Economical Di-Rhamnolipids Biosynthesis by Non-Pathogenic Burkholderia thailandensis E264 Using Post-Consumption Food Waste in a Biorefinery Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Conditions
2.2. Processing of Food Waste Hydrolysate
2.3. Screening of Substrates for Rhamnolipid Production
2.4. Batch Rhamnolipid Fermentation
2.5. Sampling and Analysis
2.6. Rhamnolipid Quantification and Characterization
2.6.1. Extraction and Quantification of Rhamnolipids
2.6.2. Structural Characterization of Produced Rhamnolipids by FTIR
2.6.3. Chemical Characterization of Rhamnolipids by LC-MS-MS
2.6.4. Measurement of Surface Tension of Produced Rhamnolipids
2.6.5. Emulsifying Capacity of Produced Rhamnolipids
2.7. Nutrient Assessment
2.7.1. Total Carbohydrate
2.7.2. Free Alpha Amino Nitrogen
2.7.3. Volatile Fatty Acids
2.7.4. Glycerol
3. Results
3.1. Bioconversion of Different Substrates to Rhamnolipids: Screening Studies
3.2. Bioreactor Scale Fermentation with Food Waste Hydrolysate
3.3. Characterization of Rhamnolipids Produced on Food Waste Hydrolysate
3.4. Economical Rhamnolipid Properties and Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eslami, P.; Hajfarajollah, H.; Bazsefidpar, S. Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv. 2020, 10, 34014–34032. [Google Scholar] [CrossRef] [PubMed]
- Markets and Markets Biosurfactants Market by Type (Glycolipids, Lipopeptides), Application (Detergent, Personal Care, Food Processing, Agricultural Chemicals) and Region (North America, Europe, Asia Pacific, Rest of the World)—Global Forecast to 2027. Available online: https://www.marketsandmarkets.com/Market-Reports/biosurfactant-market-163644922.html (accessed on 11 November 2022).
- Toribio, J.; Escalante, A.E.; Soberón-Chávez, G. Rhamnolipids: Production in bacteria other than Pseudomonas aeruginosa. Eur. J. Lipid Sci. Technol. 2010, 112, 1082–1087. [Google Scholar] [CrossRef]
- Compton, A.A.; Deodhar, B.S.; Fathi, A.; Pemberton, J.E. Optimization of a Chemical Synthesis for Single-Chain Rhamnolipids. ACS Sustain. Chem. Eng. 2020, 8, 8918–8927. [Google Scholar] [CrossRef]
- Evonik invests in biosurfactants. ACS CEN Glob. Enterp. 2022, 100, 3–10. Available online: https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fcen-10003-buscon2&href=/doi/10.1021%2Fcen-10003-buscon2 (accessed on 11 November 2022).
- Rooney, A.P.; Price, N.P.; Ray, K.J.; Kuo, T.-M. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol. Lett. 2009, 295, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Zhang, S.; Kumar, R.; Zhang, Z.; Zhang, Z.; Wang, Y.; Jiang, X.; Lin, K.; Kaur, G.; Yung, K.K.L. Rhamnolipids from non-pathogenic Acinetobacter calcoaceticus: Bioreactor-scale production, characterization and wound healing potency. New Biotechnol. 2021, 67, 23–31. [Google Scholar] [CrossRef]
- Dubeau, D.; Déziel, E.; E Woods, D.; Lépine, F. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol. 2009, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Brett, P.J.; DeShazer, D.; Woods, D.E. Note: Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Evol. Microbiol. 1998, 48, 317–320. [Google Scholar] [CrossRef] [Green Version]
- Irorere, V.U.; Smyth, T.J.; Cobice, D.; McClean, S.; Marchant, R.; Banat, I.M. Fatty acid synthesis pathway provides lipid precursors for rhamnolipid biosynthesis in Burkholderia thailandensis E264. Appl. Microbiol. Biotechnol. 2018, 102, 6163–6174. [Google Scholar] [CrossRef] [Green Version]
