Impact of Climate Change Adaptation on Household Food Security in Nigeria—A Difference-in-Difference Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Summary of Characteristics of Farm Households in the Study Area
2.4. Analytical Techniques
2.4.1. Panel Probit Model
- the latent (underlying) variable that determines whether farm household j would be classified as an adopter of CCA measure i at time t;
- = a vector coefficient;
- = a matrix of explanatory variables;
- = the constant term; and
- = the idiosyncratic errors assumed to have zero mean and unit variance. The relationship between the latent variable and the observed outcome is represented as
- Diversify more into other crops
- Used Irrigation facilities
- Diversify into off-farm activities
- Implement soil conservation techniques
2.4.2. Propensity Score Matching
- R1 = denotes the value of the outcome for adopters of the adaptation, and
- R0 is the value of the same variable for non-adopters.
2.4.3. Difference-in-Difference
- is the weight (using a PSM approach) given to the jth control area matched to adoption area i.
- = Farm household food security status of CCA adopters in 2016.
- = Farm household food security status of CCA adopters in 2010
- = Farm household food security status of non-adopters of CCA in 2016
- = Farm Household food security status of non-adopters of CCA in 2010.
3. Results and Discussion
3.1. Determinants of Farm Households Climate Change Adaptation Options
- Irrigation
- Soil conservation
- Crop diversification
- Diversification into non-farm activities
3.2. Impact of Climate Change Adaptation on Household Food Security
3.2.1. PSM Result of Impact of CCA on Household Food Security
3.2.2. DID Result of Impact of CCA on Household Food Security
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medugu, I.N.; Majid, M.R.; Choji, I. A comprehensive approach to drought and desertification in Nigeria. Manag. Environ. Qual. Int. J. 2008. [Google Scholar] [CrossRef]
- Abaje, I.; Ati, O.; Iguisi, E.; Jidauna, G. Droughts in the sudano-sahelian ecological zone of Nigeria: Implications for agriculture and water resources development. Glob. J. Hum. Soc. Sci. B Geogr. Geo Sci. Environ. 2013, 13, 1–10. [Google Scholar]
- Echendu, A.J. The impact of flooding on Nigeria’s sustainable development goals (SDGs). Ecosyst. Health Sustain. 2020, 6, 1791735. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of multiple sustainable agricultural practices in rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- El-ladan, I. Climate change and food security in Nigeria. In Proceedings of the International Conference on Possible Impacts of Climate Change on Africa, Institute of African Research and Studies, Cairo University, Cairo, Egypt, 18–20 May 2014; p. 16. [Google Scholar]
- Firdaus, R.R.; Gunaratne, M.S.; Rahmat, S.R.; Kamsi, N.S. Does climate change only affect food availability? What else matters? Cogent Food Agric. 2019, 5, 1707607. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition; Food & Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Edame, G.E.; Ekpenyong, A.; Fonta, W.M.; Duru, E. Climate change, food security and agricultural productivity in Africa: Issues and policy directions. Int. J. Humanit. Soc. Sci. 2011, 1, 205–223. [Google Scholar]
- FAO. Climate Change and Food Security: A Framework Document; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- von Grebmer, K.; Bernstein, J.; Alders, R.; Dar, O.; Kock, R.; Rampa, F.; Wiemers, M.; Acheampong, K.; Hanano, A.; Higgins, B.; et al. 2020 Global Hunger Index: One Decade to Zero Hunger: Linking Health and Sustainable Food Systems; Welthungerhilfe: Bonn, Germany; Concern Worldwide: Dublin, Iraland, 2020. [Google Scholar]
- Adebayo, O.; Olagunju, K.; Kabir, S.K.; Adeyemi, O. Social crisis, terrorism and food poverty dynamics: Evidence from Northern Nigeria. Int. J. Econ. Financ. Issues 2016, 6. [Google Scholar] [CrossRef]
- Korir, L.; Rizov, M.; Ruto, E. Analysis of Household Food Demand and Its Implications on Food Security in Kenya: An Application of QUAIDS Model. In Proceedings of the Agricultural Economics Society, 92nd Annual Conference 2018, Coventry, UK, 16–18 April 2018. [Google Scholar]
- Ikudayisi, A.; Okoruwa, V.; Omonona, B. From the lens of food accessibility and dietary quality: Gaining insights from urban food security in Nigeria. Outlook Agric. 2019, 48, 336–343. [Google Scholar] [CrossRef]
- Adeniyi, D.A.; Dinbabo, M.F. Factors Influencing Household Food Security Among Irrigation Smallholders in North West Nigeria. J. Rev. Glob. Econ. 2019, 8, 291–304. [Google Scholar] [CrossRef]
- The Sustainable Development Goals Report 2018; UN General Assembly: New York, NY, USA, 2018; p. 36.
