Main Agro-Morphological and Biochemical Berry Characteristics of Wild-Grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) Genotypes in Turkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Agro-Morphological Measurements
2.3. Juice Yield, SSC (Soluble Solid Content), Vitamin C, Protein, and Lipid
2.4. Extraction and Determination of Specific Sugars
2.5. Total Phenol Determination
2.6. Extraction and Determination of Individual Phenolics
2.7. Determination of Trolox Equivalent Antioxidant Capacity (TEAC)
2.8. FRAP (Ferric Reducing Antioxidant Power) Assay
2.9. Crude Lipid Extraction
2.10. Determination of Fatty Acid Composition by Gas Chromatography
2.11. Statistical Analysis
3. Results and Discussion
Agro-Morphological Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colak, A.M.; Okatan, V.; Polat, M.; Guclu, S.F. Different harvest times affect market quality of Lycium barbarum L. berries. Turk. J. Agric. For. 2019, 43, 326–333. [Google Scholar] [CrossRef]
- Ozkan, G.; Ercisli, S.; Zeb, A.; Agar, A.; Sagbas, H.I.; Ilhan, G.; Gundogdu, M. Some Morphological and Biochemical Characteristics of Wild Grown Caucasian Whortleberry (Vaccinium arctostaphylos L.) Genotypes from Northeastern Turkey. Not. Bot. Horti Agrobot. 2019, 47, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020, 67, 935–945. [Google Scholar] [CrossRef]
- Sahin, U.; Anapali, O.; Ercisli, S. Physico-chemical and physical properties of some substrates used in horticulture. Gartenbauwissenschaft. 2002, 67, 55–60. [Google Scholar]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant Capacities and Total Phenolic Contents of 56 Wild Fruits from South China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, J.J.; Xu, D.P.; Zhou, T.; Zhou, Y.; Li, S.; Li, H.B. Bioactivities and Health Benefits of Wild Fruits. Int. J. Mol. Sci. 2016, 17, 1258. [Google Scholar] [CrossRef] [Green Version]
- Ercisli, S.; Orhan, E.; Esitken, A.; Yildirim, N.; Agar, G. Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genet. Resour. Crop Evol. 2008, 55, 613–618. [Google Scholar] [CrossRef]
- Yildiz, H.; Ercisli, S.; Hegedus, A.; Akbulut, M.; Topdas, E.F.; Aliman, J. Bioactive content and antioxidant characteristics of wild (Fragaria vesca L.) and cultivated strawberry (Fragaria ananassa Duch.) fruits from Turkey. J. Appl. Bot. Food. Qual. 2014, 87, 274–278. [Google Scholar]
- Ercisli, S.; Esitken, A. Fruit characteristics of native rose hip (Rosa spp.) selections from the Erzurum province of Turkey. N. Z. J. Crop Hort. 2004, 32, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Tural, S.; Koca, I. Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci. Hortic. 2008, 116, 362–366. [Google Scholar] [CrossRef]
- Korekar, G.; Dolkar, P.; Singh, H.; Srivastava, R.B.; Stobdan, T. Variability and the genotypic effect on antioxidant activity, total phenolics, carotenoids and ascorbic acid content in seventeen natural population of Seabuckthorn (Hippophae rhamnoides L.) from trans-Himalaya. LWT Food Sci. Technol. 2014, 55, 157–162. [Google Scholar] [CrossRef]
- Hasbal, G.; Yilmaz-Ozden, T.; Can, A. Antioxidant and antiacetylcholinesterase activities of Sorbus torminalis (L.) Crantz (wild service tree) fruits. J. Food Drug Anal. 2015, 23, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TUBIVES. Turkish Plants Data Service (TÜBIVES). 2014. Available online: www.tu-bives.com (accessed on 25 June 2020).
