The Probability Distribution of Worldwide Forest Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Power Laws and Curve Fitting
2.3. Parametric and Non-Parametric Empirical Models of Change in Forest Coverage
3. Results
3.1. The Probability Distribution of Worldwide Forest Areas
3.2. An Analysis of Change in Forest Coverage
4. Discussion and conclusion
- Using the methodology described by Clauset et al., we found moderate support for a power law in the upper tail distribution of worldwide forest areas [19]. A power law cannot be rejected in any period. It is a finding consistent with the size distribution of other phenomena related to forests, such as rainfall precipitations [14] and forest fires [15]. However, the log-normal distribution appears to be a plausible alternative model that we cannot reject in any case.
- The scaling parameter’s estimated value is around 1.8 during all periods and is quite consistent over time. This finding indicates stability in the probability distribution of worldwide forest areas over time, a result confirmed by the estimated empirical density functions.
- The study of the rates of change in forest areas reveals that the distribution of forest areas and their rates of change are independent for most of the observations throughout the whole period from 1990 to 2015. Therefore, random (or stochastic) forest area growth cannot be rejected for most of the distribution of forest areas, which could explain the resulting Pareto (power law) or log-normal probability distribution.
- In Appendix A, we run some robustness checks and re-estimate the main results using a subset of the primary sample that includes a fixed list of countries in all years and excludes the annual interpolated values estimated by the FAO. Results are quite similar to those obtained using the full sample from FAO, indicating that our results are not biased by changes in the sample size or issues related to interpolations.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Data | Lower Bound | Pareto Exponent | Power Law Test | Power Law vs. Log-Normal | Power Law vs. Exponential | |
---|---|---|---|---|---|---|
Standard Error | p-Value | p-Value | p-Value | |||
1990 | 8136 | 1.874 | 0.114 | 0.330 | 0.576 | 0.010 |
2000 | 8032 | 1.847 | 0.112 | 0.500 | 0.419 | 0.015 |
2005 | 8673 | 1.879 | 0.118 | 0.068 | 0.519 | 0.010 |
2010 | 9028 | 1.899 | 0.122 | 0.482 | 0.593 | 0.008 |
2015 | 8040 | 1.850 | 0.114 | 0.612 | 0.417 | 0.011 |
(1) | (2) | (3) | |
---|---|---|---|
ln(Sit-1) | −0.037 ** | −1.492 ** | −2.849 *** |
(0.016) | (0.711) | (1.073) | |
ln(Sit-1)2 | 0.120 | ||
(0.080) | |||
Country fixed effects | No | Yes | Yes |
Year fixed effects | No | Yes | Yes |
Observations | 756 | 756 | 756 |
R2 | 0.017 | 0.776 | 0.780 |
References
- FAO. Global Forest Resources Assessment 2020—Key Findings; UN Food and Agriculture Organization: Rome, Italy, 2020; Available online: http://www.fao.org/documents/card/en/c/CA8753EN (accessed on 8 July 2020).
- Mather, A.S. The forest transition. Area 1992, 24, 367–379. [Google Scholar]
- Pfaff, A.S.P.; Walker, R. Regional interdependence and forest “transitions”: Substitute deforestation limits the relevance of local reversals. Land Use Policy 2010, 27, 119–129. [Google Scholar] [CrossRef]
- Bray, D.B.; Klepeis, P. Deforestation, Forest Transitions, and Institutions for Sustainability in Southeastern Mexico, 1900–2000. Environ. Hist. 2005, 11, 195–223. [Google Scholar] [CrossRef]
- Farley, K.A. Pathways to forest transition: Local case studies from the Ecuadorian Andes. J. Lat. Am. Geogr. 2010, 9, 7–26. [Google Scholar] [CrossRef]