- Chambwera, M.; Zou, Y.; Boughlala, M. Better Economics: Supporting Adaptation with Stakeholder Analysis; International Institute for Environment and Development (IIED): London, UK, 2011. [Google Scholar]
- FAO. Climate Change, Agriculture and Food Security. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/a-i6030e.pdf (accessed on 18 September 2020).
- FAO; IFAD; UNICEF; WFP; WHO. The state of food security and nutrition in the world 2017. In Building Resilience for Peace and Food Security; FAO: Rome, Italy, 2017. [Google Scholar]
- Field, C.B. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Steynor, A.; Pasquini, L. Informing climate services in Africa through climate change risk perceptions. Clim. Serv. 2019, 15, 100112. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R.; Mastrandrea, M.D.; Mach, K.J.; Abdrabo, M.-K.; Adger, N.; Anokhin, Y.A.; Anisimov, O.A.; Arent, D.J.; Barnett, J. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–32. [Google Scholar]
- Ebele, N.E.; Emodi, N.V. Climate change and its impact in Nigerian economy. J. Sci. Res. Rep. 2016, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Abdulkadir, T.; Salami, A.; Aremu, A.; Ayanshola, A.; Oyejobi, D. Assessment of neural networks performance in modeling rainfall amounts. J. Res. For. Wildl. Environ. 2017, 9, 12–22. [Google Scholar]
- Elum, Z.A.; Modise, D.M.; Marr, A. Farmer’s perception of climate change and responsive strategies in three selected provinces of South Africa. Clim. Risk Manag. 2017, 16, 246–257. [Google Scholar] [CrossRef]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Kangmennaang, J.; Kerr, R.B.; Lupafya, E.; Dakishoni, L.; Katundu, M.; Luginaah, I. Impact of a participatory agroecological development project on household wealth and food security in Malawi. Food Secur. 2017, 9, 561–576. [Google Scholar] [CrossRef]
- Morland, A. Climate Change, Food Security and Adaptation. Available online: https://www.thenewhumanitarian.org/analysis/2017/06/14/fact-file-climate-change-food-security-and-adaptation (accessed on 21 September 2020).
- European Commission. Adaptation to Climate Change. Available online: https://ec.europa.eu/clima/policies/adaptation_en (accessed on 18 September 2020).
- Ade Ajayi, J.F.; Kirk-Greene, A.H.M.; Udo, R.K.; Falola, T.O. Nigeria. Available online: https://www.britannica.com/place/Nigeria (accessed on 15 December 2020).
- National Bureau of Statistics, Federal Republic of Nigeria. Nigeria General Household Survey (GHS), Panel 2010, Wave 1 Ref. NGA_2010_GHSP-W1_v03_M; National Bureau of Statistics: Abuja, Nigeria, 2010. [Google Scholar]
- National Bureau of Statistics, Federal Republic of Nigeria. Nigeria General Household Survey, Panel 2012-2013, Wave 2. Ref. NGA_2012_GHSP-W2_v02_M; National Bureau of Statistics: Abuja, Nigeria, 2012. [Google Scholar]
- National Bureau of Statistics, Federal Republic of Nigeria. General Household Survey, Panel (GHS-Panel) 2015–2016.Ref. NGA_2015_GHSP-W3_v02_M; National Bureau of Statistics: Abuja, Nigeria, 2015. [Google Scholar]
- Ogunpaimo, O.R.; Dipeolu, A.O.; Ogunpaimo, O.J.; Akinbode, S.O. Determinants of choice of climate change adaptation options among cassava farmers, in southwest Nigeria. Futo J. Ser. 2020, 6, 25–39. [Google Scholar]
- GADM. Country Profile. Available online: https://gadm.org/download_country_v3.html (accessed on 25 January 2021).
