Evaluation of the Cultivation of Aspergillus oryzae on Organic Waste-Derived VFA Effluents and Its Potential Application as Alternative Sustainable Nutrient Source for Animal Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filamentous Fungal Strains
2.2. Substrates
2.3. The Cultivation of A. oryzae in Shake Flasks
2.4. The Cultivation of A. oryzae in Bubble Column Bioreactors
2.5. Analytical Methods
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of VFA Effluents before Fungal Cultivation
3.2. Biomass Cultivation in Shake Flask vs. Bubble Column Reactor
3.3. Fungal Biomass Characterization in Bench Scale Bubble Column Reactors
3.4. Characterization of VFA Effluents after Fungal Cultivation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. How to Feed the World in 2050; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Raney, T. The State of Food and Agriculture: Livestock in the Balance; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Boland, M.J.; Rae, A.N.; Vereijken, J.M.; Meuwissen, M.P.M.; Fischer, A.R.H.; van Boekel, M.A.J.S.; Rutherfurd, S.M.; Gruppen, H.; Moughan, P.J.; Hendriks, W.H. The future supply of animal-derived protein for human consumption. Trends Food Sci. Technol. 2013, 29, 62–73. [Google Scholar] [CrossRef]
- Nasseri, A.T.; Rasoul-Amini, S.; Morowvat, M.H.; Ghasemi, Y. Single cell protein: Production and process. Am. J. Food Technol. 2011, 6, 103–116. [Google Scholar] [CrossRef]
- Karimi, S.; Mahboobi Soofiani, N.; Lundh, T.; Mahboubi, A.; Kiessling, A.; Taherzadeh, M.J. Evaluation of filamentous fungal biomass cultivated on vinasse as an alternative nutrient source of fish feed: Protein, lipid, and mineral composition. Fermentation 2019, 5, 99. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.B.; Arora, D.K. Fungi and Fermented Foods; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Gomi, K. Aspergillus oryzae; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1. [Google Scholar]
- Machida, M.; Yamada, O.; Gomi, K. Genomics of Aspergillus oryzae: Learning from the history of Koji mold and exploration of its future. DNA Res. 2008, 15, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Denny, A.; Aisbitt, B.; Lunn, J. Mycoprotein and health. Nutr. Bull. 2008, 33, 298–310. [Google Scholar] [CrossRef]
- Uwineza, C.; Mahboubi, A.; Atmowidjojo, A.; Ramadhani, A.; Wainaina, S.; Millati, R.; Wikandari, R.; Niklasson, C.; Taherzadeh, M.J. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. Bioresour. Technol. 2021, 337, 125410. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.; Mahboubi, A.; Lennartsson, P.R.; Taherzadeh, M.J. Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Bioresour. Technol. 2016, 215, 334–345. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Li, Y. Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresour. Technol. 2011, 102, 9788–9793. [Google Scholar] [CrossRef] [PubMed]
- Poirier, S.; Bize, A.; Bureau, C.; Bouchez, T.; Chapleur, O. Community shifts within anaerobic digestion microbiota facing phenol inhibition: Towards early warning microbial indicators? Water Res. 2016, 100, 296–305. [Google Scholar] [CrossRef]
- Sarris, D.; Economou, C.N.; Papanikolaou, S. Food Waste Management: The Role of Biotechnology. Prog. Food Biotechnol. 2018, 4, 383–430. [Google Scholar]
- Wainaina, S.; Kisworini, A.; Fanani, M.; Wikandari, R.; Millati, R.; Niklasson, C.; Taherzadeh, M.J. Utilization of food waste-derived volatile fatty acids for production of edible Rhizopus oligosporus fungal biomass. Bioresour. Technol. 2020, 310, 123444. [Google Scholar] [CrossRef] [PubMed]
- Sar, T.; Ferreira, J.A.; Taherzadeh, M.J. Conversion of fish processing wastewater into fish feed ingredients through submerged cultivation of Aspergillus oryzae. Syst. Microbiol. Biomanuf. 2021, 1, 100–110. [Google Scholar] [CrossRef]
- Sar, T.; Ozturk, M.; Taherzadeh, M.J.; Ferreira, J.A. New insights on protein recovery from olive oil mill wastewater through bioconversion with edible filamentous fungi. Processes 2020, 8, 1210. [Google Scholar] [CrossRef]
- Chuang, W.Y.; Hsieh, Y.C.; Lee, T.-T. The effects of fungal feed additives in animals: A review. Animals 2020, 10, 805. [Google Scholar] [CrossRef]