- Wang, Y.; Jiang, H.; Peng, S.; Korpelainen, H. Genetic structure in fragmented populations of Hippophae rhamnoides ssp. sinensis in China investigated by ISSR and cpSSR markers. Plant Syst. Evol. 2011, 295, 97–107. [Google Scholar] [CrossRef]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.-P.; Gruppen, H. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ruan, C.; Ding, J.; Li, J.; Wang, L.; Tian, X. Diversity in sea buckthorn (Hippophae rhamnoides L.) accessions with different origins based on morphological characteristics, oil traits, and microsatellite markers. PLoS ONE 2020, 15, e0230356. [Google Scholar] [CrossRef]
- Zeb, A. Chemical and nutritional constituents of sea buckthorn juice. Pak. J. Nutr. 2004, 3, 99–106. [Google Scholar]
- Aras, A.; Akkemik, Ü.; Kaya, Z. Hippophae rhamnoides L.: Fruit and seed morphology and its taxonomic problems in Turkey. Pak. J. Bot. 2007, 39, 1907–1916. [Google Scholar]
- Rousi, A. The genus Hippophaë L. A taxonomic study. Ann. Bot. Fennici 1971, 8, 177–227. [Google Scholar]
- Sabir, S.M.; Maqsood, H.; Hayat, I.; Khan, M.Q.; Khaliq, A. Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of Pakistani origin. J. Med. Food 2005, 8, 518–522. [Google Scholar]
- Singh, V. Geographical adaptation and distribution of seabuckthorn. In Seabuckthorn (Hippophae L.)—A Multipurpose Wonder Plant; Singh, V., Ed.; Indus Publishing Company: New Delhi, India, 2003; Volume I, pp. 21–34. [Google Scholar]
- Ficzek, G.; Mátravölgyi, G.; Furulyás, D.; Rentsendavaa, C.; Jócsák, I.; Papp, D.; Simon, G.; Végvári, G.; Stéger-Máté, M. Analysis of bioactive compounds of three sea buckthorn cultivars (Hippophaë rhamnoides L. ‘Askola’, ‘Leikora’, and ‘Orangeveja’) with HPLC and spectrophotometric methods. Eur. J. Hortic. Sci. 2019, 84, 31–38. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdylo, A.; Rudzinska, M.; Oszmianski, J.; Golis, T. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Tiitinen, K.M.; Yang, B.; Haraldsson, G.G.; Jonsdottir, S.; Kallio, H.P. Fast analysis of sugars, fruit acids, and vitamin c in sea buckthorn (Hippophaë rhamnoides L.) varieties. J. Agric. Food Chem. 2006, 54, 2508–2513. [Google Scholar] [CrossRef] [PubMed]
- Criste, A.; Urcan, A.C.; Bunea, A.; Furtuna, F.R.P.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef] [Green Version]
- Cenkowski, S.; Yakimishen, R.; Przybylski, R.; Muir, W.E. Quality of extracted sea buckthorn seed and pulp oil. Can. Biosyst. Eng. 2006, 48, 309–316. [Google Scholar]
- Korekar, G.; Dolkar, P.; Singh, H.; Srivastava, R.B.; Stobdan, T. Genotypic and Morphometric Effect on Fruit Oil Content in Seventeen Natural Population of Seabuckthorn (Hippophae rhamnoides L.) from Trans-Himalaya. Natl. Acad. Sci. Lett. 2013, 36, 603–607. [Google Scholar] [CrossRef]
- Zielinska, A.; Nowak, I. Abundance of active ingredients in sea-buckthorn oil. Lipids Health Dis. 2017, 16, 95. [Google Scholar] [CrossRef] [Green Version]