- Birungi, P.B. The Linkages between Land Degradation, Poverty and Social Capital in Uganda; University of Pretoria: Pretoria, South Africa, 2008. [Google Scholar]
- Mugi-Ngenga, E.; Mucheru-Muna, M.; Mugwe, J.; Ngetich, F.; Mairura, F.; Mugendi, D. Household’s socio-economic factors influencing the level of adaptation to climate variability in the dry zones of Eastern Kenya. J. Rural Stud. 2016, 43, 49–60. [Google Scholar] [CrossRef]
- Dolisca, F.; Carter, D.R.; McDaniel, J.M.; Shannon, D.A.; Jolly, C.M. Factors influencing farmers’ participation in forestry management programs: A case study from Haiti. For. Ecol. Manag. 2006, 236, 324–331. [Google Scholar] [CrossRef]
- Tizale, C.Y. The Dynamics of Soil Degradation and Incentives for Optimal Management in the Central Highlands of Ethiopia; University of Pretoria: Pretoria, South Africa, 2007. [Google Scholar]
- Adams, O.R. Climate Variability and Adaptation Strategies in Cassava Production in Ogun State, Nigeria; Federal University of Agriculture: Abeokuta, Nigeria, 2015. [Google Scholar]
- Ijaiya, M.; Abdulraheem, A.; Abdullahi, I. Agricultural credit guarantee scheme and food security in Nigeria. Ethiop. J. Environ. Stud. Manag. 2017, 10, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Aku, P. Comparative analysis of NACB and ACGSF Loan disbursement to agriculture in Nigeria. J. Soc. Manag. Stud. 1995, 2, 99–108. [Google Scholar]
- Smith, L.C.; Subandoro, A. Measuring Food Security Using Household Expenditure Surveys; Food Security in Practice Technical Guide Series; International Food Policy Research Institute: Washington, DC, USA, 2007; p. 146. [Google Scholar]
- Akerele, D.; Sanusi, R.; Fadare, O.; Ashaolu, O. Factors influencing nutritional adequacy among rural households in Nigeria: How does dietary diversity stand among influencers? Ecol. Food Nutr. 2017, 56, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics Using Stata; Stata Press College Station: College Station, TX, USA, 2009; Volume 5. [Google Scholar]
- Deressa, T.T.; Hassan, R.M.; Ringler, C. Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Oyetunde-Usman, Z.; Olagunju, K.O.; Ogunpaimo, O.R. Determinants of adoption of multiple sustainable agricultural practices among smallholder farmers in Nigeria. Int. Soil Water Conserv. Res. 2020. [Google Scholar] [CrossRef]
- Temesgen, D.; Hassan, R.; Tekie, A.; Mahmud, Y.; Ringler, C. Analyzing the Determinants of Farmers’ Choice of Adaptation Methods and Perceptions of Climate Change in the Nile Basin of Ethiopia; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2008. [Google Scholar]
- Alam, K. Farmers’ adaptation to water scarcity in drought-prone environments: A case study of Rajshahi District, Bangladesh. Agric. Water Manag. 2015, 148, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, T.; Van Der Veen, A. Farm level adaptation to climate change: The case of farmer’s in the Ethiopian Highlands. Environ. Manag. 2013, 52, 29–44. [Google Scholar] [CrossRef]
- Vo, H.H.; Mizunoya, T.; Nguyen, C.D. Determinants of farmers’ adaptation decisions to climate change in the central coastal region of Vietnam. Asia Pac. J. Reg. Sci. 2021, 1–23. [Google Scholar] [CrossRef]
- Tambo, J.A. Adaptation and resilience to climate change and variability in north-east Ghana. Int. J. Disaster Risk Reduct. 2016, 17, 85–94. [Google Scholar] [CrossRef]