- Kourmentza, C.; Costa, J.; Azevedo, Z.; Servin, C.; Grandfils, C.; De Freitas, V.; Reis, M. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresour. Technol. 2018, 247, 829–837. [Google Scholar] [CrossRef]
- Correia, J.; Gudiña, E.J.; Lazar, Z.; Janek, T.; Teixeira, J.A. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Appl. Microbiol. Biotechnol. 2022, 106, 7477–7489. [Google Scholar] [CrossRef] [PubMed]
- Chebbi, A.; Tazzari, M.; Rizzi, C.; Tovar, F.H.G.; Villa, S.; Sbaffoni, S.; Vaccari, M.; Franzetti, A. Burkholderia thailandensis E264 as a promising safe rhamnolipids’ producer towards a sustainable valorization of grape marcs and olive mill pomace. Appl. Microbiol. Biotechnol. 2021, 105, 3825–3842. [Google Scholar] [CrossRef] [PubMed]
- Johnravindar, D.; Wong, J.W.; Patria, R.D.; Uisan, K.; Kumar, R.; Kaur, G. Bioreactor-scale production of rhamnolipids from food waste digestate and its recirculation into anaerobic digestion for enhanced process performance: Creating closed-loop integrated biorefinery framework. Bioresour. Technol. 2022, 360, 127578. [Google Scholar] [CrossRef] [PubMed]
- Patria, R.; Wong, J.; Johnravindar, D.; Uisan, K.; Kumar, R.; Kaur, G. Food Waste Digestate-Based Biorefinery Approach for Rhamnolipids Production: A Techno-Economic Analysis. Sustain. Chem. 2021, 2, 237–253. [Google Scholar] [CrossRef]
- Kumar, R.; Bohra, V.; Mk, M.; Wong, J.W.C. Food Waste as a Valuable Carbon Source for Bioconversion—How Microbes do Miracles. Good Microbes Med. Food Prod. Biotechnol. Bioremediation Agric. 2022, 1, 312–322. [Google Scholar] [CrossRef]
- Johnravindar, D.; Wong, J.W.; Chakraborty, D.; Bodedla, G.; Kaur, G. Food waste and sewage sludge co-digestion amended with different biochars: VFA kinetics, methane yield and digestate quality assessment. J. Environ. Manag. 2021, 290, 112457. [Google Scholar] [CrossRef]
- Luo, L.; Wong, J.W. Enhanced food waste degradation in integrated two-phase anaerobic digestion: Effect of leachate recirculation ratio. Bioresour. Technol. 2019, 291, 121813. [Google Scholar] [CrossRef]
- Leitermann, F.; Syldatk, C.; Hausmann, R. Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR Spectroscopy. J. Biol. Eng. 2008, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, Y.; Lin, J.; Wang, W.; Li, S. High-Yield Di-Rhamnolipid Production by Pseudomonas aeruginosa YM4 and its Potential Application in MEOR. Molecules 2019, 24, 1433. [Google Scholar] [CrossRef] [Green Version]
- Maťátková, O.; Michailidu, J.; Ježdík, R.; Kolouchová, I.J.; Řezanka, T.; Jirků, V.; Masák, J. Production and Characterization of Rhamnolipids Produced by Pseudomonas aeruginosa DBM 3774: Response Surface Methodology Approach. Microorganisms 2022, 10, 1272. [Google Scholar] [CrossRef]
- Kaur, G.; Wang, H.; To, M.H.; Roelants, S.L.; Soetaert, W.; Lin, C.S.K. Efficient sophorolipids production using food waste. J. Clean. Prod. 2019, 232, 1–11. [Google Scholar] [CrossRef]
