Diversity of Endophytic Fungi in Huperzia serrata and Their Acetylcholinesterase Inhibitory Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Processing
2.3. DNA Extraction
2.4. PCR Amplification and High-Throughput Sequencing
2.5. Sequence Availability
2.6. Diversity Analysis of Endophytic Fungi
2.7. Fermentation and Preparation of Endophytic Fungal Extracts
2.8. Determination of AchE Inhibitory Activity in Endophytic Fungal Fermentation Products
3. Results
3.1. Analysis of Endophytic Fungal Community Structures in H. serrata with High-Throughput Sequencing
3.1.1. Alpha Rarefaction Curves and Alpha Diversity
3.1.2. Beta Diversity
3.1.3. Composition of Endophytic and Rhizosphere Soil Fungi
3.2. Analysis of Endophytic Fungi Community Structure in H. serrata with Traditional Culture Methods
3.3. Differences in Endophytic Fungi Detected with Traditional Culture Methods and High-Throughput DNA Sequencing
3.3.1. Differences in Endophytic Fungal Community Structures Detected
3.3.2. Differences in Endophytic Fungal Diversity
3.4. Acetylcholine-Inhibiting Activity of Endophytic Fungi Isolated with Traditional Culture Methods
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prieto, J.A.F.; Aguiar, C.; Dias, E.; Casado, M.D.L.A.F.; Homet, J. The genus Huperzia (Lycopodiaceae) in the Azores and Madeira. Bot. J. Linn. Soc. 2008, 158, 522–533. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.P.; Kou, L.X.; Fugal, K.B.; McLaughlin, J.L. Determination of huperzine A in formulated products by reversed-phase-liquid chromatography using diode array and electrospray ionization mass spectrometric detection. Phytomedicine 2003, 10, 200–205. [Google Scholar] [CrossRef]
- Chen, X.Y.; Qi, Y.D.; Wei, J.H.; Zhang, Z.; Wang, D.L.; Feng, J.D.; Gan, B.C. Molecular identification of endophytic fungi from medicinal plant Huperzia serrata based on rDNA ITS analysis. World J. Microbiol. Biotechnol. 2011, 27, 495–503. [Google Scholar] [CrossRef]
- Ma, X.Q.; Tan, C.H.; Zhu, D.Y.; Gang, D.R.; Xiao, P.G. Huperzine A from Huperzia species—An ethnopharmacolgical review. J. Ethnopharmacol. 2007, 113, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Zhang, Z.J.; Su, J.; Peng, L.Y.; Pan, L.T.; Wu, X.D.; Zhao, Q.S. Lycodine-Type Lycopodium Alkaloids from the Whole Plants of Huperzia serrata. Nat. Prod. Bioprospect. 2017, 7, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.G.; Wang, Y.Y.; Zhang, Z.L.; Yu, B. Herbal medicine in the treatment of Alzheimer’s disease. Chin. J. Integr. Med. 2015, 2, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Rasic, J.S.; Ivanovic, N.D.; Andjelkovic, M.S.; Nedeljkovic, I.P.; Nikolic, I.R.; Stojanovic, S.D.; Ristic-Medic, D.K.; Takic, M.M.; Djordjevic, B.I.; Dikic, N.V. Influence of Higenamine on Exercise Performance of Recreational Female Athletes: A Randomized Double-Blinded Placebo-Controlled Trial. Front. Psychol. 2021, 12. [Google Scholar] [CrossRef]
- Petrini, O. Fungal Endophytes of Tree Leaves. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Springer: New York, NY, USA, 1991; pp. 179–197. [Google Scholar]