- Tiitinen, K.M.; Hakala, M.A.; Kallio, H.P. Quality Components of Sea Buckthorn (Hippophae rhamnoides) Varieties. J. Agric. Food Chem. 2005, 53, 1692–1699. [Google Scholar] [CrossRef]
- AOAC. Fat (Crude) or Ether Extract in Animal Feed. In Official Methods of Analysis of AOAC International; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Melgarejo, P.; Salazar, D.M.; Artes, F. Organic acids and sugars composition of harvested pomegranate fruits. Eur. Food Res. Technol. 2000, 211, 185–190. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Oxidants and Antioxidants; Packer, L., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 152–178. [Google Scholar]
- Rodriguez-Delgado, M.Á.; Malovana, S.; Perez, J.; Borges, T.; Garcia-Montelongo, F.J. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chromatogr. 2001, 912, 249–257. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2.2- azino-bis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and a comparison to ferric reducing antioxidant power (FRAP) and 2.2-diphenyl-1-picrylhdrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Rockville, MD, USA, 1995. [Google Scholar]
- Fatima, T.; Snyder, C.L.; Schroeder, W.R.; Cram, D.; Datla, R.; Wishart, D.; Weselake, R.J.; Krishna, P. Fatty Acid Composition of Developing Sea Buckthorn (Hippophae rhamnoides L.) Berry and the Transcriptome of the Mature Seed. PLoS ONE 2012, 7, e34099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sezen, I.; Ercisli, S.; Cakir, O.; Koc, A.; Temim, E.; Hadziabulic, A. Biodiversity and Landscape Use of Sea Buckthorn (Hippophae rhamnoides L.) in the Coruh Valley of Turkey. Erwerbs-Obstbau 2015, 57, 23–28. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, B.; Trepanier, M.; Kallio, H. Effects of genotype, latitude, and weather conditions on the composition of sugars, sugar alcohols, fruit acids, and ascorbic acid in sea buckthorn (Hippophaë rhamnoides ssp. mongolica) berry juice. J. Agric. Food Chem. 2012, 60, 3180–3189. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Kallio, H.; Linderborg, K.; Yang, B. Sugars, sugar alcohols, fruit acids, and ascorbic acid in wild Chinese sea buckthorn (Hippophae rhamnoides ssp. sinensis) with special reference to influence of latitude and altitude. Food Res. Int. 2011, 44, 2018–2026. [Google Scholar] [CrossRef]
- Yadav, V.K.; Sah, V.K.; Singh, A.K.; Sharma, S.K. Variations in morphological and biochemical characters of seabuckthorn (Hippophae salicifolia D. Don) populations growing in Harsil area of Garhwal Himalaya in India. Trop. Agric. Res Ext. 2006, 9, 1–7. [Google Scholar]
- Rongsen, L.U. Chemical composition of Hippophae fruits in China. In Proceedings of the International Symposium of Sea-Buckthorn, Barnaul, Russia, 23–25 August 1993; pp. 398–412. [Google Scholar]
- Dhyani, D.; Maikhuri, R.K.; Dhyani, S. Seabuckthorn: An Underutilized Resource for the Nutritional Security and Livelihood Improvement of Rural Communities in Uttarakhand Himalaya. Ecol. Food Nutr. 2011, 50, 168–180. [Google Scholar] [CrossRef]