- Wong, K.A.; Nsier, N.; Acker, J.P. Use of supernatant refractive index and supernatant hemoglobin concentration to assess residual glycerol concentration in cryopreserved red blood cells. Clin. Chim. Acta 2009, 408, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Funston, S.J.; Tsaousi, K.; Rudden, M.; Smyth, T.; Stevenson, P.S.; Marchant, R.; Banat, I. Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl. Microbiol. Biotechnol. 2016, 100, 7945–7956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniou, E.; Fodelianakis, S.; Korkakaki, E.; Kalogerakis, N. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front. Microbiol. 2015, 6, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshikh, M.; Funston, S.; Chebbi, A.; Ahmed, S.; Marchant, R.; Banat, I.M. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnol. 2017, 36, 26–36. [Google Scholar] [CrossRef]
- DeShazer, D. Virulence of clinical and environmental isolates of Burkholderia oklahomensis and Burkholderia thailandensis in hamsters and mice. FEMS Microbiol. Lett. 2007, 277, 64–69. [Google Scholar] [CrossRef] [Green Version]
- E Wand, M.; Müller, C.M.; Titball, R.W.; Michell, S.L. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol. 2011, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hoffmann, J.P.; Chou, C.-W.; Zu Bentrup, K.H.; Fuselier, J.A.; Bitoun, J.P.; Wimley, W.C.; Morici, L.A. Burkholderia thailandensis outer membrane vesicles exert antimicrobial activity against drug-resistant and competitor microbial species. J. Microbiol. 2020, 58, 550–562. [Google Scholar] [CrossRef]
- El Kantar, S.; Koubaa, M. Valorization of Low-Cost Substrates for the Production of Odd Chain Fatty Acids by the Oleaginous Yeast Yarrowia lipolytica. Fermentation 2022, 8, 284. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, X.; Wang, F.; Tian, Y.; Liu, T.; Su, Y.; Qian, T.; Zhang, Y. Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform. Energy 2020, 208, 118379. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Zou, H.; Sun, T.; Li, M.; Zhai, J.; He, Q.; Gu, L.; Tang, W.Z. Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge. J. Clean. Prod. 2020, 277, 123998. [Google Scholar] [CrossRef]
- Johnravindar, D.; Karthikeyan, O.P.; Selvam, A.; Murugesan, K.; Wong, J.W. Lipid accumulation potential of oleaginous yeasts: A comparative evaluation using food waste leachate as a substrate. Bioresour. Technol. 2018, 248, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Funston, S.J.; Tsaousi, K.; Smyth, T.J.; Twigg, M.; Marchant, R.; Banat, I.M. Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis. Appl. Microbiol. Biotechnol. 2017, 101, 8443–8454. [Google Scholar] [CrossRef] [PubMed]
- Victor, I.U.; Kwiencien, M.; Tripathi, L.; Cobice, D.; McClean, S.; Marchant, R.; Banat, I.M. Quorum sensing as a potential target for increased production of rhamnolipid biosurfactant in Burkholderia thailandensis E264. Appl. Microbiol. Biotechnol. 2019, 103, 6505–6517. [Google Scholar] [CrossRef] [Green Version]
- Martinez, S.; Humery, A.; Groleau, M.-C.; Déziel, E. Quorum Sensing Controls Both Rhamnolipid and Polyhydroxyalkanoate Production in Burkholderia thailandensis Through ScmR Regulation. Front. Bioeng. Biotechnol. 2020, 8, 1033. [Google Scholar] [CrossRef]
- Klaus, J.R.; Majerczyk, C.; Moon, S.; Eppler, N.A.; Smith, S.; Tuma, E.; Groleau, M.-C.; Asfahl, K.L.; Smalley, N.E.; Hayden, H.S.; et al. Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures. Appl. Environ. Microbiol. 2020, 86, e01452-20. [Google Scholar] [CrossRef]