- Frayer, J.; Müller, D.; Sun, Z.; Munroe, D.K.; Xu, J. Processes Underlying 50 Years of Local Forest-Cover Change in Yunnan, China. Forests 2014, 5, 3257–3273. [Google Scholar] [CrossRef]
- Cat Tuong, T.T.; Tani, H.; Wang, X.; Quang Thang, N. Semi-Supervised Classification and Landscape Metrics for Mapping and Spatial Pattern Change Analysis of Tropical Forest Types in Thua Thien Hue Province, Vietnam. Forests 2019, 10, 673. [Google Scholar] [CrossRef] [Green Version]
- Rudel, T.K.; Meyfroidt, P.; Chazdon, R.; Bongers, F.; Sloan, S.; Grau, H.R.; Van Holt, T.; Schneider, L. Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century. Ambio 2020, 49, 74–84. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: New York, NY, USA, 1982. [Google Scholar]
- Walter, C. Sustainable Financial Risk Modelling Fitting the SDGs: Some Reflections. Sustainability 2020, 12, 7789. [Google Scholar] [CrossRef]
- Kagan, Y.Y. Earthquake Size Distribution and Earthquake Insurance. Communications in Statistics. Stoch. Models 1997, 13, 775–797. [Google Scholar] [CrossRef]
- Corral, A.; González, A. Power Law Size Distributions in Geoscience Revisited. Earth Space Sci. 2019, 6, 673–697. [Google Scholar] [CrossRef] [Green Version]
- Pisarenko, V.F. Non-linear Growth of Cumulative Flood Losses with Time. Hydrol. Process. 1998, 12, 461–470. [Google Scholar] [CrossRef]
- Peters, O.; Hertlein, C.; Christensen, K. A complexity view of rainfall. Phys. Rev. Lett. 2002, 88, 18701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, D.C.; Turcotte, D.L. Fractality and Self-organized Criticality of Wars. Fractals 1998, 6, 351–357. [Google Scholar] [CrossRef]
- Akhundjanov, S.B.; Devadoss, S.; Luckstead, J. Size distribution of national CO2 emissions. Energy Econ. 2017, 66, 182–193. [Google Scholar] [CrossRef]
- Soo, K.T. Zipf’s Law for Cities: A Cross-country Investigation. Reg. Sci. Urban Econ. 2005, 35, 239–263. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.K. Cities and Countries. J. Money Credit Bank. 2006, 38, 2225–2245. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-law Distributions in Empirical Data. Siam Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zeng, Z.; Wu, J.; Peng, L.; Lakshmi, V.; Yang, H.; Liu, J. Large Uncertainty on Forest Area Change in the Early 21st Century among Widely Used Global Land Cover Datasets. Remote Sens. 2020, 12, 3502. [Google Scholar] [CrossRef]
- FAO. Forest Resources Assessment 1990—Global Synthesis; FAO Forestry Paper No. 124; UN Food and Agriculture Organization: Rome, Italy, 1995; Available online: http://www.fao.org/forest-resources-assessment/past-assessments/fra-1990/en/ (accessed on 20 August 2020).
- FAO. Global Forest Resources Assessment 2000—Main Report; FAO Forestry Paper No. 140; UN Food and Agriculture Organization: Rome, Italy, 2001; Available online: http://www.fao.org/forest-resources-assessment/past-assessments/fra-2000/en/ (accessed on 20 August 2020).
- FAO. Global Forest Resources Assessment 2005—Progress towards Sustainable Forest Management; FAO Forestry Paper No. 147; UN Food and Agriculture Organization: Rome, Italy, 2006; Available online: http://www.fao.org/forest-resources-assessment/past-assessments/fra-2005/en/ (accessed on 20 August 2020).
- FAO. Global Forest Resources Assessment 2010—Main Report; FAO Forestry Paper No. 163; UN Food and Agriculture Organization: Rome, Italy, 2010; Available online: http://www.fao.org/forest-resources-assessment/past-assessments/fra-2010/en/ (accessed on 20 August 2020).
- FAO. Global Forest Resources Assessment 2015—Desk Reference; UN Food and Agriculture Organization: Rome, Italy, 2015; Available online: http://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/ (accessed on 20 August 2020).