- Singh, V.; Singh, R.K. Morpho-biochemical variations in seabuckthorn (Hippophae spp.) populations growing in Lahaul valley, dry temperate Himalayas. Indian For. 2004, 130, 663–672. [Google Scholar]
- Heilsher, K.; Lorber, S. Processes for Cold Recovery of Clear Juice, Solids and Oil from Seabuckthorn Berries and Use of These Products. German Federal Republic Patent DE 4431394C1, 15 February 1996. [Google Scholar]
- Chauhan, A.S.; Rekha, M.N.; Ramteke, R.S.; Eipeson, W.E. Preparation and quality evaluation of processed products from seabuckthorn (Hippophae rhamnoides L.) berries. Beverage Food World 2001, 1, 31–34. [Google Scholar]
- Yao, Y.; Tigerstedt, P.M.A.; Joy, P. Variation of Vitamin C Concentration and Character Correlation between and within Natural Sea Buckthorn (Hippophae rhamnoides L.) Populations. Acta Agric. Scand. Sect. B Soil Plant Sci. 1992, 42, 12–17. [Google Scholar] [CrossRef]
- Jalakas, M.; Kelt, K.; Kamp, K. The yield and fruit quality of sea buckthorn (Hippophae rhamnoides L.) after rejuvenation cutting. Agron. Res. 2003, 1, 31–36. [Google Scholar]
- Kuhkheil, A.; Badi, H.N.; Mehrafarin, A.; Abdossi, V. Chemical constituents of sea buckthorn (Hippophae rhamnoides L.) fruit in populations of central Alborz Mountains in Iran. Res. J. Pharmacog. 2017, 4, 1–12. [Google Scholar]
- Yang, B.; Kallio, H. Composition and physiological effects of sea buckthorn (Hippophae) lipids. Trends Food Sci. Technol. 2002, 13, 160–167. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Sci. Hortic. 2007, 115, 27–33. [Google Scholar] [CrossRef]
- Yang, B.; Kallio, H.P. Fatty Acid Composition of Lipids in Sea Buckthorn (Hippophaë rhamnoides L.) Berries of Different Origins. J. Agric. Food Chem. 2001, 49, 1939–1947. [Google Scholar] [CrossRef]
- Yang, B.; Halttunen, T.; Raimo, O.; Price, K.; Kallio, H. Flavonol glycosides in wild and cultivated berries of three major subspecies of Hippophaë rhamnoides and changes during harvesting period. Food Chem. 2009, 115, 657–664. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, J.; Kallio, H. Influence of origin, harvesting time and weather conditions on content of inositols and methylinositols in sea buckthorn (H. rhamnoides) berries. Food Chem. 2011, 125, 388–396. [Google Scholar] [CrossRef]
- Saeidi, K.; Alirezalu, A.; Akbari, Z. Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran. Nat. Prod. Res. 2016, 30, 366–368. [Google Scholar] [CrossRef]
- Rop, O.; Ercisli, S.; Mlcek, J.; Jurikova, T.; Hoza, I. Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (H. rhamnoides L.) cultivars. Turk J. Agric. For. 2014, 38, 224–232. [Google Scholar] [CrossRef]
- Bittová, M.; Krejzová, E.; Roblová, V.; Kubán, P.; Kubán, V. Monitoring of HPLC profiles of selected polyphenolic compounds in sea buckthorn (Hippophaë rhamnoides L.) plant parts during annual growth cycle and estimation of their antioxidant potential. Cent. Eur. J. Chem. 2014, 12, 1152–1161. [Google Scholar] [CrossRef]
