perreca, R.; Riccardi, R.; Lahoz, E. Postharvest decay control of a “long-storage” tomato landrace using different preharvest treatments. Acta Hortic. 2016, 1144, 423–430. [Google Scholar] [CrossRef]
- Migliori, C.A.; Salvati, L.; Di Cesare, L.F.; Lo Scalzo, R.; Parisi, M. Effects of preharvest applications of natural antimicrobial products on tomato fruit decay and quality during long-term storage. Sci. Hort. 2017, 222, 193–202. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 13th ed.; Methods Number: 14.004-14.006 p.211, 14.083 p. 223, 14.103 p. 225, 7.055-7.056 p.132; Association of Official Analytical Chemists: Washington, DC, USA, 1980. [Google Scholar]
- Paolo, D.; Bianchi, G.; Morelli, C.F.; Speranza, G.; Campanelli, G.; Kidmose, U.; Lo Scalzo, R. Impact of drying techniques, seasonal variation and organic growing on flavor compounds profiles in two Italian tomato varieties. Food Chem. 2019, 298, 125062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forni, E.; Erba, M.L.; Maestrelli, A.; Polesello, A. Sorbitol and free sugar contents in plums. Food Chem. 1992, 44, 269–275. [Google Scholar] [CrossRef]
- Lo Scalzo, T.; Morassut, M.; Rapisarda, P. Oxygen radical scavenging capacity of phenolic and non-phenolic compounds in red and white wines. Open Life Sci. 2012, 7, 146–158. [Google Scholar] [CrossRef]
- Akšić, M.F.; Tosti, T.; Sredojević, M.; Milivojević, J.; Meland, M.; Natić, M. Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars grown in organic and integrated production system. Plants 2019, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Rosales, M.A.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.D.M.; Blasco, B.; Ríos, J.J.; Ruiz, J.M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean greenhouses. J. Sci. Food Agric. 2011, 91, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Migliori, C.; Di Cesare, L.F.; Lo Scalzo, R.; Campanelli, G.; Ferrari, V. Effects of organic farming and genotype on alimentary and nutraceutical parameters in tomato fruits. J. Sci. Food Agric. 2012, 92, 2833–2839. [Google Scholar] [CrossRef] [PubMed]
- Ishida, B.K.; Ma, J.; Chan, B. A simple, rapid method for HPLC analysis of lycopene isomers. Phytochem. Anal. 2001, 12, 194–198. [Google Scholar] [CrossRef]
- Mayer, F.; Takeoka, G.; Buttery, R.; Nam, Y.; Naim, M.; Bezman, Y.; Rabinowitch, H.D. Aroma of fresh field tomatoes. In Freshness and Shelf Life of Foods; Adwallader, K.R., Weenen, H., Eds.; ACS Symposium Series 836; American Chemical Society: Washington, DC, USA, 2002; pp. 144–161. [Google Scholar]
- Saladié, M.; Matas, A.J.; Isaacson, T.; Jenks, M.A.; Goodwin, S.M.; Niklas, K.J.; Ren, X.L.; Labavitch, J.M.; Shackel, K.A.; Fernie, A.R.; et al. A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol. 2007, 144, 1012–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seymour, G.B.; Chapman, N.; Chew, B.L.; Rose, J.K.C. Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnol. J. 2013, 11, 269–278. [Google Scholar] [CrossRef]
- Caiazzo, R.; Ricci, S.; Cantarella, C.; Urciuolo, G.; Cimmino, C.; Parisi, M.; Mennella, G.; D’Agostino, N. Combining transcriptomics and metabolomics to investigate ripening and post-harvest fruit withering in the cherry-like tomato landrace “pomodorino del Piennolo del Vesuvio”. In Proceedings of the 11th Solanaceae Conference, Bahia, Brazil, 2–6 November 2014. [Google Scholar]