- Zhang, L.; Veres-Schalnat, T.A.; Somogyi, A.; Pemberton, J.E.; Maier, R.M. Fatty Acid Cosubstrates Provide β-Oxidation Precursors for Rhamnolipid Biosynthesis in Pseudomonas aeruginosa, as Evidenced by Isotope Tracing and Gene Expression Assays. Appl. Environ. Microbiol. 2012, 78, 8611–8622. [Google Scholar] [CrossRef] [Green Version]
- De Rienzo, M.D.; Kamalanathan, I.; Martin, P. Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation. Process Biochem. 2016, 51, 820–827. [Google Scholar] [CrossRef]
Fermentation | Medium | Substrate | Time (h) | Yx/s (g/g) | YRLs/s (g/g) | YRLs/x (g/g) | PRLs (g/L/h) |
---|---|---|---|---|---|---|---|
Batch shake flask | Nutrient broth | Glycerol | 72 | 0.12 | 0.046 | 0.370 | 0.026 |
Sucrose | 0.15 | 0.019 | 0.127 | 0.011 | |||
Glucose | 0.16 | 0.024 | 0.152 | 0.014 | |||
Fructose | 0.19 | 0.036 | 0.181 | 0.020 | |||
Oleic Acid | 0.23 | 0.030 | 0.127 | 0.017 | |||
Canola Oil | 0.26 | 0.025 | 0.096 | 0.014 | |||
Waste Cooking Oil | 0.28 | 0.007 | 0.026 | 0.004 | |||
Food waste hydrolysate | 0.08 | 0.040 | 0.469 | 0.011 |
Parameters | Study Comparisons | |||||
---|---|---|---|---|---|---|
This Study | Kourmentza et al. [11] | Funston et al. [24] | Dubeau et al. [8] | |||
Fermentation type | Batch bioreactor | Batch bioreactor | Batch bioreactor | Batch shake flask | ||
Working volume | 0.6 L | 0.6 L | 8.0 L | 4.0 L | 0.2 L | 0.2 L |
Nutrient Medium | Nutrient broth | Food waste hydrolysate | Nutrient broth | Nutrient broth | Nutrient broth | |
Substrate | Glycerol | Used cooking oil | Glycerol | Glycerol | Canola oil | |
Temperature | 30 °C | 37 °C | 25 °C | 37 °C | ||
Time | 72 h (3 days) | 120 h (5 days) | 264 h (11 days) | 312 h (13 days) | ||
CDMmax (g/L) | 6.204 | 1.304 | 12.6 | 7.98 | ||
RLsmax (g/L) | 1.037 | 0.616 | 2.20 | 2.06 | 0.42 | 1.47 |
Yx/s (g/g) | 0.124 | 0.068 | 0.23 | 0.156 | ||
YRLs/s (g/g) | 0.021 | 0.034 | 0.10 | 0.19 | ||
YRLs/x (g/g) | 0.167 | 0.472 | 0.43 | 0.258 | ||
PRLs (g/L/h) | 0.014 | 0.009 | 0.018 | 0.007 | 0.001 | 0.004 |
Rhamnolipid Congeners | Pseudomolecular Ion (m/z) | Relative Abundance (%) | |
---|---|---|---|
Pure Substrate (Glycerol) | Food Waste Hydrolysate | ||
Mono-rhamnolipids (total) | 12.89 | 15.65 | |
Rha-C14-C14 | 615 | 12.35 | 15.57 |
Rha-C14-C16 | 643 | 0.54 | 0.08 |
Di-rhamnolipids (total) | 87.11 | 84.35 | |
Rha-Rha-C12-C12 | 705 | 2.39 | 19.33 |
Rha-Rha-C12-C14 | 733 | 29.22 | 44.91 |
Rha-Rha-C14-C14 | 761 | 32.59 | 16.22 |
Rha-Rha-C14-C16 | 789 | 22.91 | 3.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Johnravindar, D.; Wong, J.W.C.; Patria, R.D.; Kaur, G. Economical Di-Rhamnolipids Biosynthesis by Non-Pathogenic Burkholderia thailandensis E264 Using Post-Consumption Food Waste in a Biorefinery Approach. Sustainability 2023, 15, 59. https://doi.org/10.3390/su15010059
Kumar R, Johnravindar D, Wong JWC, Patria RD, Kaur G. Economical Di-Rhamnolipids Biosynthesis by Non-Pathogenic Burkholderia thailandensis E264 Using Post-Consumption Food Waste in a Biorefinery Approach. Sustainability. 2023; 15(1):59. https://doi.org/10.3390/su15010059
Chicago/Turabian StyleKumar, Rajat, Davidraj Johnravindar, Jonathan W. C. Wong, Raffel Dharma Patria, and Guneet Kaur. 2023. "Economical Di-Rhamnolipids Biosynthesis by Non-Pathogenic Burkholderia thailandensis E264 Using Post-Consumption Food Waste in a Biorefinery Approach" Sustainability 15, no. 1: 59. https://doi.org/10.3390/su15010059