- Saikkonen, K.; Faeth, S.H.; Helander, M.; Sullivan, T.J. Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 1998, 29, 319–343. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.L.; Xu, L.J.; Zhou, L.G.; Li, X.; Wang, J.G. Endophytic fungi from rhizomes of Paris polyphylla var. yunnanensis. World J. Microbiol. Biotechnol. 2008, 24, 733–737. [Google Scholar] [CrossRef]
- Reiter, B.; Sessitsch, A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can. J. Microbiol. 2006, 52, 140–149. [Google Scholar] [CrossRef]
- Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankowski, J.; Lorito, M.; Scala, F.; Schmid, R.; Berg, G.; Bahl, H. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 2001, 176, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Ezra, D.; Castillo, U.F.; Strobel, G.A.; Hess, W.M.; Porter, H.; Jensen, J.B.; Condron, M.A.M.; Teplow, D.; Sears, J.; Maranta, M.; et al. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU—2110) endophytic on Monstera sp. Microbiology 2004, 150, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Aken, B.V.; Peres, C.M.; Doty, S.L.; Yoon, J.M.; Schnoor, J.L. Methylobacterium populi sp. nov. a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoidesxnigra DN34). Int. J. Syst. Evol. Microbiol. 2004, 54, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Debbab, A.; Kjer, J.; Proksch, P. Fungal endophytes from higher plants: A prolific source of phytochemicals and other bioactive natural products. Fungal Divers 2010, 41, 1–16. [Google Scholar] [CrossRef]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Han, W.X.; Han, Z.W.; Jia, M.; Zhang, H.; Li, W.Z.; Yang, L.B.; Liang, F.; Han, L. Zhao, N.; Li, X.F. Five novel and highly efficient endophytic fungi isolated from Huperzia serrata expressing huperzine A for the treatment of Alzheimer’s disease. Appl. Microbiol. Biotechnol. 2020, 104, 9159–9177. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, G.Q.; Zhang, Z.B.; Yan, R.M.; Wang, L.Y.; Zhu, D. Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J. Ind. Microbiol. Biotechnol. 2011, 38, 1267–1278. [Google Scholar] [CrossRef]
- Beckers, B.; Michiel, O.D.B.; Weyens, N.; Acker, R.V.; Montagu, M.V.; Boerjan, W.; Vangronsveld, J. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc. Natl. Acad. Sci. USA 2016, 113, 2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcinroy, J.A.; Kloepper, J.W. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 1995, 173, 337–342. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Mills, D.A. Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities. Appl. Environ. Microbiol. 2013, 79, 2519–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SzypulA, W.; Pietrosiuk, A.; Suchocki, P.; Olszowska, O.; Furmanowa, M.; Kazimierska, O. Somatic embryogenesis and in vitro culture of Huperzia selago shoots as a potential source of huperzine A. Plant Sci. 2005, 168, 1443–1452. [Google Scholar] [CrossRef]
- Rahman, A.U.; Choudhary, M.I.; Thomsen, W.J. Bioassay Techniques for Drug Development, 1st ed.; CRC Press: Florida, FL, USA, 2001. [Google Scholar]
- Le, T.T.M.; Hoang, A.T.H.; Le, T.T.B.; Vo, T.T.B.; Quyen, D.V.; Chu, H.H. Isolation of endophytic fungi and screening of Huperzine A–producing fungus from Huperzia serrata in Vietnam. Sci. Rep. 2019, 9, 16152. [Google Scholar] [CrossRef]