- Di Mauro, M.D.; Giardina, R.C.; Fava, G.; Mirabella, E.F.; Acquaviva, R.; Renis, M.; D’Antona, N. Polyphenolic profile and antioxidant activity of olive mill wastewater from two Sicilian olive cultivars: Cerasuola and Nocellara etnea. Eur. Food Res. Technol. 2017, 243, 1895–1903. [Google Scholar] [CrossRef]
- Donno, D.; Cerutti, A.K.; Prgomet, I.; Mellano, M.G.; Beccaro, G.L. Foodomics for mulberry fruit (Morus spp.): Analytical fingerprint as antioxidants’ and health properties’ determination tool. Food Res. Int. 2015, 69, 179–188. [Google Scholar] [CrossRef]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases, 29th ed.; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Xu, X.M.; Chen, Y.; Yu, M.Y.; Wen, F.Y.; Zhang, H. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). Food Chem. 2013, 141, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Makovics-Zsohár, N.; Hegedûs, A.; Stefanovits-Bányai, É.; Rédei, R.; Papp, N. The antioxidant capacity of sea buckthorn (Hippophae rhamnoides L.) berries depends on the genotype and harvest time. Int. J. Hortic. Sci. 2014, 20, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Li, T.S.C.; Beveridge, T.H.J.; Oomah, B.D. Nutritional and medicinal values. In Sea Buckthorn (Hippophae rhamnoides L.): Production and Utilization; Li, T.S.C., Beveridge, T., Eds.; NRC Research Press: Ottawa, ON, Canada, 2003; pp. 101–108. [Google Scholar]
- Arimboor, R.; Kumar, K.S.; Arumughan, C. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD. J. Pharm. Biomed. Anal. 2008, 47, 31–38. [Google Scholar] [CrossRef]
Genotypes | 100-Berry Weight (g) | Berry Shape | Berry Skin Color | Ripening Time | Growth Habit | Thorns | Leaf Area (cm2) |
---|---|---|---|---|---|---|---|
S-1 | 17.11 ± 0.8 d | Elliptic | Light orange | 23 September | Shrub | Few | 2.56 ± 0.2 c |
S-2 | 21.34 ± 0.9 bc | Oblong | Orange | 2 October | Tree | Few | 3.40 ± 0.2 ab |
S-3 | 18.56 ± 0.8 cd | Oblong | Light orange | 27 September | Tree | Medium | 2.89 ± 0.1 bc |
S-4 | 13.85 ± 0.6 e | Elliptic | Yellow | 30 September | Shrub | Few | 3.98 ± 0.2 ab |
S-5 | 14.47 ± 0.5 de | Ovate | Light orange | 4 October | Shrub | Few | 4.02 ± 0.3 ab |
S-6 | 25.11 ± 0.7 b | Oblong | Dark orange | 7 October | Tree | Medium | 4.22 ± 0.3 a |
S-7 | 20.38 ± 0.9 c | Oblong | Orange | 30 September | Tree | Medium | 3.70 ± 0.2 ab |
S-8 | 27.87 ± 1.1 a | Ovate | Yellow | 1 October | Shrub | Few | 3.23 ± 0.1 b |
S-9 | 19.79 ± 0.8 cd | Oblong | Light orange | 25 September | Shrub | Few | 3.04 ± 0.2 bc |
S-10 | 16.50 ± 1.0 de | Oblong | Yellow | 27 September | Tree | Few | 2.96 ± 0.1 bc |
Genotypes | Juice Yield (%) | Vitamin C (mg/100 g) | Titratable Acidity (%) | SSC (%) | Protein (%) | Lipid (%) |
---|---|---|---|---|---|---|
