Functions of Currency before and after COVID-19: Is Bitcoin Sustainable for Tourism?
Abstract
:1. Introduction
2. Literature Review
2.1. Functions of Currency
2.2. Changes of Means of Payment
2.3. Recent Issues of Bitcoin as a Virtual Currency
3. Methodology
3.1. Instrument
3.2. Data Collection and Statistical Analyses
4. Results
4.1. Demographic Chatacteristics
4.2. One-Way ANOVA
4.3. Paired t-Test
4.4. Reasons Why Bitcoin Is Used
4.5. Simple Regression Analysis
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S. Authorship and citation analysis of Korean tourism journals: Content analysis of the Journal of Tourism Sciences. J. Tour. Sci. 1999, 23, 189–211. [Google Scholar]
- Kim, H.; Stout, B.; Jeon, M.S. Tourism research methods and statistical assumptions: A review of articles appeared in the recent Journal of Tourism Sciences. J. Tour. Sci. 2012, 36, 11–26. [Google Scholar]
- Park, S. The exploration for the theoretical construction of cultural tourism studies. Int. J. Tour. Hosp. Res. 2014, 28, 37–49. [Google Scholar]
- Suh, C.J.; Kim, H.J. International comparison of Korean service research papers. J. Korea Serv. Manag. Society 2010, 11, 153–190. [Google Scholar]
- Choi, K. A content analysis of articles published in Journal of Tourism and Leisure Research. J. Tour. Leis. Res. 2003, 15, 11–29. [Google Scholar]
- Kim, S. Economics of Tourism and Outdoor Recreation, 6th ed.; Baesan Publishing Company: Seoul, Korea, 2020. [Google Scholar]
- Kim, H.; Kim, B. Economic impacts of the hotel industry: An input-output analysis. Tour. Rev. 2015, 70, 132–149. [Google Scholar] [CrossRef]
- Kim, S.J. A study on econometric forecasts of international tourism demand in South Korea. J. Tour. Sci. 1993, 17, 57–80. [Google Scholar]
- Lee, C.; Song, K.; Song, H. Determinants of bi-national tourism demand from Japan to Korea: Using econometric models. J. Tour. Leis. Res. 2006, 18, 7–25. [Google Scholar]
- Choi, Y.; Kim, S. Forecasting accuracy of single variable time-series model for tourism demand: Comparison of actual and forecasted data of Korean travelers overseas. J. Tour. Sci. 1998, 21, 111–128. [Google Scholar]
- Kim, K.H. An analysis on the determinants of increasing leisure-related expenditure. J. Tour. Sci. 1996, 19, 117–131. [Google Scholar]
- Sohn, T.H. A review of tourism input-output models in tourism studies. J. Tour. Sci. 1997, 20, 7–23. [Google Scholar]
- Lim, C. Review of international tourism demand models. Ann. Tour. Res. 1997, 24, 835–849. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, J.Y. Single and multiple destination choice in travel cost model. J. Tour. Sci. 2003, 26, 133–149. [Google Scholar]
- Cho, K.; Sohn, D. Application of the travel cost method in analyzing tourism resource demand. J. Tour. Sci. 1999, 22, 113–133. [Google Scholar]
- Han, S.H.; Cho, K. Estimating non-market valuation of national park using ITCM -Juwangsan National Park. Int. J. Tour. Manag. Sci. 2006, 21, 113–129. [Google Scholar]
- Kim, N.J. Comparative analysis of tourism multipliers by aggregation of industries on input-output analysis. J. Tour. Sci. 1998, 22, 172–188. [Google Scholar]
- Han, B.; Kim, S. The comparison of travel cost method with contingent valuation method in the non-marketed resource valuation: The methodological superiority. J. Tour. Sci. 1997, 20, 115–133. [Google Scholar]
- Han, S.H. Valuing of non-market valuation of cultural heritage resources using double-bounded dichotomous choice contingent valuation method. J. Tour. Sci. 2007, 31, 443–464. [Google Scholar]