- Keenan, R.J.; Reams, G.A.; Archard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Romijn, E.; Lantican, C.; Herold, M.; Lindquist, E. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manag. 2015, 352, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, A. Uncertainty in forest simulators and forest planning systems. Diss. For. 2010. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; See, L. Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications. Glob. Chang. Biol. 2008, 14, 1057–1075. [Google Scholar] [CrossRef]
- Sharafati, A.; Asadollah, S.B.H.S.; Hosseinzadeh, M. The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process Saf. Environ. Prot. 2020, 140, 68–78. [Google Scholar] [CrossRef]
- Gu, J.; Hu, H.; Wang, L.; Xuan, W.; Cao, Y. Fractional Stochastic Interval Programming for Optimal Low Impact Development Facility Category Selection under Uncertainty. Water Resour. Manag. 2020, 34, 1567–1587. [Google Scholar] [CrossRef]
- Ghaith, M.; Li, Z. Propagation of parameter uncertainty in SWAT: A probabilistic forecasting method based on polynomial chaos expansion and machine learning. J. Hydrol. 2020, 586, 124854. [Google Scholar] [CrossRef]
- Shamshirband, S.; Nodoushan, E.J.; Adolf, J.E.; Manaf, A.A.; Mosavi, A.; Chau, K.-W. Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech. 2019, 13, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Ehteram, M.; Mousavi, S.F.; Karami, H.; Farzin, S.; Singh, V.P.; Chau, K.-W.; El-Shafie, A. Reservoir operation based on evolutionary algorithms and multi-criteria decision-making under climate change and uncertainty. J. Hydroinform. 2018, 20, 332–355. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chau, K.W. Uncertainty Analysis on Hybrid Double Feedforward Neural Network Model for Sediment Load Estimation with LUBE Method. Water Resour. Manag. 2019, 33, 3563–3577. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Osada, S.; Sato, Y. OLS estimation and the t test revisited in rank-size rule regression. J. Reg. Sci. 2008, 48, 691–715. [Google Scholar] [CrossRef]
- Gabaix, X.; Ioannides, Y.M. The evolution of city size distributions. In Handbook of Urban and Regional Economics; Henderson, J.V., Thisse, J.F., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2004; Volume 4, pp. 2341–2378. [Google Scholar]
- Goldstein, M.L.; Morris, S.A.; Yen, G.G. Problems with Fitting to the Power-law Distribution. Eur. Phys. J. B-Condens. Matter 2004, 41, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Gabaix, X.; Ibragimov, R. Rank-1/2: A simple way to improve the OLS estimation of tail exponents. J. Bus. Econ. Stat. 2011, 29, 24–39. [Google Scholar] [CrossRef] [Green Version]
- White, E.P.; Enquist, B.J.; Green, J.L. On estimating the exponent of power-law frequency distributions. Ecology 2008, 89, 905. [Google Scholar] [CrossRef] [Green Version]
- D’Huys, E.; Berghmans, D.; Seaton, D.B.; Poedts, S. The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for Power-Law-Distributed Solar Data. Sol. Phys. 2016, 291, 1561–1576. [Google Scholar] [CrossRef] [Green Version]
- Urzúa, C.M. A simple and efficient test for Zipf’s law. Econ. Lett. 2000, 66, 257–260. [Google Scholar] [CrossRef]
- Brzezinski, M. Do wealth distributions follow power laws? Evidence from ‘rich lists’. Phys. A 2014, 406, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Malevergne, Y.; Pisarenko, V.; Sornette, D. Testing the Pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities. Phys. Rev. E 2011, 83, 036111. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Muelbert, A.; Baker, T.R.; Dexter, K.G.; Lewis, S.L.; Brienen, R.J.W.; Feldpausch, T.R.; Lloyd, J.; Monteagudo-Mendoza, A.; Arroyo, L.; Álvarez-Dávila, E.; et al. Compositional response of Amazon forests to climate change. Glob. Chang. Biol. 2019, 25, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Ioannides, Y.M.; Overman, H.G. Spatial evolution of the US urban system. J. Econ. Geogr. 2004, 4, 131–156. [Google Scholar] [CrossRef]
