Groundwater Resources in the Main Ethiopian Rift Valley: An Overview for a Sustainable Development
Abstract
:1. Introduction
2. Geological Setting
3. Hydrological Setting
4. Materials and Methods
- -
- handheld GPS instruments to locate points on a Landsat map through ArcPad,
- -
- a portable fluoride meter (HI98402 by Hanna Instruments, USA) to measure the fluoride content in the water (ppm),
- -
- a conductivity meter (HI99300 by Hanna Instruments, USA) to measure the water EC in the field (μS/cm),
- -
- a freatimeter to measure the depth to groundwater in the wells;
- -
- a litmus test for pH.
5. Results
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H. Water Use. Annu. Rev. Environ. Resour. 2003, 28, 275–314. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V. Climate change and stream water quality in the multi-factor context. Clim. Chang. 2010, 103, 353–362. [Google Scholar] [CrossRef]
- Lasagna, M.; Ducci, D.; Sellerino, M.; Mancini, S.; De Luca, D.A. Meteorological Variability and Groundwater Quality: Examples in Different Hydrogeological Settings. Water 2020, 12, 1297. [Google Scholar] [CrossRef]
- Unesco. Available online: https://sustainabledevelopment.un.org/topics/waterandsanitation (accessed on 15 November 2020).
- van Vliet, M.T.H.; Flörke, M.; Wada, Y. Quality matters for water scarcity. Nat. Geosci. 2017, 10, 800–802. [Google Scholar] [CrossRef]
- Bechis, S.; Bonetto, S.; Bucci, A.; Canone, D.; Cristofori, E.; De Luca, D.A.; Demarchi, A.; Garnero, G.; Guerreschi, P.; Lasagna, M. Improving governance of access to water resources and their sustainable use in Hodh el Chargui communities (South East Mauritania). In Proceedings of the 20th EGU General Assembly 2018, Vienna, Austria, 4–13 April 2018; Volume 20. EGU2018-15888-1. [Google Scholar]
- Datta, S.; Ajaz, A. Geospatial Data Assimilation and Mapping Groundwater Vulnerability in High Plains Aquifer Using DRASTIC Model. Fundam. Appl. Agric. 2019, 4, 933–942. [Google Scholar] [CrossRef]
- Sultan, M.; Wagdy, A.; Manocha, N.; Sauck, W.; Gelil, K.A.; Youssef, A.; Becker, R.; Milewski, A.; El Alfy, Z.; Jones, C. An integrated approach for identifying aquifers in transcurrent fault systems: The Najd shear system of the Arabian Nubian shield. J. Hydrol. 2008, 349, 475–488. [Google Scholar] [CrossRef]
- Tessema, A.; Mengistu, H.; Chirenje, E.; Abiye, T.A.; Demlie, M. The relationship between lineaments and borehole yield in North West Province, South Africa: Results from geophysical studies. Hydrogeol. J. 2011, 20, 351–368. [Google Scholar] [CrossRef]
- Fernandes, A.J.; Rudolph, D.L. The influence of Cenozoic tectonics on the groundwater-production capacity of fractured zones: A case study in Sao Paulo, Brazil. Hydrogeol. J. 2001, 9, 151–167. [Google Scholar] [CrossRef]
- Prabu, P.; Rajagopalan, B. Mapping of lineaments for groundwater targeting and sustainable water resource management in hard rock hydrogeological environment using RS-GIS. In Climate Change and Regional/Local Responses; Pallav, R., Ed.; InTech: London, UK, 2013; pp. 235–247. [Google Scholar]
- Bonetto, S.M.R.; Facello, A.; Umili, G. The contribution of CurvaTool semi-automatic approach in structural and groundwater investigations. A case study in the Main Ethiopian Rift Valley. Egypt. J. Remote Sens. Space Sci. 2020, 23, 97–111. [Google Scholar] [CrossRef]