- Finnigan, T.J.A. Mycoprotein: Origins, production and properties. Handb. Food Proteins 2011, 335–352. [Google Scholar] [CrossRef]
- Bzducha-Wróbel, A.; Błażejak, S.; Molenda, M.; Reczek, L. Biosynthesis of β(1,3)/(1,6)-glucans of cell wall of the yeast Candida utilis ATCC 9950 strains in the culture media supplemented with deproteinated potato juice water and glycerol. Eur. Food Res. Technol. 2015, 240, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Jomnonkhaow, U.; Uwineza, C.; Mahboubi, A.; Wainaina, S.; Reungsang, A.; Taherzadeh, M.J. Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure. Bioresour. Technol. 2020, 321, 124456. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M.; Yang, Z.; Gong, Q.; Lu, Y.; Yang, Z. Mediated electrochemical measurement of the inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae. Biotechnol. Lett. 2005, 27, 207–211. [Google Scholar] [CrossRef]
- Wemmenhove, E.; van Valenberg, H.J.F.; Zwietering, M.H.; van Hooijdonk, T.C.M.; Wells-Bennik, M.H.J. Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese. Food Microbiol. 2016, 58, 63–67. [Google Scholar] [CrossRef]
- Llamas, M.; Tomás-Pejó, E.; González-Fernández, C. Volatile fatty acids from organic wastes as novel low-cost carbon source for Yarrowia lipolytica. New Biotechnol. 2020, 56, 123–129. [Google Scholar] [CrossRef]
- Kampen, W.H. Chapter 4—Nutritional Requirements in Fermentation Processes. In Fermentation and Biochemical Engineering Handbook, 3rd ed.; Vogel, H.C., Todaro, C.M., Eds.; William Andrew Publishing: Boston, MA, USA, 2014; pp. 37–57. [Google Scholar]
- Walker, G.M.; White, N.A. Introduction to fungal physiology. Fungi Biol. Appl. 2017, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Di Lonardo, D.P.; van der Wal, A.; Harkes, P.; de Boer, W. Effect of nitrogen on fungal growth efficiency. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2020, 154, 433–437. [Google Scholar] [CrossRef]
- Gao, L.; Sun, M.H.; Liu, X.Z.; Che, Y.S. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol. Res. 2007, 111, 87–92. [Google Scholar] [CrossRef]
- Said, F.M.; Brooks, J.; Chisti, Y. Optimal C: N ratio for the production of red pigments by Monascus ruber. World J. Microbiol. Biotechnol. 2014, 30, 2471–2479. [Google Scholar] [CrossRef] [Green Version]
- Dutta, D.; Das, M.D. Effect of C/N ratio and microelements on nutrient dynamics and cell morphology in submerged fermentation of Aspergillus giganteus MTCC 8408 using Taguchi DOE. 3Biotech 2017, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Adour, L.; Couriol, C.; Amrane, A.; Prigent, Y. Growth of Geotrichum candidum and Penicillium camembertii in liquid media in relation with the consumption of carbon and nitrogen sources and the release of ammonia and carbon dioxide. Enzym. Microb. Technol. 2002, 31, 533–542. [Google Scholar] [CrossRef]
- Pedersen, H.; Nielsen, J. The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotechnol. 2000, 53, 278–281. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jin, B.; Bai, Z.H.; Wang, X.Y. Production of fungal biomass protein using microfungi from winery wastewater treatment. Bioresour. Technol. 2008, 99, 3871–3876. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.R.; Fradi, A.J.; Al-Aaraji, A.M. Effect of some physical factors on growth of five fungal species. Eur. Acad. Res. 2017, 2, 1069–1078. [Google Scholar]
- Miranti, A.; Arbianti, R.; Utami, T.S. Effect of pH, temperature and medium agitation rate in production of AA, DHA, EPA from Aspergillus oryzae with submerged fermentation. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012113. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Nair, R.B.; Andersson, D.; Lennartsson, P.R.; Taherzadeh, M.J. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biol. Biotechnol. 2018, 5, 5. [Google Scholar] [CrossRef]
- Banaszkiewicz, T. Nutritional value of soybean meal. Soybean Nutr. 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Liu, K. Chemistry and nutritional value of soybean components. In Soybeans; Springer: Berlin, Germany, 1997; pp. 25–113. [Google Scholar]
- NRC. Nutrient Requirement in Dairy Cattle: Seventh Revised Edition; The National Academies Press: Columbia, WA, USA, 2001.