S-1 | 52.25 ± 2.3 c | 40.10 ± 2.4 h | 3.88 ± 0.2 bc | 12.95 ± 0.6 cd | 0.74 ± 0.2 b | 5.70 ± 0.4 ab |
S-2 | 57.15 ± 2.7 a | 57.25 ± 3.9 c | 3.40 ± 0.2 bc | 12.56 ± 0.5 de | 0.66 ± 0.1 bc | 5.02 ± 0.3 c |
S-3 | 54.42 ± 3.9 b | 44.51 ± 2.0 g | 4.01 ± 0.3 b | 12.86 ± 0.7 cd | 0.72 ± 0.2 b | 5.49 ± 0.4 b |
S-4 | 44.87 ± 3.1 g | 54.33 ± 3.1 d | 3.80 ± 0.1 bc | 14.67 ± 0.7 ab | 0.60 ± 0.1 c | 6.03 ± 0.5 ab |
S-5 | 50.40 ± 2.9 d | 37.45 ± 2.7 i | 3.76 ± 0.2 bc | 13.17 ± 0.5 cd | 0.63 ± 0.1 bc | 5.58 ± 0.3 ab |
S-6 | 48.83 ± 2.4 e | 48.03 ± 3.3 f | 3.14 ± 0.2 c | 14.80 ± 0.6 a | 0.83 ± 0.1 a | 6.17 ± 0.3 a |
S-7 | 47.75 ± 3.2 ef | 49.28 ± 4.6 ef | 4.17 ± 0.3 ab | 14.07 ± 0.5 b | 0.66 ± 0.2 bc | 5.40 ± 0.2 bc |
S-8 | 46.58 ± 2.7 f | 62.85 ± 5.4 a | 3.30 ± 0.2 bc | 13.90 ± 0.5 bc | 0.80 ± 0.2 ab | 5.78 ± 0.4 ab |
S-9 | 49.33 ± 2.5 ef | 60.14 ± 4.2 b | 4.73 ± 0.3 a | 13.45 ± 0.6 c | 0.70 ± 0.1 b | 6.10 ± 0.3 ab |
S-10 | 54.10 ± 4.0 b | 50.62 ± 2.4 e | 4.20 ± 0.1 ab | 12.70 ± 0.4 d | 0.72 ± 20.1 b | 5.65 ± 0.3 ab |
Genotypes | Glucose (%) | Frucose (%) | Sucrose (%) |
---|---|---|---|
S-1 | 0.39 ± 0.1 d | 0.25 ± 0.1 c | nd |
S-2 | 0.14 ± 0.0 fg | 0.10 ± 0.0 d | nd |
S-3 | 0.30 ± 0.1 e | 0.19 ± 0.0 cd | nd |
S-4 | 0.68 ± 0.2 ab | 0.52 ± 0.1 ab | 0.07 |
S-5 | 0.50 ± 0.2 c | 0.30 ± 0.1 bc | nd |
S-6 | 0.71 ± 0.2 a | 0.59 ± 0.1 a | 0.09 |
S-7 | 0.64 ± 0.1 ab | 0.48 ± 0.1 ab | nd |
S-8 | 0.60 ± 0.1 b | 0.40 ± 0.1 b | 0.04 |
S-9 | 0.55 ± 0.1 bc | 0.34 ± 0.1 bc | nd |
S-10 | 0.22 ± 0.0 f | 0.15 ± 0.0 cd | nd |
Genotypes | Total Phenolic Content (mg GAE/100 g) | Total Anthocyanin (mg/L) | FRAP (mg Trolox Equivalent/100 g FW) | TEAC (mg Trolox Equivalent/100 g FW) |
---|---|---|---|---|
S-1 | 486 ± 24 f | 19.4 ± 0.4 e | 0.54 ± 0.1 c | 2.04 ± 0.2 d |
S-2 | 522 ± 33 d | 31.1 ± 0.7 b | 1.06 ± 0.2 b | 2.11 ± 0.2 cd |
S-3 | 450 ± 18 hi | 22.5 ± 0.6 c | 0.77 ± 0.1 bc | 1.89 ± 0.1 de |
S-4 | 412 ± 14 i | 11.2 ± 0.4 f | 0.45 ± 0.1 cd | 1.71 ± 0.1 e |
S-5 | 587 ± 20 c | 20.4 ± 0.5 d | 1.22 ± 0.2 ab | 2.34 ± 0.2 c |
S-6 | 495 ± 22 ef | 38.7 ± 0.8 a | 0.87 ± 0.2 bc | 1.67 ± 0.1 e |
S-7 | 507 ± 19 e | 29.4 ± 0.3 c | 1.01 ± 0.2 bc | 2.28 ± 0.2 cd |
S-8 | 622 ± 30 a | 11.4 ± 0.1 f | 1.48 ± 0.2 a | 2.93 ± 0.2 a |
S-9 | 604 ± 27 b | 21.6 ± 0.3 cd | 1.34 ± 0.2 ab | 2.78 ± 0.2 b |
S-10 | 461 ± 19 g | 9.1 ± 0.2 g | 0.37 ± 0.1 cd | 1.58 ± 0.1 ef |
Genotypes | Linoleic Acid | Palmitoleic Acid | Palmitic Acid | Oleic Acid | Linolenic Acid | Stearic Acid |
---|---|---|---|---|---|---|
S-1 | 36.37 ± 1.2 a | 18.13 ± 0.7 e | 17.07 ± 0.5 c | 9.84 ± 0.2 c | 3.88 ± 0.2 b | 1.88 ± 0.1 NS |
S-2 | 25.56 ± 0.9 de | 23.42 ± 0.9 bc | 19.04 ± 0.7 b | 10.87 ± 0.3 bc | 5.15 ± 0.3 ab | 2.21 ± 0.1 |
S-3 | 27.43 ± 1.1 d | 20.02 ± 0.5 d | 15.40 ± 0.4 d | 15.40 ± 0.3 a | 4.24 ± 0.2 ab | 1.97 ± 0.1 |
S-4 | 30.02 ± 1.3 c | 19.00 ± 0.5 de | 21.01 ± 0.3 ab | 10.36 ± 0.2 bc | 4.78 ± 0.2 ab | 2.30 ± 0.2 |
S-5 | 24.11 ± 1.1 e | 24.77 ± 0.8 b | 20.40 ± 0.5 ab | 9.23 ± 0.3 c | 6.44 ± 0.3 ab | 2.44 ± 0.1 |