- Yang, H.Y.; Qi, B.W.; Ding, N.; Jiang, F.F.; Jia, F.F.; Luo, Y.; Xu, X.P.; Wang, L.L.; Zhu, Z.X.; Liu, X.; et al. Polyketides from Alternaria alternata MT-47, an endophytic fungus isolated from Huperzia serrata. Fitoterapia 2019, 137, 104282. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Zeng, Q.G.; Yan, R.M.; Wang, Y.; Zou, Z.R.; Zhu, D. Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine A. World J. Microbiol. Biotechnol. 2011, 27, 479–486. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, Z.; Li, X.X.; Yan, R.M.; Zhang, Z.B.; Yang, H.L.; Zhu, D. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China. World J. Microb. Biot. 2016, 32. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.L.; Wang, Q.; Xin, M.X. Advanced in uncultivable microorgnisms in nature. J. Microbiol. 2011, 31, 75–79. [Google Scholar] [CrossRef]
- Mu, D.S.; Ouyang, Y.; Chen, G.J.; Du, Z.J. Strategies for culturing active/dormant marine microbes. Marine Life Sci. Technol. 2020, 3, 121–131. [Google Scholar] [CrossRef]
- Kaeberlein, T.; Lewis, K.; Epstein, S.S. Isolating “Uncultivable” Microorganisms in Pure Culture in a Simulated Natural Environment. Science 2002, 296, 1127–1129. [Google Scholar] [CrossRef] [Green Version]
- Beckers, B.; Beeck, M.O.D.; Weyens, N.; Boerjan, W.; Vangronsveld, J. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2009, 42, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Devin, C.D.; Damaris, D.; Citlali, F.G.; Stephen, G.; Scott, C.; Tanja, W.; North, G.; Visel, A.; Partida-Martinez, L.P.; Tringe, S.G. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 2016, 209, 798–811. [Google Scholar] [CrossRef] [Green Version]
- Aurore, C.; Tristan, C.; Lengellé, J.; Defossez, E.; Vacher, C.; Robin, C.; Buée, M.; Marcais, B. Leaf and Root-Associated Fungal Assemblages Do Not Follow Similar Elevational Diversity Patterns. PLoS ONE 2014, 9, e100668. [Google Scholar] [CrossRef]
- Shakya, M.; Gottel, N.; Castro, H.F.; Yang, Z.K.; Gunter, L.; Labbé, J.; Muchero, W.; Bonito, G.M.; Vilgalys, R.; Tuskan, G.; et al. A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees. PLoS ONE 2013, 8, e76382. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.L.; Noushahi, H.A.; Zhang, Y.P.; Liu, J.X.; Cosoveanu, A.; Liu, Y.; Yan, L.; Zhang, J.; Shu, S.H. Endophytic Fungal Community of Huperzia serrata: Diversity and Relevance to the Production of Huperzine A by the Plant Host. Molecules 2021, 26, 892. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.Q.; Zhou, L.X.; Wang, S.; Yan, Z.G.; Feng, S.X.; Jiang, J.M.; Zhu, D.Y.; Ma, X.J. Simultaneous determination of huperzine A and huperzine B in different parts of Huperzia serrata from different habitats by HPLC. J. Pharm. Anal. 2012, 32, 1541–1544. [Google Scholar] [CrossRef]
- Young, D.H.; Michelotti, E.L.; Swindell, C.S.; Krauss, N.E. Antifungal properties of taxol and various analogues. Experientia 1992, 48, 882–885. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Q.; Wu, S.W.; You, W.J.; Jaisi, A.; Xiao, Y.L. Selection of Reference Genes for Expression Analysis in Chinese Medicinal Herb Huperzia serrata. Front. Pharmacol. 2019, 10, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.D.; Li, P.; Meng, L.F.; Xv, K.Y.; Dong, F.M.; Qiu, Y.; He, L.; Lin, L. Diversity and communities of culturable endophytic fungi from different tree peonies (geoherbs and non-geoherbs), and their biosynthetic potential analysis. Braz. J. Microbiol. 2018, 49, 47–58. [Google Scholar] [CrossRef]
