Sustainability of Machinery Traffic in Vineyard
Abstract
:1. Introduction
- a classical solution, traditionally used by wine growers in Tuscany, represented by narrow tractors coupled with towed implements;
- or, as an alternative, a self-propelled tool carrier equipped with equivalent implements to carry out the same operations.
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems—A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Defossez, P.; Richard, G. Models of soil compaction due to traffic and their evaluation. Soil Tillage Res. 2002, 67, 41–64. [Google Scholar] [CrossRef]
- Burg, P.; Zemànek, P.; Turan, J.; Findura, P. The penetration resistance as a soil degradation indicator in the viticulture. Acta Univ. Agric. Silvi. Medel. Brun. 2012, 8, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Magagnotti, N.; Cavallo, E.; Capello, G.; Biddoccu, M. Reducing soil compaction after thinning work in agroforestry plantations. Agrofor. Syst. 2019, 93, 1765–1779. [Google Scholar] [CrossRef]
- Pierret, A.; Moran, C.J. Plant Roots and Soil Structure. In Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. Soils and soil management. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Lockhart & Wiseman’s Crop Husbandry Including Grassland, 9th ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 37–62. [Google Scholar] [CrossRef]
- Lisa, L.; Parena, S.; Lisa, L. Working times and production cost of grapes in grass covered or tilled vineyards of Piedmont. In Proceedings of the VIII GESCO Meeting, Vairão, Portugal, 3–5 July 1995; pp. 325–330. [Google Scholar]
- Capello, G.; Biddoccu, M.; Ferraris, S.; Cavallo, E. Effects of Tractor Passes on Hydrological and Soil Erosion Processes in Tilled and Grassed Vineyards. Water 2019, 11, 2118. [Google Scholar] [CrossRef] [Green Version]
- Van Dijck, S.J.E.; Van Asch, T.W.J. Compaction of loamy soils due to tractor traffic in vineyards and orchards and its effect on infiltration in southern France. Soil Tillage Res. 2002, 63, 141–153. [Google Scholar] [CrossRef]
- Håkansson, I.; Medvedev, V.M. Protection of soils form mechanical overloading by establishing limits for stress cause by heavy vehicles. Soil Tillage Res. 1995, 35, 85–97. [Google Scholar] [CrossRef]
- Dawidowski, J.B.; Morrison, J.E.; Snieg, M. Measurement of soil layer strength with plate sinkage and uniaxial confined methods. Trans. ASAE 2001, 44, 1059–1064. [Google Scholar] [CrossRef]
- Canillas, E.C.; Salokhe, V.M. Modeling compaction in agricultural soils. J. Terramech. 2002, 39, 71–84. [Google Scholar] [CrossRef]
- Buliński, J.; Sergiel, L. Effect of wheel passage number and tyre inflation pressure on soil compaction in the wheel track. Ann. Warsaw Univ. Life Sci. SGGW Agric. 2013, 5, 15–62. Available online: https://www.cabdirect.org/cabdirect/abstract/20143130163 (accessed on 8 February 2021).
- Arvidsson, J.; Keller, T. Soil stress as affected by wheel load and tyre inflation pressure. Soil Tillage Res. 2007, 96, 284–291. [Google Scholar] [CrossRef]
- Carman, K. Compaction characteristics of towed wheels on clay loam in soil bin. Soil Tillage Res. 2002, 65, 37–43. [Google Scholar] [CrossRef]
- Carman, K. Prediction of soil compaction under pneumatic tires using a fuzzy logic approach. J. Terramech. 2008, 45, 103–108. [Google Scholar] [CrossRef]
- Bagagiolo, G.; Biddoccu, M.; Rabino, D.; Cavallo, E. Effects of rows arrangement, soil management, and rainfall characteristics on water and soil losses in Italian sloping vineyards. Environ. Res. 2018, 166, 690–704. [Google Scholar] [CrossRef] [PubMed]
- Soil Survey Staff, Natural Resources Conservation Service, USDA. Soil Series Classification Database. 2019. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/data/?cid=nrcs142p2_053583 (accessed on 8 February 2021).