- Eeckhout, J. Gibrat’s Law for (All) Cities. Am. Econ. Rev. 2004, 94, 1429–1451. [Google Scholar] [CrossRef] [Green Version]
- González-Val, R.; Ramos, A.; Sanz-Gracia, F. The Accuracy of Graphs to Describe Size Distributions. Appl. Econ. Lett. 2013, 20, 1580–1585. [Google Scholar] [CrossRef] [Green Version]
- Gabaix, X.; Gopikrishnan, P.; Plerou, V.; Stanley, H.E. Institutional Investors and Stock Market Volatility. Q. J. Econ. 2006, 121, 461–504. [Google Scholar] [CrossRef] [Green Version]
- Sutton, J. Gibrat’s Legacy. J. Econ. Lit. 1997, 35, 40–59. [Google Scholar]
- Gabaix, X. Zipf’s Law for Cities: An Explanation. Q. J. Econ. 1999, 114, 739–767. [Google Scholar] [CrossRef] [Green Version]
- Sims, C.; Horan, R.D.; Meadows, B. Come on feel the noise: Ecological foundations in stochastic bioeconomic models. Nat. Resour. Model. 2018, 31, e12191. [Google Scholar] [CrossRef]
- Willassen, Y. The stochastic rotation problem: A generalization of Faustmann’s formula to stochastic forest growth. J. Econ. Dyn. Control 1998, 22, 573–596. [Google Scholar] [CrossRef]
- Sandal, L.K.; Steinshamn, S.I. A stochastic feedback model for optimal management of renewable resources. Nat. Resour. Model. 1997, 10, 31–52. [Google Scholar] [CrossRef]
- Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 2006, 46, 323–351. [Google Scholar] [CrossRef] [Green Version]
- Vedyushkin, M.A. Fractal properties of forest spatial structure. Vegetatio 1994, 113, 65–70. [Google Scholar] [CrossRef]
- Nalakarn, P.; Tang, I.-M.; Triampo, W. Fractal studies on the spatial patterns of trees: A case study of Khao Yai National Park, Thailand. Sci. Asia 2008, 34, 409–415. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Y. Scaling laws and indications of self-organized criticality in urban systems. Chaos Solitons Fractals 2008, 35, 85–98. [Google Scholar] [CrossRef]
- Sloggy, M.R.; Kling, D.M.; Plantinga, A.J. Measure twice, cut once: Optimal inventory and harvest under volume uncertainty and stochastic price dynamics. J. Environ. Econ. Manag. 2020, 103, 102357. [Google Scholar] [CrossRef]
- Guo, C.; Costello, C. The value of adaption: Climate change and timberland management. J. Environ. Econ. Manag. 2013, 65, 452–468. [Google Scholar] [CrossRef]
- Buongiorno, J.; Zhou, M. Adaptive economic and ecological forest management under risk. For. Ecosyst. 2015, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Buongiorno, J.; Zhou, M. Multicriteria forest decisionmaking under risk with goal-programming markov decision process models. For. Sci. 2017, 63, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Reed, W.J. On the rank-size distribution for human settlements. J. Reg. Sci. 2002, 42, 1–17. [Google Scholar] [CrossRef]
- Ioannides, Y.; Skouras, S. US city size distribution: Robustly Pareto, but only in the tail. J. Urban Econ. 2013, 73, 18–29. [Google Scholar] [CrossRef]
- Luckstead, J.; Devadoss, S. Pareto tails and lognormal body of U.S. cities size distribution. Phys. A Stat. Mech. Appl. 2017, 465, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Puente-Ajovín, M.; Ramos, A.; Sanz-Gracia, F. Is there a universal parametric city size distribution? Empirical evidence for 70 countries. Ann. Reg. Sci. 2020, 65, 727–741. [Google Scholar] [CrossRef]
Year | Observations (Countries) | Mean Forest Land | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
1990 | 196 | 21,062.6 | 81,025.61 | 0.083 | 849,424.4 |
1991 | 199 | 20,708.56 | 80,373.09 | 0.083 | 849,563.7 |
1992 | 217 | 18,957.31 | 75,040.84 | 0.083 | 809,013.6 |
1993 | 219 | 18,751 | 74,635.55 | 0.083 | 809,045.5 |