- Mekuyie, M.; Mulu, D. Perception of impacts of climate variability on pastoralists and their adaptation/coping strategies in fentale district of Oromia Region, Ethiopia. Environ. Syst. Res. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Dehejia, R.H.; Wahba, S. Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.C.; Dupriez, O.; Troubat, N. Assessment of the Reliability and Relevance of the Food Data Collected in National Household Consumption and Expenditure Surveys; International Household Survey Network: Oxford, UK, 2014; p. 69. [Google Scholar]
- Khandker, S.B.; Koolwal, G.; Samad, H. Handbook on Impact Evaluation: Quantitative Methods and Practices; The World Bank: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Becker, S.O.; Ichino, A. Estimation of average treatment effects based on propensity scores. Stata J. 2002, 2, 358–377. [Google Scholar] [CrossRef] [Green Version]
- Caliendo, M.; Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef] [Green Version]
- Hisali, E.; Birungi, P.; Buyinza, F. Adaptation to climate change in Uganda: Evidence from micro level data. Glob. Environ. Chang. 2011, 21, 1245–1261. [Google Scholar] [CrossRef]
- Alam, G.M.; Alam, K.; Mushtaq, S. Influence of institutional access and social capital on adaptation decision: Empirical evidence from hazard-prone rural households in Bangladesh. Ecol. Econ. 2016, 130, 243–251. [Google Scholar] [CrossRef]
- Boansi, D.; Tambo, J.A.; Müller, M. Analysis of farmers’ adaptation to weather extremes in West African Sudan Savanna. Weather Clim. Extrem. 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Hassan, R.M.; Nhemachena, C. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. Afr. J. Agric. Resour. Econ. 2008, 2, 83–104. [Google Scholar] [CrossRef]
- Ojo, T.; Baiyegunhi, L. Determinants of credit constraints and its impact on the adoption of climate change adaptation strategies among rice farmers in South-West Nigeria. J. Econ. Struct. 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Quan, J. Land Access in the Early 21st Century: Issues, Trends, Linkages and Policy Options; FAO Livelihoods Support Programme Working Paper 24; FAO: Rome, Italy, 2006. [Google Scholar]
- Kokoye, S.E.H.; Yabi, J.A.; Tovignan, S.D.; Yegbemey, R.N.; Nuppenau, E.-A. Simultaneous modelling of the determinants of the partial inputs productivity in the municipality of Banikoara, Northern Benin. Agric. Syst. 2013, 122, 53–59. [Google Scholar] [CrossRef]
- Fosu-Mensah, B.Y.; Vlek, P.L.; MacCarthy, D.S. Farmers’ perception and adaptation to climate change: A case study of Sekyedumase district in Ghana. Environ. Dev. Sustain. 2012, 14, 495–505. [Google Scholar] [CrossRef]
- Iheke, O.R.; Agodike, W.C. Analysis of factors influencing the adoption of climate change mitigating measures by smallholder farmers in IMO state, Nigeria. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2016, 16, 213–220. [Google Scholar]
- Nabikolo, D.; Bashaasha, B.; Mangheni, M.; Majaliwa, J. Determinants of climate change adaptation among male and female headed farm households in eastern Uganda. Afr. Crop Sci. J. 2012, 20, 203–212. [Google Scholar]
- Abid, M.; Scheffran, J.; Schneider, U.A.; Ashfaq, M. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015, 6, 225–243. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- Iqbal, M.; Ahmad, M.; Mustafa, G. Impact of Farm Households’ Adaptation on Agricultural Productivity: Evidence from Different Agro-Ecologies of Pakistan. Clim. Chang. Work. Pap. 2015, 5, 17. [Google Scholar]