- Manzo, N.; Pizzolongo, F.; Meca, G.; Aiello, A.; Marchetti, N.; Romano, R. Comparative chemical compositions of fresh and stored vesuvian PDO “Pomodorino Del Piennolo” tomato and the ciliegino variety. Molecules 2018, 23, 2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Bonini, P.; Colla, G.; Rouphael, Y. Yield and nutritional quality of Vesuvian tomato PDO as a affected by farming system and biostimulants application. Agronomy 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Guida, G.; Sellami, M.H.; Mistretta, C.; Oliva, M.; Buonomo, R.; De Mascellis, R.; Patanè, C.; Rouphael, Y.; Albrizio, R.; Giorio, P. Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions. Agric. Water Manag. 2017, 180, 126–135. [Google Scholar] [CrossRef]
- Di Cesare, L.F.; Migliori, C.; Viscardi, D.; Parisi, M. Quality of tomato fertilized with nitrogen and phosphorous. Ital. J. Food Sci. 2010, 11, 186–190. [Google Scholar]
- Ronga, D.; Pentangelo, A.; Parisi, M. Optimizing N Fertilization to Improve Yield, Technological and Nutritional Quality of Tomato Grown in High Fertility Soil Conditions. Plants 2020, 9, 575. [Google Scholar] [CrossRef]
- Ercolano, M.R.; Carli, P.; Soria, A.; Cascone, A.; Fogliano, V.; Frusciante, L.; Barone, A. Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties. Euphytica 2008, 164, 571–582. [Google Scholar] [CrossRef]
- Patching, C.R.; Maw, G.A.; Davies, J.N. Metabolism of glucose during ripening of detached tomato fruit. J. Sci. Food Agric. 1975, 26, 23–29. [Google Scholar] [CrossRef]
- Missio, J.C.; Renau, R.M.; Artigas, F.C.; Cornejo, J.C. Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Sci. Agric. 2015, 72, 314–321. [Google Scholar] [CrossRef]
- Mutschler, M.; Guttieri, M.; Kinzer, S.; Grierson, D.; Tucker, G. Changes in ripening-related processes in tomato conditioned by the alc mutant. Theor. Appl. Genet. 1988, 76, 285–292. [Google Scholar] [CrossRef]
- Gao, H.Y.; Zhu, B.Z.; Zhu, H.L.; Zhang, Y.L.; Xie, Y.H.; Li, Y.C.; Luo, Y.B. Effect of suppression of ethylene biosynthesis on flavor products in tomato fruits. Russ. J. Plant Physiol. 2007, 54, 80–88. [Google Scholar] [CrossRef]
- Conesa, M.A.; Galmés, J.; Ochogavía, J.M.; March, J.; Jaume, J.; Martorell, A.; Francis, D.M.; Medrano, H.; Roce, J.K.C.; Cifre, J. The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biol. Technol. 2014, 93, 114–121. [Google Scholar] [CrossRef]
- Arah, I.K.; Amaglo, H.; Kumah, E.K.; Ofori, H. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. Int. J. Agron. 2015, 2015, 478041. [Google Scholar] [CrossRef] [Green Version]
- Petró-Turza, M. Flavour of tomato and tomato products. Food Rev. Int. 1987, 2, 309. [Google Scholar] [CrossRef]
- Buttery, R.G.; Teranishi, R.; Ling, L.C. Fresh tomato aroma volatiles: A quantitative study. J. Agric. Food Chem. 1987, 35, 540. [Google Scholar] [CrossRef]
- Ruiz, J.J.; Alonso, A.; García-Martínez, S.; Valero, M.; Blasco, P.; Ruiz-Bevia, F. Quantitative analysis of flavour volatiles detects differences among closely related traditional cultivars of tomato. J. Sci. Food Agric. 2005, 85, 54. [Google Scholar] [CrossRef]
- Krumbein, A.; Auerswald, H. Characterization of aroma volatiles in tomatoes by sensory analyses. Food/Nahrung 1998, 42, 395. [Google Scholar] [CrossRef]
- Stern, D.J.; Buttery, R.G.; Teranishi, R.; Ling, L.; Scott, K.; Cantwell, M. Effect of storage and ripening on fresh tomato quality, Part I. Food Chem. 1994, 49, 225. [Google Scholar] [CrossRef]
- Klee, H.J.; Giovannoni, J.J. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 2011, 45, 41–59. [Google Scholar] [CrossRef]
- Wang, L.; Baldwin, E.; Luo, W.; Zhao, W.; Brecht, J.; Bai, J. Key tomato volatile compounds during postharvest ripening in response to chilling and pre-chilling heat treatments. Postharvest Biol. Technol. 2019, 154, 11–20. [Google Scholar] [CrossRef]