1994 | 219 | 18,717.82 | 74,556.07 | 0.083 | 809,077.3 |
1995 | 219 | 18,684.64 | 74,477.48 | 0.083 | 809,109.2 |
1996 | 219 | 18,651.46 | 74,399.77 | 0.083 | 809,141.1 |
1997 | 219 | 18,618.28 | 74,322.94 | 0.083 | 809,172.9 |
1998 | 219 | 18,585.09 | 74,247 | 0.083 | 809,204.8 |
1999 | 219 | 18,551.91 | 74,171.95 | 0.083 | 809,236.6 |
2000 | 220 | 18,434.55 | 73,938.98 | 0.083 | 809,268.5 |
2001 | 220 | 18,413.77 | 73,869.62 | 0.083 | 809,172.8 |
2002 | 220 | 18,392.99 | 73,801.48 | 0.083 | 809,077.1 |
2003 | 220 | 18,372.21 | 73,734.57 | 0.083 | 808,981.4 |
2004 | 220 | 18,351.43 | 73,668.89 | 0.083 | 808,885.7 |
2005 | 220 | 18,330.65 | 73,604.43 | 0.083 | 808,790 |
2006 | 221 | 18,232.26 | 73,473.26 | 0.083 | 810,059.1 |
2007 | 221 | 18,216.81 | 73,499.95 | 0.083 | 811,328.3 |
2008 | 221 | 18,201.36 | 73,527.28 | 0.083 | 812,597.4 |
2009 | 221 | 18,185.91 | 73,555.25 | 0.083 | 813,866.5 |
2010 | 221 | 18,170.47 | 73,583.87 | 0.083 | 815,135.6 |
2011 | 221 | 18,155.5 | 73,567.33 | 0.083 | 815,094.6 |
2012 | 223 | 18,098.42 | 73,222.85 | 0.083 | 815,053.6 |
2013 | 223 | 18,082.80 | 73,207.06 | 0.083 | 815,012.6 |
2014 | 223 | 18,067.19 | 73,191.62 | 0.083 | 814,971.5 |
2015 | 223 | 18,051.57 | 73,176.52 | 0.083 | 814,930.5 |
Data | Lower Bound | Pareto Exponent | Power Law Test | Power Law vs. Log-Normal | Power Law vs. Exponential | |
---|---|---|---|---|---|---|
Standard Error | p-Value | p-Value | p-Value | |||
1990 | 8201 | 1.839 | 0.107 | 0.544 | 0.654 | 0.003 |
1991 | 7962 | 1.834 | 0.105 | 0.582 | 0.627 | 0.003 |
1992 | 7746 | 1.843 | 0.105 | 0.614 | 0.666 | 0.002 |
1993 | 7613 | 1.833 | 0.103 | 0.708 | 0.618 | 0.002 |
1994 | 7694 | 1.829 | 0.104 | 0.692 | 0.590 | 0.002 |
1995 | 7899 | 1.835 | 0.105 | 0.684 | 0.611 | 0.002 |
1996 | 7822 | 1.829 | 0.104 | 0.752 | 0.581 | 0.003 |
1997 | 7745 | 1.824 | 0.104 | 0.776 | 0.551 | 0.003 |
1998 | 7668 | 1.818 | 0.103 | 0.820 | 0.522 | 0.003 |
1999 | 8224 | 1.827 | 0.107 | 0.798 | 0.546 | 0.004 |
2000 | 8032 | 1.839 | 0.107 | 0.764 | 0.610 | 0.002 |
2001 | 7958 | 1.834 | 0.106 | 0.800 | 0.582 | 0.003 |
2002 | 7884 | 1.828 | 0.105 | 0.796 | 0.555 | 0.003 |
2003 | 8174 | 1.841 | 0.108 | 0.798 | 0.607 | 0.002 |
2004 | 8171 | 1.842 | 0.108 | 0.800 | 0.611 | 0.002 |
2005 | 8168 | 1.843 | 0.108 | 0.818 | 0.615 | 0.002 |
2006 | 8456 | 1.855 | 0.110 | 0.782 | 0.667 | 0.002 |
2007 | 8475 | 1.857 | 0.111 | 0.752 | 0.679 | 0.002 |
2008 | 8495 | 1.860 | 0.111 | 0.716 | 0.693 | 0.002 |
2009 | 8144 | 1.845 | 0.108 | 0.766 | 0.624 | 0.002 |
2010 | 8138 | 1.846 | 0.108 | 0.824 | 0.629 | 0.002 |
2011 | 8136 | 1.847 | 0.108 | 0.802 | 0.637 | 0.002 |
2012 | 9136 | 1.879 | 0.115 | 0.794 | 0.739 | 0.002 |
2013 | 8594 | 1.850 | 0.111 | 0.836 | 0.603 | 0.002 |
2014 | 8614 | 1.852 | 0.111 | 0.878 | 0.615 | 0.002 |
2015 | 8634 | 1.855 | 0.111 | 0.908 | 0.628 | 0.002 |
(1) | (2) | (3) | |
---|---|---|---|
ln(Sit-1) | −0.037 ** | −0.645 | −3.084 *** |
(0.016) | (0.766) | (1.089) | |
ln(Sit-1)2 | 0.205 *** | ||
(0.069) | |||
Country fixed effects | No | Yes | Yes |
Year fixed effects | No | Yes | Yes |
Observations | 5453 | 5453 | 5453 |
R2 | 0.015 | 0.740 | 0.749 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Val, R. The Probability Distribution of Worldwide Forest Areas. Sustainability 2021, 13, 1361. https://doi.org/10.3390/su13031361
González-Val R. The Probability Distribution of Worldwide Forest Areas. Sustainability. 2021; 13(3):1361. https://doi.org/10.3390/su13031361
Chicago/Turabian StyleGonzález-Val, Rafael. 2021. "The Probability Distribution of Worldwide Forest Areas" Sustainability 13, no. 3: 1361. https://doi.org/10.3390/su13031361
APA StyleGonzález-Val, R. (2021). The Probability Distribution of Worldwide Forest Areas. Sustainability, 13(3), 1361. https://doi.org/10.3390/su13031361