S-6 | 24.97 ± 0.8 e | 21.56 ± 1.0 c | 20.84 ± 0.4 ab | 13.12 ± 0.2 b | 6.02 ± 0.4 ab | 2.27 ± 0.2 |
S-7 | 29.27 ± 1.4 bc | 20.75 ± 0.7 cd | 18.85 ± 0.3 bc | 14.56 ± 0.4 ab | 3.95 ± 0.3 b | 2.04 ± 0.1 |
S-8 | 24.88 ± 1.2 de | 26.44 ± 1.1 a | 21.20 ± 0.5 a | 13.87 ± 0.2 ab | 5.80 ± 0.3 ab | 2.15 ± 0.1 |
S-9 | 32.11 ± 1.4 ab | 19.68 ± 0.7 de | 18.38 ± 0.2 bc | 11.25 ± 0.4 bc | 6.67 ± 0.4 ab | 1.80 ± 0.1 |
S-10 | 33.37 ± 1.5 b | 18.47 ± 0.9 e | 19.80 ± 0.6 ab | 9.44 ± 0.3 c | 7.02 ± 0.4 a | 3.23 ± 0.2 |
Genotypes | Gallic Acid | Quercetin | Rutin | Quercitrin | Luteolin | Kaempferol |
---|---|---|---|---|---|---|
S-1 | 7.44 ± 0.5 cd | 4.42 ± 0.4 cd | 3.86 ± 0.5 d | 2.44 ± 0.3 c | 2.44 ± 0.2 b | 0.55 ± 0.1 bc |
S-2 | 11.47 ± 0.6 bc | 8.45 ± 0.7 b | 8.82 ± 0.8 ab | 3.66 ± 0.2 bc | 2.11 ± 0.2 bc | 1.22 ± 0.2 a |
S-3 | 8.23 ± 0.6 cd | 3.50 ± 0.4 cd | 9.11 ± 0.6 ab | 3.11 ± 0.3 bc | 0.96 ± 0.1 c | 0.44 ± 0.1 c |
S-4 | 6.64 ± 0.5 cd | 2.87 ± 0.3 d | 10.24 ± 1.0 ab | 2.76 ± 0.3 c | 1.89 ± 0.1 bc | 1.15 ± 0.2 ab |
S-5 | 13.61 ± 1.0 b | 7.56 ± 0.6 bc | 8.62 ± 0.9 b | 3.03 ± 0.2 b | 2.98 ± 0.2 ab | 0.82 ± 0.1 b |
S-6 | 11.10 ± 1.1 bc | 9.16 ± 0.8 ab | 6.45 ± 0.5 bc | 4.30 ± 0.3 ab | 5.12 ± 0.3 a | 1.04 ± 0.1 ab |
S-7 | 9.56 ± 0.4 c | 5.33 ± 0.5 c | 7.24 ± 0.7 bc | 4.11 ± 0.2 ab | 4.04 ± 0.3 ab | 0.70 ± 0.1 bc |
S-8 | 17.12 ± 1.4 a | 10.64 ± 1.0 ab | 11.17 ± 0.8 a | 6.57 ± 0.5 a | 3.56 ± 0.3 ab | 0.90 ± 0.1 ab |
S-9 | 15.40 ± 1.3 ab | 11.47 ± 1.3 a | 9.86 ± 1.0 ab | 4.77 ± 0.7 ab | 3.98 ± 0.2 ab | 1.29 ± 0.2 ab |
S-10 | 5.43 ± 0.5 d | 3.04 ± 0.3 cd | 6.06 ± 0.6 c | 2.95 ± 0.3 bc | 1.44 ± 0.2 bc | 0.62 ± 0.1 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilhan, G.; Gundogdu, M.; Karlović, K.; Židovec, V.; Vokurka, A.; Ercişli, S. Main Agro-Morphological and Biochemical Berry Characteristics of Wild-Grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) Genotypes in Turkey. Sustainability 2021, 13, 1198. https://doi.org/10.3390/su13031198
Ilhan G, Gundogdu M, Karlović K, Židovec V, Vokurka A, Ercişli S. Main Agro-Morphological and Biochemical Berry Characteristics of Wild-Grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) Genotypes in Turkey. Sustainability. 2021; 13(3):1198. https://doi.org/10.3390/su13031198
Chicago/Turabian StyleIlhan, Gülçe, Muttalip Gundogdu, Ksenija Karlović, Vesna Židovec, Aleš Vokurka, and Sezai Ercişli. 2021. "Main Agro-Morphological and Biochemical Berry Characteristics of Wild-Grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) Genotypes in Turkey" Sustainability 13, no. 3: 1198. https://doi.org/10.3390/su13031198
APA StyleIlhan, G., Gundogdu, M., Karlović, K., Židovec, V., Vokurka, A., & Ercişli, S. (2021). Main Agro-Morphological and Biochemical Berry Characteristics of Wild-Grown Sea Buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) Genotypes in Turkey. Sustainability, 13(3), 1198. https://doi.org/10.3390/su13031198