- Daryaei, M.; Jassbi, J.; Radfar, R.; Khamseh, A. Bitcoin adoption as a new technology for payment mechanism in a tourism collaborative network. In Proceedings of the Working Conference on Virtual Enterprises, Saint-Étienne, France, 22–24 November 2020; Springer: Cham, Switerland; pp. 167–176. [Google Scholar]
- Gültekin, Y. Cryptocurrencies as an alternative medium of payment in tourism industry: Bitcoin. Güncel Turizm Araştırmaları Dergisi 2017, 1, 96–113. [Google Scholar]
- Leung, D.; Dickinger, A. Use of Bitcoin in online travel product shopping: The European perspective. In Information and Communication Technologies in Tourism; Springer: Cham, Switerland, 2017; pp. 741–754. [Google Scholar]
- Wu, H.C.; Chang, Y.Y. What drives experiential loyalty intentions? The case of bitcoin travel. Int. J. Hosp. Tour. Adm. 2021, 22, 303–337. [Google Scholar] [CrossRef]
- Lee, J. “Return on Investment of Bitcoin” Posted to Edaily. Available online: https://www.edaily.co.kr/news/read?newsId=02620726629080080&mediaCodeNo=257&OutLnkChk=Y (accessed on 9 June 2021).
- Min, B.G. Post Keynesian endogenous money theory and banking activity. Korean J. Political Econ. 2012, 38, 199–240. [Google Scholar]
- Hwang, J.H. Is Keynes’ system in harmony with endogenous money theory? Korean J. Political Econ. 2005, 24, 293–319. [Google Scholar]
- Chua, B.; Al-Ansi, A.; Lee, M.; Han, H. Tourists’ outbound travel behavior in the aftermath of COVID-19: The role of corporate social responsibility, response effort, and health prevention. J. Sustain. Tour. 2021, 29, 879–906. [Google Scholar] [CrossRef]
- Chi, X.; Han, H.; Kim, S. Protecting yourself and others: Festival tourists’ pro-social intentions for wearing masks, maintaining social distancing, and practicing sanitary/hygiene actions. J. Sustain. Tour. 2021. [Google Scholar] [CrossRef]
- Han, H.; Lho, H.; Kim, H.-C.; Untaru, E. Sustainable choices and behaviors among eco-friendly museum travelers: Exploring the drivers of sacrifice, visit, pay, and WOM intentions. Int. J. Environ. Res. Public Health 2021, 18, 845. [Google Scholar] [CrossRef] [PubMed]
- Flores-Ruiz, D.; Elizondo-Salto, A.; Barroso-González, M.d.l.O. Using social media in tourist sentiment analysis: A case study of Andalusia during the COVID-19 pandemic. Sustainability 2021, 13, 3836. [Google Scholar] [CrossRef]
- Roman, M.; Niedziółka, A.; Krasnodębski, A. Respondents’involvement in tourist activities at the time of the COVID-19 pandemic. Sustainability 2020, 12, 9610. [Google Scholar] [CrossRef]
- Jun, J.; Yeo, E. Understanding Bitcoin: From the perspective of monetary economics. Korea Bus. Rev. 2014, 18, 211–239. [Google Scholar]
- McCallum, B.T. The Bitcoin revolution. Cato J. 2015, 35, 347–356. [Google Scholar]
- Ingham, G. The Nature of Money; Polity Press Ltd.: Cambrigde, UK, 2004. [Google Scholar]
- Knapp, G.F. The State Theory of Money; Macmillan: London, UK, 1924. [Google Scholar]
- Park, J.; Ryu, S. Is Bitcoin an alternative currency?: A critical appraisal. Rev. Int. Money Financ. 2015, 5, 17–36. [Google Scholar] [CrossRef]
- Kim, H. Bitcoin regulation: Legal and regulatory issues of the virtual currency system. Korean J. Secur. Law 2014, 15, 377–431. [Google Scholar]
- Andereessen, M. “Why Bitcoin Matters?” Posted to New York Times (Dealbook). Available online: http://dealbook.nytimes.com/2014/01/21/why-bitcoin-matters/ (accessed on 21 January 2014).