- Bonetto, S.; Facello, A.; Cristofori, E.I.; Camaro, W.; Demarchi, A. An Approach to Use Earth Observation Data as Support to Water Management Issues in the Ethiopian Rift. In Climate Change Adaptation in Africa: Fostering Resilience and Capacity to Adapt. Climate Change Management; Leal Filho, W., Belay, S., Kalangu, J., Means, W., Munishi, P., Musiyiwa, K., Eds.; Springer: Cham, Switzerland, 2016; pp. 357–374. [Google Scholar] [CrossRef]
- Lasagna, M.; Bonetto, S.M.R.; Debernardi, L.; De Luca, D.A.; Semita, C.; Caselle, C. Groundwater Resources Assessment for Sustainable Development in South Sudan. Sustainability 2020, 12, 5580. [Google Scholar] [CrossRef]
- Bretzler, A.; Johnson, C.A. The Geogenic Contamination Handbook: Addressing arsenic and fluoride in drinking water. Appl. Geochem. 2015, 63, 642–646. [Google Scholar] [CrossRef] [Green Version]
- Nickson, R.; McArthur, J.M.; Ravenscroft, P.; Burgess, W.G.; Ahmed, K. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 2000, 15, 403–413. [Google Scholar] [CrossRef]
- Hussain, I.; Arif, M.; Hussain, J. Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India. Environ. Monit. Assess 2011, 184, 5151–5158. [Google Scholar] [CrossRef] [PubMed]
- Missimer, T.M.; Teaf, C.; Beeson, W.T.; Maliva, R.G.; Woolschlager, J.; Covert, D. Natural Background and Anthropogenic Arsenic Enrichment in Florida Soils, Surface Water, and Groundwater: A Review with a Discussion on Public Health Risk. Int. J. Environ. Res. Public Health 2018, 15, 2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcón-Herrera, M.T.; Martin-Alarcon, D.A.; Gutiérrez, M.; Reynoso-Cuevas, L.; Martín-Domínguez, A.; Olmos-Márquez, M.A.; Bundschuh, J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 2020, 698, 134168. [Google Scholar] [CrossRef]
- Ayenew, T. The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands. Environ. Earth Sci. 2007, 54, 1313–1324. [Google Scholar] [CrossRef]
- Rango, T.; Bianchini, G.; Beccaluva, L.; Tassinari, R. Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic. J. Afr. Earth Sci. 2010, 57, 479–491. [Google Scholar] [CrossRef]
- Bianchini, G.; Brombin, V.; Marchina, C.; Natali, C.; Godebo, T.R.; Rasini, A.; Salani, G.M. Origin of Fluoride and Arsenic in the Main Ethiopian Rift Waters. Minerals 2020, 10, 453. [Google Scholar] [CrossRef]
- Bonetto, S.M.R.; De Luca, D.A.; Lasagna, M.; Lodi, R. Groundwater Distribution and Fluoride Content in the West Arsi Zone of the Oromia Region (Ethiopia). In Engineering Geology for Society and Territory; Springer: Cham, Switzerland, 2014; Volume 3, pp. 579–582. [Google Scholar]
- Rango, T.; Bianchini, G.; Beccaluva, L.; Ayenew, T.; Colombani, N. Hydrogeochemical study in the Main Ethiopian Rift: New insights to the source and enrichment mechanism of fluoride. Environ. Earth Sci. 2009, 58, 109–118. [Google Scholar] [CrossRef]
- WHO. Volume 1—Recommendations. Guidelines for Drinking Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Moulton, F.R. Fluorine and Dental Health; American Association for the Advancement of Science: Washington, DC, USA, 1942. [Google Scholar]
- Environmental Protection Agency (EPA). Office of Drinking Water. Drinking Water Criteria Document on Fluoride; TR-823-5; US Environmental Protection Agency: Washington, DC, USA, 1985.