- Adedayo, M.R.; Ajiboye, E.A.; Akintunde, J.K.; Odaibo, A. Single cell proteins: As nutritional enhancer. Adv. Appl. Sci. Res. 2011, 2, 396–409. [Google Scholar]
- Barka, A.; Blecker, C. Microalgae as a potential source of single-cell proteins. A review. Base 2016, 20, 110–113. [Google Scholar]
- Chiquette, J. Saccharomyces cerevisiae and Aspergillus oryzae, used alone or in combination, as a feed supplement for beef and dairy cattle. Can. J. Anim. Sci. 1995, 75, 405–415. [Google Scholar] [CrossRef]
- Gomez-Alarcon, R.A.; Huber, J.T.; Higginbotham, G.E.; Wiersma, F.; Ammon, D.; Taylor, B. Influence of feeding Aspergillus oryzae fermentation extract on the milk yields, eating patterns, and body temperatures of lactating cows. J. Anim. Sci. 1991, 69, 1733–1740. [Google Scholar] [CrossRef]
- Yoon, I.K.; Stern, M.D. Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows. J. Dairy Sci. 1996, 79, 411–417. [Google Scholar] [CrossRef]
- Hess, B.W.; Moss, G.E.; Rule, D.C. A decade of developments in the area of fat supplementation research with beef cattle and sheep. J. Anim. Sci. 2008, 86 (Suppl. S14), E188–E204. [Google Scholar] [CrossRef] [PubMed]
- Stajich, J.E. Cellular and Molecular Biology of Filamentous Fungi; The University of Chicago Press: Chicago, IL, USA, 2011. [Google Scholar]
- Araújo, D.; Ferreira, I.C.; Torres, C.A.V.; Neves, L.; Freitas, F. Chitinous polymers: Extraction from fungal sources, characterization and processing towards value-added applications. J. Chem. Technol. Biotechnol. 2020, 95, 1277–1289. [Google Scholar] [CrossRef] [Green Version]
- Krüger, D.; Van Der Werf, M. Benefits of Application of Yeast β-Glucans in Ruminants; Ohly Application Note: Hamburg, Germany, 2018. [Google Scholar]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.D.; Christensen, H.; Dusemund, B.; Durjava, M.K.; Kouba, M.; López-Alonso, M.; Puente, S.L.; et al. Assessment of the application for renewal of the authorisation of Amaferm® (fermentation product of Aspergillus oryzae NRRL 458) as a feed additive for dairy cows. EFSA J. 2020, 18, e06011. [Google Scholar]
- Beharka, A.A.; Nagaraja, T.G. Effect of Aspergillus oryzae Fermentation Extract (Amaferm®) on In Vitro Fiber Degradation1. J. Dairy Sci. 1993, 76, 812–818. [Google Scholar] [CrossRef]