- Quiggin, J. The Bitcoin Bubble and a Bad Hypothesis. Available online: https://nationalinterest.org/commentary/the-bitcoin-bubble-bad-hypothesis-8353 (accessed on 16 April 2013).
- Kim, E. A literature study on digital currency and historical developments of money: Dynamic pattern in currency, central ban. J. Soc. e-Bus. Stud. 2020, 25, 109–126. [Google Scholar]
- Obstfeld, M.; Rogoff, K.S.; WrenLewis, S. Foundations of International Macroeconomics; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Kim, E. A study for the innovativeness of blockchain. J. Soc. e-Bus. Stud. 2018, 23, 173–187. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260, 1–9. [Google Scholar]
- Krugman, P. The Antisocial Network. Available online: https://www.nytimes.com/2013/04/15/opinion/krugman-the-antisocial-network.html (accessed on 14 April 2013).
- Wray, L.R. Krugman Does MMT Again: Goldbugs and Bitbugs. Available online: https://www.economonitor.com/lrwray/2013/04/16/krugman-does-mmt-again-goldbugs-and-bitbugs/ (accessed on 16 April 2013).
- Bohme, R.; Christin, N.; Edelman, B.; Moore, T. Bitcoin: Economics, technology, and governance. J. Econ. Perspect. 2015, 29, 213–238. [Google Scholar] [CrossRef] [Green Version]
- Yelowitz, A.; Wilson, M. Characteristics of Bitcoin users: An analysis of Google search data. Appl. Econ. Lett. 2015, 22, 1030–1036. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.K.; Hora, J. State and local tax concerns regarding digital currency. J. State Tax. 2014, 33, 29–56. [Google Scholar]
- Kovach, S. Tesla Buys $1.5 Billion in Bitcoin, Plans to Accept It as Payment. Available online: https://www.cnbc.com/2021/02/08/tesla-buys-1point5-billion-in-bitcoin.html (accessed on 8 February 2021).
- Wilson, T.; John, A. How American Investors Are Gobbling up Booming Bitcoin. Available online: https://www.reuters.com/article/crypto-currencies-insight-idINKBN28D0PP (accessed on 3 December 2020).
- Brito, J.; Castillo, A. Bitcoin: A Primer for Policymakers; Mercatus Center at George Mason University: Arlington, VA, USA, 2013. [Google Scholar]
- Paquet-Clouston, M.; Haslhofer, B.; Dupont, B. Ransomware payments in the Bitcoin ecosystem. J. Cybersecur. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Richardson, R.; North, M.M. Ransomware: Evolution, mitigation and prevention. Int. Manag. Rev. 2017, 13, 10–21. [Google Scholar]
- Sigalos, M. “Bitcoin Family Hides Bitcoin, Ethereum and Litecoin in Secret Vaults (cnbc.com)” Posted to CNBC. Available online: https://www.cnbc.com/2021/08/11/bitcoin-family-hides-bitcoin-ethereum-and-litecoin-in-secret-vaults.html (accessed on 12 September 2021).