- WHO. Fluorine and Fluorides; Environmental Health Criteria: Geneva, Switzerland, 1984; No. 36. [Google Scholar]
- Bonetto, S.; Facello, A.; Camaro, W.; Cristofori, E.I.; Demarchi, A. An approach to integrate spatial and climatological data as support to drought monitoring and agricultural management problems in South Sudan. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016; Volume 18. EGU2016-16952-2. [Google Scholar]
- Dan-Badjo, A.T.; Diadie, H.O.; Bonetto, S.M.R.; Semita, C.; Cristofori, E.I.; Facello, A. Using Improved Varieties of Pearl Millet in Rainfed Agriculture in Response to Climate Change: A Case Study in the Tillabéri Region in Niger. In Climate Change Research at Universities: Addressing the Mitigation and Adaptation Challenges; Leal Filho, W., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 345–358. [Google Scholar]
- Lasagna, M.; Dino, G.A.; Perotti, L.; Spadafora, F.; De Luca, D.A.; Yadji, G.; Dan-Badjo, A.T.; Moussa, I.; Harouna, M.; Konaté, M.; et al. Georesources and Environmental Problems in Niamey City (Niger): A Preliminary Sketch. Energy Procedia 2015, 76, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Perotti, L.; Dino, G.A.; Lasagna, M.; Moussa, K.; Spadafora, F.; Yadji, G.; Dan-Badjo, A.T.; De Luca, D.A. Monitoring of Urban Growth and its Related Environmental Impacts: Niamey Case Study (Niger). Energy Procedia 2016, 97, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Demarchi, A.; Bechis, S.; Perott, L.; Garnero, G.; Isotta Cristofori, E.; Alunno, L.; Facello, A.; Semita, C.; Bonetto, S.; Guerreschi, P. An interdisciplinary approach to the analysis of agro pastoral resilience in the Hodh el Chargui region (Mauritania). In Proceedings of the 20th EGU General Assembly 2018, Vienna, Austria, 4–13 April 2018; Volume 20. EGU2018-15808-1. [Google Scholar]
- Caselle, C.; Bonetto, S.M.R.; De Luca, D.A.; Lasagna, M.; Perotti, L.; Bucci, A.; Bechis, S. An Interdisciplinary Approach to the Sustainable Management of Territorial Resources in Hodh el Chargui, Mauritania. Sustainability 2020, 12, 5114. [Google Scholar] [CrossRef]
- Benvenuti, M.; Carnicelli, S.; Belluomini, G.; Dainelli, N.; Di Grazia, S.; Ferrari, G.; Iasio, C.; Sagri, M.; Ventra, D.; Atnafu, B.; et al. The Ziway–Shala lake basin (main Ethiopian rift, Ethiopia): A revision of basin evolution with special reference to the Late Quaternary. J. Afr. Earth Sci. 2002, 35, 247–269. [Google Scholar] [CrossRef]
- Keranen, K.; Klemperer, S.L. Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for develop-ment of continental rifts. Earth Planet Sci. Lett. 2008, 265, 96–111. [Google Scholar] [CrossRef]
- Abebe, B.; Boccaletti, M.; Mazzuoli, R.; Bonini, M.; Tortorici, L.; Trua, T. Geological Map of the Lake Ziway—Asela Region (Main Ethiopian Rift); 1:50000 scale; C.N.R., ARCA: Firenze, Italy, 1998. [Google Scholar]
- Boccaletti, M.; Bonini, M.; Mazzuoli, R.; Trua, T. Pliocene-Quaternary volcanism and faulting in the northern Main Ethiopian Rift (with two geological maps at scale 1:50,000). Acta Vulcanol. 1999, 11, 83–97. [Google Scholar]
- Abbate, E.; Bruni, P.; Sagri, M. Geology of Ethiopia: A Review and Geomorphological Perspectives. In Landscapes and Landforms of Norway; Billi, P., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 33–64. [Google Scholar]
- Ayenew, T.; Demlie, M.; Wohnlich, S. Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. J. Afr. Earth Sci. 2008, 52, 97–113. [Google Scholar] [CrossRef]
- Dainelli, N.; Benvenuti, M.; Sagri, M. Geological Map of the Ziway-Shala Lakes Basin; 1:250,000. European Commission (EC), STD3 Project—Contract TS3—CT92-0076, 2001; Italian Ministry for University and Scientific and Technological Research (MURST) DB Map; Department of Earth Science, University of Florence: Firenze, Italy, 2001. [Google Scholar]
- EIGS. Hydrogeological Map of Ethiopia; 1:2,000,000 scale; Ethiopian Institute of Geological Surveys: Addis Ababa, Ethiopia, 1993. [Google Scholar]
- Kebede, S.; Travi, Y.; Alemayehu, T.; Ayenew, T. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia. Appl. Geochem. 2005, 20, 1658–1676. [Google Scholar] [CrossRef]
- Chernet, T.; Travi, Y. Preliminary observations concerning the genesis of high flouride contents in the Ethiopian Rift. In Geoscientific Research in Northeast Africa; Thorweiche, U., Schandlmeier, H., Eds.; Balkema: Rotterdam, The Netherlands, 1993; Volume 8, pp. 651–654. [Google Scholar]
- Ayenew, T. Major ions composition of the groundwater and surface water systems and their geological and geochemical controls in the Ethiopian volcanic terrain. SINET Ethiop. J. Sci. 2006, 28, 171–188. [Google Scholar] [CrossRef]
- Lee, W.E., III. A tale of two samplers-part I: A comparison of bailer and peristaltic pump groundwater sampling protocols. Pollut. Eng. 2002, 34, 4. [Google Scholar]
- Lasagna, M.; De Luca, D.A. The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles. Environ. Sci. Pollut. Res. 2016, 23, 20431–20448. [Google Scholar] [CrossRef]
- Yeskis, D.; Zavala, B. Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers. In Ground Water Forum Issue Paper, EPA; US EPA: Washington, DC, USA, 2002; EPA 542-S-02-001, 53p. [Google Scholar]
- Appelo, C.; Postma, D. Geochemistry, Groundwater and Pollution; Balkema: Rotterdam, The Netherlands, 2004. [Google Scholar]
- Boccaletti, M.; Getaneh, A.; Mazzuoli, R.; Tortorici, L.; Trua, T. Chemical variations in a bimodal magma system: The Plio-Quaternary volcanism in the Dera Nazret area (Main Ethiopian Rift, Ethiopia). Afr. Geosci. Rev. 1995, 2, 37–60. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Library Cataloguing-in-Publication Data: Geneva, Switzerland, 2011. [Google Scholar]
- WHO. Nitrate and Nitrite in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking Water Quality. Available online: https://www.who.int/water_sanitation_health/dwq/chemicals/nitratenitrite2ndadd.pdf (accessed on 20 January 2021).