Strains | Closest Relatives in NCBI | Max. Identity % | AchE Inhibitory Activity (%) | Strains | Closest Relatives in NCBI | Max. Identity % | AchE Inhibitory Activity (%) |
---|---|---|---|---|---|---|---|
HBR-1 | Ascochyta caulina TF33 | 99.28 | 72.34 ± 0.5 | FJR-1 | Epicoccum nigrum UP_EPC81 | 99.81 | 41.24 ± 1.5 |
HBR-2 | Cladosporium sphaerospermum SCAU103 | 99.81 | 28.35 ± 1.3 | FJR-3 | Alternaria sp. strain AT-1 | 99.07 | 20.56 ± 1.3 |
HBR-3 | Cladosporium cladosporioides ZB18102902907 | 99.81 | 42.46 ± 0.6 | FJR-5 | Arthrinium phaeospermum OU-E 38 | 96.92 | 35.23 ± 0.7 |
HBR-4 | Alternaria tenuissima RT29 | 99.26 | 36.29 ± 0.6 | FJR-6 | Cladosporium cladosporioides ZB18102902907 | 99.81 | 35.24 ± 0.5 |
HBS-1 | Fusarium verticillioides JCP2002 | 99.8 | 38.01 ± 0.2 | FJR-7 | Leptosphaeria sp. XJ23 | 99.64 | 5.61 ± 0.3 |
HBS-2 | Alternaria sp. OUCMBI101236 | 99.45 | 44.16 ± 1.6 | FJS-1 | Cladosporium sp. YS-134 | 99.61 | 33.23 ± 0.9 |
HBS-3 | Cladosporium sp. LQ122403 | 99.42 | 38.53 ± 0.3 | FJS-3 | Aspergillus tabacinus DUCC5716 | 99.45 | 26.36 ± 1.1 |
HBS-5 | Arthrinium rasikravindrae OUCMBI110096 | 99.65 | 23.49 ± 2.1 | FJS-5 | Aspergillus tabacinus 26R-5-F07 | 99.45 | 50.38 ± 0.3 |
HBS-6 | Coprinellus radians xsd08234 | 95.41 | 17.92 ± 0.8 | FJL-1 | Epicoccum nigrum UP_EPC_51 | 99.04 | 10.3 ± 0.7 |
HBL-1 | Alternaria alternata MS18-2 | 99.45 | 50.32 ± 1.8 | FJL-2 | Aspergillus sydowii strain AsN19C03 | 99.44 | 29.78 ± 1.9 |
HBL-2 | Cladosporium cladosporioides C5 | 100 | 39.55 ± 1.2 | FJL-3 | Cladosporium sp. STE-U 5371 | 99.62 | 54.36 ± 1.1 |
HBL-3 | Alternaria sp. CDCF2534 | 99.81 | 1.66 ± 0.6 | FJL-4 | Alternaria tenuissima M9 | 98.89 | 39.79 ± 0.4 |
HBL-4 | Cladosporium halotolerans ENDO-PINE683-BOTTOMA | 99.81 | 55.21 ± 1.3 | FJL-5 | Aspergillus sp. Z-Y-47 | 99.3 | 60.54 ± 0.5 |
HBL-6 | Alternaria sp. CDCF2530 | 99.63 | 52.26 ± 1.1 | ||||
HBL-7 | Cladosporium cladosporioides ZJDF16 | 99.61 | 50.41 ± 0.4 |
Sample | Items | Phylum | Class | Order | Family | Genus |
---|---|---|---|---|---|---|
Hubei | traditional culture methods | 2 | 3 | 5 | 6 | 6 |
high-throughput sequencing | 5 | 22 | 55 | 120 | 178 | |
Fujian | traditional culture methods | 1 | 3 | 5 | 5 | 6 |
high-throughput sequencing | 5 | 22 | 54 | 124 | 196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Ma, Y.; Xiao, L.; Yang, H.; Zhu, D. Diversity of Endophytic Fungi in Huperzia serrata and Their Acetylcholinesterase Inhibitory Activity. Sustainability 2021, 13, 12073. https://doi.org/10.3390/su132112073
Lu Z, Ma Y, Xiao L, Yang H, Zhu D. Diversity of Endophytic Fungi in Huperzia serrata and Their Acetylcholinesterase Inhibitory Activity. Sustainability. 2021; 13(21):12073. https://doi.org/10.3390/su132112073
Chicago/Turabian StyleLu, Ziyun, Yangshuai Ma, Liting Xiao, Huilin Yang, and Du Zhu. 2021. "Diversity of Endophytic Fungi in Huperzia serrata and Their Acetylcholinesterase Inhibitory Activity" Sustainability 13, no. 21: 12073. https://doi.org/10.3390/su132112073