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Trautman, L.J. Virtual currencies; Bitcoin & what now after liberty reserve, silk road, and Mt. Gox? Richmond J. Law Technol. 2014, 20, 1–108. [Google Scholar]
- Gibbs, T.; Yordchim, S. Thai perception on Bitcoin value. Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng. 2014, 8, 2343–2345. [Google Scholar]
Category | Sub-Category | Frequency (N = 388) | Percentage (%) |
---|---|---|---|
Residence | Seoul | 146 | 37.6 |
Kyonggi | 110 | 28.4 | |
Incheon | 35 | 9.0 | |
Daejeon | 6 | 1.5 | |
Sejong | 6 | 1.5 | |
Kwangju | 9 | 2.3 | |
Deagu | 12 | 3.1 | |
Ulsan | 4 | 1.0 | |
Busan | 21 | 5.4 | |
Kangwon | 4 | 1.0 | |
Jeju | 12 | 3.1 | |
Chungnam | 4 | 1.0 | |
Chungbook | 4 | 1.0 | |
Jeonbook | 3 | 0.8 | |
Jeonnam | 4 | 1.0 | |
Kyongbook | 4 | 1.0 | |
Kyongnam | 4 | 1.0 | |
Age | 20s | 16 | 4.2 |
30s | 103 | 26.5 | |
40s | 124 | 32.0 | |
50s | 92 | 23.7 | |
60s | 49 | 12.6 | |
Over 70s | 4 | 1.0 | |
Gender | Male | 341 | 87.9 |
Female | 47 | 12.1 | |
Occupation | Sales and Service | 5 | 1.3 |
Housewife | 18 | 4.6 | |
Self-employed | 189 | 48.7 | |
Professional | 103 | 26.5 | |
Official | 2 | 0.5 | |
Student | 16 | 4.1 | |
Clerical | 55 | 14.2 | |
Monthly income (Unit: USD) | 1000–1999 | 13 | 3.4 |
2000–2999 | 23 | 5.9 | |
3000–3999 | 20 | 5.2 | |
4000–4999 | 43 | 11.1 | |
5000–5999 | 78 | 20.1 | |
6000–6999 | 51 | 13.1 | |
7000–7999 | 108 | 27.8 | |
8000–8999 | 52 | 13.4 |
Sum of Squares | df | Mean Square | F | Sig | Homogeneity of Variance Test | |||||
---|---|---|---|---|---|---|---|---|---|---|
Levene Statistic | df1 | df2 | Sig. | |||||||
Cash | ||||||||||
Exchange | Between groups | 55.818 | 2 | 27.909 | 11.229 | 0.000 *** | 1.038 | 2 | 385 | 0.374 |
Within groups | 956.891 | 385 | 2.485 | |||||||
Total | 1012.709 | 387 | ||||||||
Saving | Between groups | 73.755 | 2 | 36.877 | 13.002 | 0.000 *** | 0.303 | 2 | 385 | 0.821 |
Within groups | 1091.985 | 385 | 2.836 | |||||||
Total | 1165.740 | 387 | ||||||||
Value | Between groups | 90.649 | 2 | 45.325 | 17.720 | 0.000 *** | 0.847 | 2 | 385 | 0.467 |
Within groups | 984.781 | 385 | 2.558 | |||||||
Total | 1075.430 | 387 | ||||||||
Satisfaction | Between groups | 252.865 | 2 | 126.433 | 47.773 | 0.000 *** | 1.179 | 2 | 385 | 0.316 |
Within groups | 1018.916 | 385 | 2.647 | |||||||
Total | 1271.781 | 387 | ||||||||
Convenience | Between groups | 204.061 | 2 | 102.030 | 32.218 | 0.000 *** | 1.313 | 2 | 385 | 0.268 |
Within groups | 1219.246 | 385 | 3.167 | |||||||
Total | 1423.307 | 387 | ||||||||
Investment | Between groups | 152.426 | 2 | 76.213 | 20.062 | 0.000 *** | 1.655 | 2 | 385 | 0.192 |
Within groups | 1462.554 | 385 | 3.799 | |||||||
Total | 1614.979 | 387 |
Sum of Squares | df | Mean Square | F | Sig. | Homogeneity of Variance Test | |||||