- Javed, S.; Kishwar, S.; Iqbal, M. From Perceptions to Adaptation to Climate Change: Farm Level Evidence from Pakistan; Pakistan Institute of Development Economics: Islamabad, Pakistan, 2015. [Google Scholar]
- Tiwari, V.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef]
- Gbetibouo, G.A. Understanding Farmers Perceptions and Adaptations to Climate Change and Variability: The Case of the Limpopo Basin Farmers South Africa; IFPRI Research Brief: Washington, DC, USA, 2009. [Google Scholar]
- Arshad, M.; Amjath-Babu, T.; Kächele, H.; Müller, K. What drives the willingness to pay for crop insurance against extreme weather events (flood and drought) in Pakistan? A hypothetical market approach. Clim. Dev. 2016, 8, 234–244. [Google Scholar] [CrossRef]
- Le Dang, H.; Li, E.; Nuberg, I.; Bruwer, J. Farmers’ assessments of private adaptive measures to climate change and influential factors: A study in the Mekong Delta, Vietnam. Nat. Hazards 2014, 71, 385–401. [Google Scholar] [CrossRef]
- Trinh, T.Q.; Rañola, R.F., Jr.; Camacho, L.D.; Simelton, E. Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam. Land Use Policy 2018, 70, 224–231. [Google Scholar] [CrossRef]
- Asrat, P.; Simane, B. Farmers’ perception of climate change and adaptation strategies in the Dabus watershed, North-West Ethiopia. Ecol. Process. 2018, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Ogunpaimo, O.R.; Ogbe, A.; Edewor, S. Determinants of factors affecting adaptation strategies to climate change in cassava processing in South West, Nigeria. In Proceedings of the 6th African Conference of Agricultural Economists, Abuja, Nigeria, 23–25 September 2019; p. 17. [Google Scholar]
- Vincent, K. Uncertainty in adaptive capacity and the importance of scale. Glob. Environ. Chang. 2007, 17, 12–24. [Google Scholar] [CrossRef]
- Tiwari, K.R.; Sitaula, B.K.; Nyborg, I.L.; Paudel, G.S. Determinants of farmers’ adoption of improved soil conservation technology in a middle mountain watershed of central Nepal. Environ. Manag. 2008, 42, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Hinkel, J. “Indicators of vulnerability and adaptive capacity”: Towards a clarification of the science–policy interface. Glob. Environ. Chang. 2011, 21, 198–208. [Google Scholar] [CrossRef]
- Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob. Environ. Chang. 2012, 22, 223–235. [Google Scholar] [CrossRef]
- Weldegebriel, Z.B.; Prowse, M. Climate-change adaptation in Ethiopia: To what extent does social protection influence livelihood diversification? Dev. Policy Rev. 2013, 31, 35–56. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Ogunniyi, A.; Omonona, B.; Abioye, O.; Olagunju, K. Impact of irrigation technology use on crop yield, crop income and household food security in Nigeria: A treatment effect approach. AIMS Agric. Food 2018, 3, 154–171. [Google Scholar] [CrossRef]
- Kabunga, N.S.; Dubois, T.; Qaim, M. Impact of tissue culture banana technology on farm household income and food security in Kenya. Food Policy 2014, 45, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Noltze, M.; Schwarze, S.; Qaim, M. Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste. Ecol. Econ. 2013, 85, 59–68. [Google Scholar] [CrossRef]