- Varel, V.H.; Kreikemeier, K.K. Influence of feeding Aspergillus oryzae fermentation extract (Amaferm) on in situ fiber degradation, ruminal fermentation, and microbial protein synthesis in nonlactating cows fed alfalfa or bromegrass hay. J. Anim. Sci. 1994, 72, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
Parameters | CKM | CM | FW | FW + CKM | FW + CM | CM + CKM | FW + CM + CKM |
---|---|---|---|---|---|---|---|
tCOD (g/L) | 13.8 ± 0.57 | 13.40 ± 0.57 | 11.60 ± 1.70 | 12.8 ± 1.13 | 12 ± 0.00 | 13.6 ± 0.00 | 12.8 ± 0.00 |
NH4+-N (mg/L) | 1820 ± 28.28 | 420 ± 0.00 | 160 ± 0.00 | 1320 ± 56.57 | 300 ± 28.28 | 1220 ± 28.28 | 740 ± 28.28 |
C/N ratio | 3.92 ± 0.03 | 12.03 ± 0.74 | 30.35 ± 1.12 | 5.36 ± 0.36 | 14.55 ± 1.43 | 4.72 ± 0.03 | 7.49 ± 0.18 |
tVFAs (g/L) | 9.09 ± 0.05 | 6.16 ± 0.09 | 7.90 ± 0.37 | 9.20 ± 0.09 | 6.06 ± 0.01 | 7.23 ± 0.08 | 7.48 ± 0.05 |
Ac (%) 1 | 57.02 | 45.12 | 21.04 | 54.38 | 30.10 | 48.30 | 40.37 |
Pr (%) 1 | 16.14 | 9.61 | 4.78 | 15.28 | 6.49 | 12.20 | 10.15 |
Bu (%) 1 | 16.71 | 5.75 | 27.01 | 19.39 | 14.20 | 10.81 | 16.75 |
Ca* (%) 1 | 0.00 | 0.00 | 28.27 | 2.13 | 10.00 | 0.00 | 7.30 |
pH | 6.63 | 8.07 | 5.62 | 6.26 | 6.14 | 6.78 | 6.20 |
Ca (ppm) 1 | 33.00 ± 0.00 | 119.00 ± 2.05 | 66.45 ± 2.05 | 49.72 ± 0.07 | 37.00 ± 0.00 | 29.5 ± 0.71 | 43.5 ± 3.54 |
Mg (ppm) 1 | 61.5 ± 2.12 | 112.5 ± 0.07 | 13.40 ± 0.14 | 34.00 ± 1.41 | 340.00 ± 2.83 | 44.00. ± 0.00 | 47.5 ± 2.12 |
Fe (ppm) 1 | 2.5 ± 0.71 | 1.50 ± 0.71 | 0.20 ± 0.00 | 1.00 ± 0.00 | 3.00 ± 0.41 | 2.00 ± 0.00 | 1.5 ± 071 |
K (ppm) 1 | 1554 ± 18.4 | 2691.19 ± 19.8 | 173.75 ± 5.57 | 1019.5 ± 13.44 | 852.00 ± 9.90 | 1703.00 ± 63.64 | 1204.00 ± 15.56 |
Na (ppm) 1 | 1016.00 ± 29.7 | 224.20 ± 0.04 | 702.00 ± 0.07 | 829.5 ± 16.26 | 774.5 ± 2.12 | 568.5 ± 16.26 | 578.5 ± 21.92 |
Shake Flask | Bubble Column Reactors | |||||
---|---|---|---|---|---|---|
g dry biomass/ tVFACOD eq.fed | g dry biomass/ tVFAsCOD eq. Consumed | Consumption Rate (g VFAs/L.h) | g dry biomass/ tVFACOD eq.fed | g dry biomass/ tVFAsCOD eq. Consumed | Consumption Rate (g VFAs/L.h) | |
CKM | 0.24 ± 0.01 | 0.36 ± 0.02 | 0.11 ± 0.00 | 0.24 ± 0.00 | 0.30 ± 0.00 | 0.12 ± 0.00 |
FW + CKM | 0.21 ± 0.00 | 0.44 ± 0.03 | 0.07 ± 0.00 | 0.22 ± 0.00 | 0.26 ± 0.00 | 0.12 ± 0.00 |
FW + CM | 0.26 ± 0.00 | 0.47 ± 0.00 | 0.06 ± 0.00 | 0.28 ± 0.00 | 0.37 ± 0.00 | 0.07 ± 0.00 |