---|---|---|---|---|---|---|---|---|---|---|
Levene Statistic | df1 | df2 | Sig. | |||||||
Card | ||||||||||
Exchange | Between groups | 1.621 | 2 | 0.810 | 0.863 | 0.423 | 1.087 | 2 | 385 | 0.353 |
Within groups | 361.356 | 385 | 0.939 | |||||||
Total | 362.977 | 387 | ||||||||
Saving | Between groups | 2.114 | 2 | 1.057 | 1.295 | 0.275 | 0.425 | 2 | 385 | 0.733 |
Within groups | 314.370 | 385 | 0.817 | |||||||
Total | 316.485 | 387 | ||||||||
Value | Between groups | 81.699 | 2 | 40.850 | 12.677 | 0.000 *** | 0.806 | 2 | 385 | 0.447 |
Within groups | 1240.641 | 385 | 3.222 | |||||||
Total | 1322.340 | 387 | ||||||||
Satisfaction | Between groups | 30.310 | 2 | 15.155 | 3.732 | 0.025 ** | 2.049 | 2 | 385 | 0.105 |
Within groups | 1563.371 | 385 | 4.061 | |||||||
Total | 1593.680 | 387 | ||||||||
Convenience | Between groups | 8.380 | 2 | 4.190 | 2.493 | 0.084 * | 0.655 | 2 | 385 | 0.578 |
Within groups | 647.105 | 385 | 1.681 | |||||||
Total | 655.485 | 387 | ||||||||
Investment | Between groups | 3.986 | 2 | 1.993 | 1.857 | 0.157 | 0.234 | 2 | 385 | 0.791 |
Within groups | 413.127 | 385 | 1.073 | |||||||
Total | 417.113 | 387 |
Sum of Squares | df | Mean Square | F | Sig. | Homogeneity of Variance Test | |||||
---|---|---|---|---|---|---|---|---|---|---|
Levene Statistic | df1 | df2 | Sig. | |||||||
Bitcoin | ||||||||||
Exchange | Between groups | 26.058 | 2 | 13.029 | 4.247 | 0.015 ** | 2.047 | 2 | 385 | 0.103 |
Within groups | 1181.063 | 385 | 3.068 | |||||||
Total | 1207.121 | 387 | ||||||||
Saving | Between groups | 12.467 | 2 | 6.233 | 3.455 | 0.033 ** | 1.562 | 2 | 385 | 0.211 |
Within groups | 694.510 | 385 | 1.804 | |||||||
Total | 706.977 | 387 | ||||||||
Value | Between groups | 3.201 | 2 | 1.601 | 2.471 | 0.086 * | 0.767 | 2 | 385 | 0.465 |
Within groups | 249.363 | 385 | 0.648 | |||||||
Total | 252.564 | 387 | ||||||||
Satisfaction | Between groups | 19.739 | 2 | 9.869 | 6.357 | 0.002 ** | 1.271 | 2 | 385 | 0.281 |
Within groups | 597.754 | 385 | 1.553 | |||||||
Total | 617.492 | 387 | ||||||||
Convenience | Between groups | 11.297 | 2 | 5.649 | 2.970 | 0.052 * | 0.424 | 2 | 385 | 0.731 |
Within groups | 732.208 | 385 | 1.902 | |||||||
Total | 743.505 | 387 | ||||||||
Investment | Between groups | 13.495 | 2 | 6.748 | 5.384 | 0.005 ** | 0.302 | 2 | 385 | 0.820 |
Within groups | 482.512 | 385 | 1.253 | |||||||
Total | 496.008 | 387 |
Variable | Group | Average | SD | t | df | Sig. |
---|---|---|---|---|---|---|
Exchange | Before COVID-19 | 4.03 | 1.530 | −1.304 | 76 | 0.196 |
After COVID-19 | 4.40 | 1.907 | ||||
Saving | Before COVID-19 | 5.10 | 0.926 | −3.338 ** | 76 | 0.001 |
After COVID-19 | 5.73 | 1.392 | ||||
Value | Before COVID-19 | 5.90 | 0.528 | −2.158 ** | 76 | 0.034 |
After COVID-19 | 6.12 | 0.760 | ||||