- Becerril, J.; Abdulai, A. The impact of improved maize varieties on poverty in Mexico: A propensity score-matching approach. World Dev. 2010, 38, 1024–1035. [Google Scholar] [CrossRef]
- Wanjala, B.M.; Muradian, R. Can big push interventions take small-scale farmers out of poverty? Insights from the Sauri Millennium Village in Kenya. World Dev. 2013, 45, 147–160. [Google Scholar] [CrossRef]
- Orr, A.; Mausch, K. How Can We Make Smallholder Agriculture in the Semi-Arid Tropics More Profitable and Resilient? Working Paper Series No. 59; International Crops Research Institute for Semi-Arid Tropics: Nairobi, Kenya, 2014; p. 28. [Google Scholar]
- Khonje, M.; Manda, J.; Alene, A.D.; Kassie, M. Analysis of adoption and impacts of improved maize varieties in eastern Zambia. World Dev. 2015, 66, 695–706. [Google Scholar] [CrossRef]
Year | |||||
---|---|---|---|---|---|
Characteristics | 2010 | 2016 | |||
Percentage | Mean | Percentage | Mean | ||
Gender of HH | Female | 11.64 | 15.86 | ||
Male | 88.36 | 84.14 | |||
Marital status | Single | 15.00 | 20.43 | ||
Married | 85.00 | 79.57 | |||
Accessed credit | Yes | 2.94 | - | 24.01 | |
No | 97.06 | 75.99 | |||
Extension contact | Yes | 14.38 | 86.79 | ||
No | 85.62 | 13.21 | |||
Ownership of land | Yes | 29.07 | 1.24 | ||
No | 70.93 | 98.76 | |||
Age of HH | 50.4 | 53.2 | |||
HH SIZE | 6 | 8 | |||
Years of schooling | 6 | 7 | |||
Household asset | 11 | 41 | |||
Plot size | 11,372.38 | 10,264 | |||
Secondary income | 13,465.25 | 5672.59 | |||
Total food expenditure | 16,382.38 | 21,867.58 | |||
Total non-food expenditure | 7137.23 | 8350.23 | |||
Total expenditure | 23,519.61 | 30,217.83 |
Variable | Description | Measurement | A Priori Expectation |
---|---|---|---|
X1 | Age of household head | Years | ± |
X2 | Accessed credit | Dummy: 1 for yes; 0 no | + |
X3 | Tenancy status | Dummy: 1 for farm owner; 0 otherwise | + |
X4 | Farm size | Hectares | + |
X5 | Accessed extension contact | Dummy: 1 for yes; 0 no | + |
X6 | Household size | Number | ± |
X7 | Gender of the HH | Dummy: 1 for male; 0 otherwise | ± |
X8 | Marital status | Dummy: 1 for married; 0 otherwise | ± |
X9 | Educational level of HH | Years | + |
X10 | Secondary occupation income | Naira | + |
X11 | Quantity of household asset | Number | + |
X12 | North Central | Dummy: 1 for yes; 0 otherwise | + |
X13 | North East | Dummy: 1 for yes; 0 otherwise | + |
X14 | North West | Dummy: 1 for yes; 0 otherwise | + |
X15 | South East | Dummy: 1 for yes; 0 otherwise | + |
X16 | South West | Dummy: 1 for yes; 0 otherwise | + |
Reference category | South-South |
Irrigation | Soil Conservation | Crop Diversification | Diversify into Other Occupation | |
---|---|---|---|---|
Credit | −0.14 * | 0.13 *** | −0.20 | 0.23 *** |
(−1.82) | (2.61) | (−0.38) | (5.30) | |
Tenancy Status | 0.05 | 0.10 *** | 0.26 *** | −0.08 *** |
(1.19) | (39.49) | (7.97) | (−2.99) | |
Farm size | 0.02 *** | 0.03 * | 0.03 *** | 0.08 |
(3.55) | (1.86) | (4.10) | (1.62) | |
Extension contact | 0.17 *** | −0.09 * | 0.24 *** | −0.07 |
(2.89) | (−1.61) | (4.07) | (−1.64) | |
Household size | 0.02 * | 0.06 *** | 0.01 | 0.04 *** |
(1.90) | (9.17) | (0.68) | (6.27) | |
Age of HH | −0.01 *** | 0.01 | −0.01 | −0.004 *** |
(−3.03) | (0.69) | (−0.11) | (−4.74) | |
Gender of HH | −0.07 | 0.30 *** | −0.02 | −0.11 ** |
(−0.75) | (4.69) | (−0.38) | (−2.38) | |
Marital status | 0.24 ** | −0.16 ** | 0.28 *** | 0.26 *** |
(2.19) | (−2.55) | (5.17) | (5.13) | |