- Li, J.; Di, T.; Bai, J. Distribution of volatile compounds in different fruit structures in four tomato cultivars. Molecules 2019, 14, 2594. [Google Scholar] [CrossRef] [Green Version]
- Berna, A.; Lammertyn, J.; Buysens, S.; Di Natale, C.; Nicolai, B. Mapping consumer liking of tomatoes with fast aroma profiling techniques. Postharvest Biol. Technol. 2005, 38, 115–127. [Google Scholar] [CrossRef]
- Lee, J.H.J.; Jayaprakasha, G.K.; Rush, C.M.; Crosby, K.M.; Patil, B.S. Production system influences volatile biomarkers in tomato. Metabolomics 2018, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Tandon, K.S.; Jordan, M.; Goodner, K.L. Characterization of fresh tomato aroma volatiles using GC–Olfactometry. Proc. Fla. State Hort. Soc. 2001, 114, 142–144. [Google Scholar]
- Klee, H.J. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef]
- Fraser, P.D.; Truesdale, M.R.; Bird, C.R.; Schuch, W.; Bramley, P.M. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol. 1994, 105, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Rambla, J.; Tikunov, Y.M.; Monforte, A.J.; Bovy, A.G.; Granell, A. The expanded tomato fruit volatile landscape. J. Exp. Bot. 2014, 4613–4623. [Google Scholar] [CrossRef] [Green Version]
- Hongsoongnern, P.; Chambers, E. A lexicon for green odor or flavor and characteristics of chemicals associated with green. J. Sens. Stud. 2008, 23, 205–222. [Google Scholar] [CrossRef]
- Fattore, M.; Montesano, D.; Pagano, E.; Teta, R.; Borrelli, F.; Mangoni, A.; Seccia, S.; Albrizio, S. Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes. J. Food Compos. Anal. 2016, 53, 61–68. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Collins, J.K.; Perkins-Veazie, P.; Roberts, W. Lycopene: From plants to humans. HortScience 2006, 41, 1135–1144. [Google Scholar] [CrossRef] [Green Version]
- Giovanelli, G.; Lavelli, V.; Peri, C.; Nobili, S. Variation in antioxidant components of tomato during vine and post-harvest ripening. J. Sci. Food Agric. 1999, 79, 1583–1588. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Intern. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effects of storage duration on physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Korean J. Hortic. Sci. Technol. 2017, 35, 88–97. [Google Scholar] [CrossRef]
- Carrillo-López, A.; Yahia, E.M. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. J Food Sci Technol. 2014, 51, 2720–2726. [Google Scholar] [CrossRef] [Green Version]
Treatment | DM | GLU | FRU | SS | FRU/GLU | MAL | CITR | TAC | SWI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g 100 g−1 | g 100 g−1 dw | g 100 g−1 dw | g 100 g−1 dw | g 100 g−1 dw | g 100 g−1 dw | g 100 g−1 dw | ||||||||||||
T0 | 8.43 | a | 24.4 | a | 30.8 | a | 55.3 | a | 1.26 | b | 1.66 | a | 6.20 | a | 7.86 | a | 80.4 | a |
T40 | 7.59 | ab | 20.4 | ab | 28.3 | b | 48.7 | b | 1.39 | ab | 1.45 | b | 6.34 | a | 7.79 | a | 64.9 | ab |
T80 | 7.00 | b | 17.3 | b | 27.1 | b | 44.4 | b | 1.56 | a | 1.41 | b | 6.40 | a | 7.81 | a | 55.8 | b |
T120 | 6.85 | b | 18.1 | b | 27.7 | b | 45.9 | b | 1.53 | a | 1.80 | a | 5.90 | a | 7.70 | a | 56.1 | b |
Average | 7.47 | 18.6 | 27.7 | 46.3 | 1.44 | 1.55 | 6.21 | 7.77 | 64.3 | |||||||||
p-value | * | * | * | * | * | * | NS | NS | * |
Volatile Class | Molecule | Time-Point | |||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T40 | T80 | T120 | ||||||
ALC | 1-penten-3-ol | 9.00 | b | 21.3 | a | − | − | ||