Satisfaction | Before COVID-19 | 6.08 | 1.285 | 2.845 ** | 76 | 0.006 |
After COVID-19 | 5.42 | 1.361 | ||||
Convenience | Before COVID-19 | 5.56 | 1.705 | −0.757 | 76 | 0.451 |
After COVID-19 | 5.77 | 1.413 | ||||
Investment | Before COVID-19 | 6.23 | 1.202 | 0.745 | 76 | 0.459 |
After COVID-19 | 6.08 | 1.254 |
Response | Exchange | % | Saving | % | Value | % | Satisfaction | % | Convenience | % | Investment | % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||
2 | 33 | 8.5 | ||||||||||
3 | 38 | 9.8 | 6 | 1.5 | 19 | 4.9 | ||||||
4 | 76 | 19.6 | 18 | 4.6 | 16 | 4.1 | 14 | 3.6 | 22 | 5.7 | ||
5 | 4 | 1.0 | 24 | 6.2 | 8 | 2.1 | 6 | 1.5 | ||||
6 | 137 | 35.3 | 181 | 46.6 | 175 | 45.1 | 156 | 40.2 | 100 | 25.8 | 149 | 38.4 |
7 | 100 | 25.8 | 189 | 48.7 | 173 | 44.6 | 204 | 52.6 | 241 | 62.1 | 239 | 61.6 |
Total | 388 | 100.0 | 388 | 100.0 | 388 | 100.0 | 388 | 100.0 | 388 | 100.0 | 388 | 100.0 |
Method | Terms Found from Interviews More than Two Times |
---|---|
Saving, investment, currency, uncertainty, satisfaction, news, followed by others, Ethereum, earnings rate | |
Phone | Satisfaction, future, long-term investment, follow what others do, media, other virtual currencies, market, uncertainty, stock |
Independent Variable | Unstandardized Coefficients | Standardized Coefficients | t | p | |
---|---|---|---|---|---|
β | SE | Beta | |||
Constant | 6.421 | 0.095 | 67.512 | 0.000 | |
Exchange | −0.017 | 0.020 | −0.044 | −0.859 | 0.391 |
Constant | 6.252 | 0.148 | 42.286 | 0.000 | |
Saving | 0.017 | 0.026 | 0.033 | 0.649 | 0.517 |
Constant | 6.405 | 0.266 | 24.108 | 0.000 | |
Value | −0.010 | 0.044 | −0.011 | −0.226 | 0.821 |
Constant | 5.595 | 0.159 | 35.215 | 0.000 | |
Satisfaction | 0.131 | 0.027 | 0.239 | 4.837 *** | 0.000 |
Constant | 5.756 | 0.148 | 38.797 | 0.000 | |
Convenience | 0.102 | 0.025 | 0.204 | 4.084 *** | 0.000 |
Constant | 5.429 | 0.190 | 28.585 | 0.000 | |
Investment | 0.148 | 0.030 | 0.242 | 4.902 *** | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Lee, S.; Bae, G. Functions of Currency before and after COVID-19: Is Bitcoin Sustainable for Tourism? Sustainability 2021, 13, 13572. https://doi.org/10.3390/su132413572
Kim H, Lee S, Bae G. Functions of Currency before and after COVID-19: Is Bitcoin Sustainable for Tourism? Sustainability. 2021; 13(24):13572. https://doi.org/10.3390/su132413572
Chicago/Turabian StyleKim, Hyojin, Sangmook Lee, and Gumkwang Bae. 2021. "Functions of Currency before and after COVID-19: Is Bitcoin Sustainable for Tourism?" Sustainability 13, no. 24: 13572. https://doi.org/10.3390/su132413572
APA StyleKim, H., Lee, S., & Bae, G. (2021). Functions of Currency before and after COVID-19: Is Bitcoin Sustainable for Tourism? Sustainability, 13(24), 13572. https://doi.org/10.3390/su132413572