- ASAE. ASAE Standards 4E. S313.2: Soil Cone Penetrometer; ASAE: St. Joseph, MI, USA, 1999. [Google Scholar]
- ASAE. ASAE Standards 4E. EP542: Procedures for Obtaining and Reporting Data with the Soil Cone Penetrometer; ASAE: St. Joseph, MI, USA, 1999. [Google Scholar]
- Van Huyssteen, L. Interpretation and use of penetrometer data to describe soil compaction in vineyards. S. Afr. J. Enol. Vitic. 1983, 2, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Alesso, C.A.; Masola, M.J.; Carrizo, M.E.; Cipriotti, P.A.; del Imhoff, S. Spatial variability of short-term effect of tillage on soil penetration resistance. Arch. Agron. Soil Sci. 2019, 65, 822–832. [Google Scholar] [CrossRef]
- Carrara, M.; Castrignanò, A.; Comparetti, A.; Febo, P.; Orlando, S. Mapping of penetrometer resistance in relation to tractor traffic using multivariate geostatistics. Geoderma 2007, 142, 294–307. [Google Scholar] [CrossRef] [Green Version]
- Utset, A.; Cid, G. Soil penetrometer resistance spatial variability in a Ferralsol at several soil moisture conditions. Soil Tillage Res. 2001, 61, 193–202. [Google Scholar] [CrossRef]
- Peacock, B. Managing compacted soils in vineyards. In Symposium on University of California Cooperative Extension; pub. GV8-97; University of California: Tulare County, CA, USA, 1999; Available online: http://cetulare.ucanr.edu/files/82002.pdf (accessed on 8 February 2021).
- Febo, P.; Lucarelli, F.; Pessina, D. Soil-tyre interaction parameters influencing soil compaction—A study of contact area prediction models. In Advanced in Geoecology 32; Subsoil Compaction; Horn, R., van den Akker, J.J.H., Arvidsson, J., Eds.; IUSS: Vienna, Austria, 2000; Available online: https://d-nb.info/958575282/04 (accessed on 8 February 2021)ISBN 3-923381-44-1.
- Buliński, J.; Sergiel, L. Soil consideration in cultivation of plants. Ann. Warsaw Univ. Life Sci. SGGW Agric. 2013, 5, 15–61. [Google Scholar]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
Feature | Value |
---|---|
Texture | Sand: 20.0% |
Silt: 46.5% | |
Clay: 33.5% | |
Skeleton: 60.9 g/kg | |
pH | 8.45 |
Salinity | 0.237 mS/cm |
Total limestone | 236 g/kg |
Active limestone | 126 g (CaCO3)/kg |
Organic carbon | 0.4% |
Organic matter | 0.7% |
Cation exchange capacity | 19.5 mEq/100 g |
N tot | 0.89 g/kg |
P2O5 (assimilable) | 1.93 mg/kg |
Ca (exchangeable) | 3757.0 mg/kg |
Mg (exchangeable) | 302.0 mg/kg |
K20 (exchangeable) | 147.0 mg/kg |
Fe (exchangeable) | 7.20 mg/kg |
Period | Soil Moisture Content (w.b.), % | |||
---|---|---|---|---|
Tilled Inter-Rows | Covered by Grass Inter-Rows | |||
0–30 cm | 30–60 cm | 0–30 cm | 30–60 cm | |
first decade of April | 20.5 | 21.2 | 21.3 | 21.6 |
end of May | 14.7 | 19.0 | 15.4 | 19.3 |
end of July | 13.5 | 16.3 | 14.3 | 16.7 |
first decade of October | 11.8 | 14.2 | 12.8 | 14.4 |
Combination | Traditional | Self-Propelled | ||
---|---|---|---|---|
Machinery Coupling Detail | Narrow Tractor/ Towed Pneumatic Sprayer | Narrow Tractor/ Towed Grape Harvester | Self-propelled Tool Carrier/ Pneumatic Sprayers Module | Self-propelled Tool Carrier/Grape Harvester Module |
Make | Lamborghini/ KWH | Lamborghini/Pellenc | Pellenc/Cima | Pellenc/Pellenc |
Model | RF 90/B612 | RF 90/8050 | 3300/Spider | 3300/4560 |