FW + CM + CKM | 0.25 ± 0.01 | 0.42 ± 0.00 | 0.07 ± 0.00 | 0.25 ± 0.01 | 0.32 ± 0.00 | 0.09 ± 0.00 |
CM + CKM | 0.27 ± 0.02 | 0.39 ± 0.00 | 0.09 ± 0.00 | 0.25 ± 0.00 | 0.31 ± 0.00 | 0.10 ± 0.00 |
CM | 0.13 ± 0.02 | 0.21 ± 0.00 | 0.07 ± 0.00 | 0.10 ± 0.02 | 0.18 ± 0.01 | 0.05 ± 0.00 |
FW | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 |
Parameters | CKM | CM | FW + CKM | FW + CM | CM + CKM | FW + CM + CKM |
---|---|---|---|---|---|---|
Ca (ppm) | 3.00 ± 0.00 | 86.00 ± 4.24 | 4.50 ± 0.71 | 0.00 ± 0.00 | 2.50 ± 0.71 | 4.00 ± 0.00 |
Mg (ppm) | 0.26 ± 0.01 | 83.00 ± 2.83 | 0.23 ± 0.01 | 20.50 ± 0.71 | 0.38 ± 0.01 | 0.65 ± 0.07 |
Fe (ppm) | 1.52 ± 0.01 | 0.95 ± 0.21 | 2.00 ± 0.00 | 1.71 ± 0.09 | 1.00 ± 0.00 | 1.00 ± 0.00 |
K (ppm) | 924.00 ± 43.84 | 1854.50 ± 101.12 | 936.50 ± 48.79 | 765.00 ± 8.49 | 1682.50 ± 43.13 | 1120.00 ± 55.15 |
Na (ppm) | 709.50 ± 41.72 | 147.50 ± 14.85 | 263.50 ± 0.71 | 293.50 ± 4.95 | 378.00 ± 4.24 | 513.50 ± 20.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uwineza, C.; Sar, T.; Mahboubi, A.; Taherzadeh, M.J. Evaluation of the Cultivation of Aspergillus oryzae on Organic Waste-Derived VFA Effluents and Its Potential Application as Alternative Sustainable Nutrient Source for Animal Feed. Sustainability 2021, 13, 12489. https://doi.org/10.3390/su132212489
Uwineza C, Sar T, Mahboubi A, Taherzadeh MJ. Evaluation of the Cultivation of Aspergillus oryzae on Organic Waste-Derived VFA Effluents and Its Potential Application as Alternative Sustainable Nutrient Source for Animal Feed. Sustainability. 2021; 13(22):12489. https://doi.org/10.3390/su132212489
Chicago/Turabian StyleUwineza, Clarisse, Taner Sar, Amir Mahboubi, and Mohammad J. Taherzadeh. 2021. "Evaluation of the Cultivation of Aspergillus oryzae on Organic Waste-Derived VFA Effluents and Its Potential Application as Alternative Sustainable Nutrient Source for Animal Feed" Sustainability 13, no. 22: 12489. https://doi.org/10.3390/su132212489
APA StyleUwineza, C., Sar, T., Mahboubi, A., & Taherzadeh, M. J. (2021). Evaluation of the Cultivation of Aspergillus oryzae on Organic Waste-Derived VFA Effluents and Its Potential Application as Alternative Sustainable Nutrient Source for Animal Feed. Sustainability, 13(22), 12489. https://doi.org/10.3390/su132212489