1-butanol-3-methyl | 173 | b | 181 | b | 231 | a | 110 | c | |
1-pentanol | − | 23.9 | b | 31.1 | a | 29.2 | ab | ||
(Z)3-hexen-1-ol | 1.83 | b | − | 33.2 | a | − | |||
1-hexanol | 7.25 | b | 8.64 | b | 39.4 | a | − | ||
benzyl alcohol | 25.9 | d | 38.7 | c | 53.5 | a | 45.5 | b | |
phenethyl alcohol | 29.7 | a | 16.1 | b | 19.0 | b | − | ||
CaC | 1-penten-3-one | 7.63 | − | − | − | ||||
pentanal | 9.34 | − | − | − | |||||
hexanal | 78.5 | c | 134 | a | 104 | b | 141.5 | a | |
(E)2-hexenal | 11.3 | c | 19.9 | a | 17.2 | b | 13.4 | c | |
heptanal | 5.87 | d | 17.9 | c | 29.6 | b | 43.7 | a | |
benzaldehyde | 6.33 | − | − | − | |||||
(E)2-heptenal | 14.1 | c | 25.6 | b | 15.4 | c | 34.9 | a | |
6-methyl-5-hepten-2-one | 87.7 | d | 498 | b | 405 | c | 769 | a | |
(E)2-octenal | 16.9 | c | 37.9 | b | 36.4 | b | 53.6 | a | |
5-heptenal-2,6-dimethyl | − | 39.8 | a | 27.3 | b | 41.9 | a | ||
6-methyl-3,5-heptadien-2-one | − | 26.0 | b | − | 32.9 | a | |||
nonanal | 10.1 | c | 18.9 | b | 30.4 | a | 33.4 | a | |
(E)2-nonenal | 11.5 | d | 28.2 | c | 36.2 | b | 69.7 | a | |
(E,E)2,4-decadienal | 11.2 | c | 33.8 | b | 36.6 | b | 44.8 | a | |
(E,Z)2,4-decadienal | 14.8 | d | 27.5 | c | 32.6 | b | 39.0 | a | |
PHE | 2-methoxyphenol | 20.7 | c | 33.4 | b | 62.9 | a | 54.1 | a |
methylsalicylate | 48.0 | c | 110 | b | 138 | a | 144 | a | |
eugenol | 22.1 | b | − | 26.7 | b | 35.8 | a | ||
HeC | 2-isobutylthiazole | 167 | d | 436 | b | 527 | a | 360 | c |
TER | 4-terpineol | 9.63 | − | − | − | ||||
α-terpineol | 11.7 | c | 46.9 | b | 67.7 | a | 77.5 | a | |
2,3-epoxygeranial | 11.2 | d | 94.3 | b | 75.9 | c | 138 | a | |
neral | 9.3737 | c | 46.4 | b | 40.2 | b | 76.7 | a | |
geranial | 18.7 | d | 138 | c | 112.6 | b | 220 | a | |
β-damascenone | 5.1 | c | 8.85 | b | 18.4 | a | 6.30 | bc | |
nerylacetone | 22.8 | d | 39.8 | c | 58.0 | b | 95.2 | a | |
(Z)β-ionone | 5.22 | c | 17.9 | b | 23.0 | a | 26.5 | a | |
(E)β-ionone | 12.2 | c | 34.9 | b | 37.4 | b | 63.2 | a | |
(E,E)-pseudoionone | 5.33 | d | 39.8 | b | 31.7 | c | 49.4 | a |
Treatments | Lycopene | β-Carotene mg 100 g−1 dw | β-Carotene vs. Total Lycopene (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cis Isomers mg 100g−1 dw | All-trans + 5 cis Isomers mg 100 g−1 dw | Total Lycopene mg 100g−1 dw | % cis vs. all-trans | |||||||||
T0 | 6.49 | a | 79.7 | c | 86.2 | c | 7.53 | a | 11.5 | a | 13.3 | a |
T40 | 6.60 | a | 98.5 | bc | 105 | bc | 6.69 | ab | 12.3 | a | 11.7 | a |
T80 | 7.14 | a | 114 | ab | 121 | ab | 6.23 | ab | 15.2 | a | 12.5 | a |
T120 | 7.26 | a | 123 | a | 131 | a | 5.53 | b | 16.7 | a | 12.7 | a |
Average | 6.87 | 104 | 111 | 6.60 | 13.9 | 12.5 | ||||||
p-value | N.S. | * | * | * | N.S. | N.S. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, M.; Lo Scalzo, R.; Migliori, C.A. Postharvest Quality Evolution in Long Shelf-Life “Vesuviano” Tomato Landrace. Sustainability 2021, 13, 11885. https://doi.org/10.3390/su132111885
Parisi M, Lo Scalzo R, Migliori CA. Postharvest Quality Evolution in Long Shelf-Life “Vesuviano” Tomato Landrace. Sustainability. 2021; 13(21):11885. https://doi.org/10.3390/su132111885
Chicago/Turabian StyleParisi, Mario, Roberto Lo Scalzo, and Carmela Anna Migliori. 2021. "Postharvest Quality Evolution in Long Shelf-Life “Vesuviano” Tomato Landrace" Sustainability 13, no. 21: 11885. https://doi.org/10.3390/su132111885
APA StyleParisi, M., Lo Scalzo, R., & Migliori, C. A. (2021). Postharvest Quality Evolution in Long Shelf-Life “Vesuviano” Tomato Landrace. Sustainability, 13(21), 11885. https://doi.org/10.3390/su132111885