Years of schooling | −0.01 | −0.04 *** | −0.02 *** | 0.02 *** |
(−0.04) | (−12.35) | (−6.29) | (7.27) | |
HH asset | −0.01 *** | −0.09 *** | −0.01 *** | 0.003 *** |
(−3.16) | (−15.66) | (−7.12) | (3.79) | |
North Central | 0.35 ** | 0.49 *** | 0.28 *** | −0.54 *** |
(2.23) | (7.65) | (3.80) | (−7.51) | |
North East | −0.03 | 0.56 *** | 0.15 ** | −0.42 *** |
(−0.17) | (8.68) | (2.10) | (−5.88) | |
North West | 0.56 *** | 0.48 *** | 1.12 *** | −0.18 *** |
(3.71) | (7.37) | (12.35) | (−2.52) | |
South East | −0.01 | 0.55 *** | 1.43 *** | −0.25 *** |
(−0.04) | (8.48) | (15.11) | (−3.52) | |
South West | −0.35 | 0.50 *** | 0.06 | 0.47 *** |
(−1.62) | (6.38) | (0.99) | (5.37) | |
Constant | −2.12 | −1.99 | 0.38 | −0.16 |
(−9.79) | (−19.02) | (3.50) | (−1.70) | |
Number of Observations | 18,873 | 18,873 | 18,873 | 18,873 |
Log-Likelihood | −0.07 *** | −4262.18 *** | −6173.30 *** | −9332.21 *** |
Wald Chi2(14) | 0.21 *** | 2371.78 *** | 745.85 *** | 431.58 *** |
p-Value | −0.05 ** | 0.000 *** | 0.000 *** | 0.000 *** |
Outcome Variable | ATT | t-Values | Mean Bias | Median Bias | Bias Reduction |
---|---|---|---|---|---|
Food security | 0.09 ** | 2.15 | 4.2 | 4.3 | 83% |
Variable | Before Matching- Mean Absolute Bias | After Matching Mean Absolute Bias | t-Vals of Covariates before Matching | t-Vals of Covariates After Matching | % Reduction Bias |
---|---|---|---|---|---|
Credit | 0.001 | 0.01 | 0.15 | 1.63 | 75.8 |
Tenancy Status | 0.06 | 0.01 | 1.90 | 1.13 | 74.7 |
Farm size | 0.07 | 0.01 | 0.11 | 1.44 | 70.4 |
Extension contact | 0.06 | 0.002 | 2.82 | 0.13 | 97.2 |
Age of HH | 1.62 | 0.28 | 1.49 | 0.41 | 82.6 |
Gender of HH | 0.07 | 0.002 | 3.94 | 1.39 | 97.2 |
Years of Schooling | 0.49 | 0.09 | 2.07 | 0.25 | 82 |
Marital Status | 0.03 | 0.01 | 1.19 | 0.69 | 65 |
HH SIZE | 0.08 | 0.01 | 0.41 | 1.33 | 88.7 |
HH ASSET | 0.516 | 0.112 | 0.87 | 0.41 | 78.1 |
Household Food Expenditure | Coefficient | Robust Standard Error | t-Values |
---|---|---|---|
Adapt | 4.86 *** | 1.09 | 4.45 |
y16 | −4.02 *** | 0.50 | −8.06 |
DID | 5.93 *** | 0.68 | 8.73 |
Constant | 76.00 | 0.91 | 83.29 |
F-value Prob > F | 33.85 *** 0.000 |
Food Security Outcome | Coefficient | Robust Standard Error | t-Values |
---|---|---|---|
Adapt | 4.34 *** | 1.22 | 3.55 |
Time | −3.13 | 3.17 | −0.99 |
DID | 4.15 *** | 1.01 | 4.11 |
Constant | 79.90 | 2.90 | 36.36 |
F-value Prob > F | 13.55 *** 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunpaimo, O.R.; Oyetunde-Usman, Z.; Surajudeen, J. Impact of Climate Change Adaptation on Household Food Security in Nigeria—A Difference-in-Difference Approach. Sustainability 2021, 13, 1444. https://doi.org/10.3390/su13031444
Ogunpaimo OR, Oyetunde-Usman Z, Surajudeen J. Impact of Climate Change Adaptation on Household Food Security in Nigeria—A Difference-in-Difference Approach. Sustainability. 2021; 13(3):1444. https://doi.org/10.3390/su13031444
Chicago/Turabian StyleOgunpaimo, Oyinlola Rafiat, Zainab Oyetunde-Usman, and Jolaosho Surajudeen. 2021. "Impact of Climate Change Adaptation on Household Food Security in Nigeria—A Difference-in-Difference Approach" Sustainability 13, no. 3: 1444. https://doi.org/10.3390/su13031444
APA StyleOgunpaimo, O. R., Oyetunde-Usman, Z., & Surajudeen, J. (2021). Impact of Climate Change Adaptation on Household Food Security in Nigeria—A Difference-in-Difference Approach. Sustainability, 13(3), 1444. https://doi.org/10.3390/su13031444