- Martinelli, G.; Dadomo, A.; De Luca, D.; Mazzola, M.; Lasagna, M.; Pennisi, M.; Pilla, G.; Sacchi, E.; Saccon, P. Nitrate sources, accumulation and reduction in groundwater from Northern Italy: Insights provided by a nitrate and boron isotopic database. Appl. Geochem. 2018, 91, 23–35. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A.; Franchino, E. Intrinsic groundwater vulnerability assessment: Issues, comparison of different methodologies and correlation with nitrate concentrations in NW Italy. Environ. Earth Sci. 2018, 77, 277. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A.; Franchino, E. The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environ. Earth Sci. 2016, 75, 961. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A. Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes. Environ. Sci. Pollut. Res. 2019, 26, 2089–2104. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.; Mueller, K.; Abbaspour, K.C.; Rosenberg, T.; Afyuni, M.; Møller, K.N.; Sarr, M.; Johnson, C.A. Statistical Modeling of Global Geogenic Fluoride Contamination in Groundwaters. Environ. Sci. Technol. 2008, 42, 3662–3668. [Google Scholar] [CrossRef] [Green Version]
- Belete, A.; Beccaluva, L.; Bianchini, G.; Colombani, N.; Fazzini, M.; Marchina, C.; Natali, C.; Rango, T. Water-rock intercation and lake hydrochemistry in the Main Ethiopian Rift. In Landscape and Landforms of Ethiopia; Paolo, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 307–321. [Google Scholar]
- Sracek, O.; Wanke, H.; Ndakunda, N.; Mihaljevic, M.; Buzek, F. Geochemistry and fluoride levels of geothermal springs in Namibia. J. Geochem. Explor. 2015, 148, 96–104. [Google Scholar] [CrossRef]
- Caselle, C.; Lasagna, M.; Bonetto, S.M.R.; De Luca, D.A.; Bechis, S. Groundwater features in Hoedh el Chargui, Mauritania. Acque Sotter. Ital. J. Groundw. 2020, 9, 43–51. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonetto, S.M.R.; Caselle, C.; De Luca, D.A.; Lasagna, M. Groundwater Resources in the Main Ethiopian Rift Valley: An Overview for a Sustainable Development. Sustainability 2021, 13, 1347. https://doi.org/10.3390/su13031347
Bonetto SMR, Caselle C, De Luca DA, Lasagna M. Groundwater Resources in the Main Ethiopian Rift Valley: An Overview for a Sustainable Development. Sustainability. 2021; 13(3):1347. https://doi.org/10.3390/su13031347
Chicago/Turabian StyleBonetto, Sabrina Maria Rita, Chiara Caselle, Domenico Antonio De Luca, and Manuela Lasagna. 2021. "Groundwater Resources in the Main Ethiopian Rift Valley: An Overview for a Sustainable Development" Sustainability 13, no. 3: 1347. https://doi.org/10.3390/su13031347
APA StyleBonetto, S. M. R., Caselle, C., De Luca, D. A., & Lasagna, M. (2021). Groundwater Resources in the Main Ethiopian Rift Valley: An Overview for a Sustainable Development. Sustainability, 13(3), 1347. https://doi.org/10.3390/su13031347