Tyres | tr. front 300/70R20 @ 220 kPa tr. rear 420/70R28 @ 160 kPa sprayer 10.0/75–15.3 @ 280 kPa | tr. front 300/70R20 @ 220 kPa tr. rear. 420/70R28 @ 160 kPa harv. 16.0/70–20 @ 320 kPa | front 420/70R24 @ 240 kPa rear 600/55R26.5 @ 160 kPa | front 420/70R24 @ 240 kPa rear 600/55R26.5 @ 160 kPa |
Mass, kg | empty 3130/715 full load 3130/1990 | empty 3130/3040 full load 3130/5400 | empty 5130/1550 full load 5130/3550 | empty 5130/2850 full load 5130/5570 |
Layer Depth, cm | Reference | After 1st Period | After 2nd Period | After 3rd Period | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Traditional | Self-Prop. | Traditional | Self-Prop. | Traditional | Self-Prop. | |||||||||
pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | |
1–10 | 1.68 | 0.70 | 2.86 | 1.68 | 2.63 | 1.40 | 1.96 | 1.48 | 1.72 * | 1.12 | 6.01 | 2.31 | 4.42 * | 2.25 |
11–20 | 1.92 | 0.60 | 3.77 | 1.32 | 3.57 | 1.27 | 3.86 | 1.67 | 3.55 | 1.85 | 5.66 | 2.56 | 4.70 * | 2.24 |
21–30 | 2.00 | 0.66 | 3.21 | 1.47 | 2.33 * | 1.31 | 3.66 | 1.93 | 3.05 * | 1.77 | 5.71 | 2.49 | 4.53 * | 2.14 |
31–40 | 1.73 | 0.63 | 2.29 | 1.26 | 1.91 * | 0.93 | 3.03 | 1.52 | 3.50 * | 2.06 | 5.75 | 2.53 | 4.33 * | 1.98 |
41–50 | 1.86 | 0.61 | 2.53 | 1.00 | 2.39 | 0.80 | 4.12 | 1.44 | 3.90 | 1.61 | 5.76 | 2.50 | 4.39 * | 2.02 |
51–60 | 1.87 | 0.54 | 2.68 | 0.71 | 2.16 * | 0.67 | 3.93 | 0.96 | 4.05 | 0.75 | 4.39 | 2.06 | 4.55 | 1.77 |
Layer Depth, cm | Reference | After 1st Period | After 2nd Period | After 3rd Period | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Traditional | Self-Prop. | Traditional | Self-Prop. | Traditional | Self-Prop. | |||||||||
pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | |
1–10 | 2.10 | 0.81 | n.d. | 3.27 | 1.71 | 2.58 * | 1.53 | 6.45 | 2.24 | 4.48 * | 2.12 | |||
11–20 | 2.43 | 0.74 | 4.26 | 1.91 | 3.58 * | 1.93 | 5.89 | 2.27 | 4.66 * | 2.03 | ||||
21–30 | 2.34 | 0.85 | 3.71 | 1.90 | 3.38 | 1.93 | 5.26 | 2.42 | 4.76 * | 2.32 | ||||
31–40 | 2.13 | 0.97 | 3.67 | 2.01 | 2.93 * | 1.90 | 5.33 | 2.79 | 4.22 * | 1.81 | ||||
41–50 | 2.25 | 1.01 | 3.88 | 1.56 | 3.09 * | 1.50 | 6.40 | 2.49 | 4.33 * | 2.33 | ||||
51–60 | 2.08 | 0.79 | 3.89 | 1.22 | 2.66 * | 1.05 | 7.02 | 1.74 | 4.32 * | 2.57 |
Layer Depth, cm | Reference | After 1st Period | After 2nd Period | After 3rd Period | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grassed | Tilled | Grassed | Tilled | Grassed | Tilled | Grassed | Tilled | |||||||||
pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | |
1–10 | 2.10 | 0.81 | 1.68 * | 0.70 | n.d. | 2.63 | 1.40 | 2.58 | 1.53 | 1.72 * | 1.12 | 4.48 | 2.12 | 4.42 | 2.25 | |
11–20 | 2.43 | 0.74 | 1.92 * | 0.60 | 3.57 | 1.27 | 3.58 | 1.93 | 3.55 | 1.85 | 4.66 | 2.03 | 4.70 | 2.24 | ||
21–30 | 2.34 | 0.85 | 2.00 | 0.66 | 2.33 | 1.31 | 3.38 | 1.93 | 3.05 | 1.77 | 4.76 | 2.32 | 4.53 | 2.14 | ||
31–40 | 2.13 | 0.97 | 1.73 * | 0.63 | 1.91 | 0.93 | 2.93 | 1.90 | 3.50 * | 2.06 | 4.22 | 1.81 | 4.33 | 1.98 | ||
41–50 | 2.25 | 1.01 | 1.86 | 0.61 | 2.39 | 0.80 | 3.09 | 1.50 | 3.90 * | 1.61 | 4.33 | 2.33 | 4.39 | 2.02 | ||
51–60 | 2.08 | 0.79 | 1.87 | 0.54 | 2.16 | 0.67 | 2.66 | 1.05 | 4.05 * | 0.75 | 4.32 | 2.57 | 4.55 | 1.77 |
Layer Depth, cm | Reference | After 1st Period | After 2nd Period | After 3rd Period | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grassed | Tilled | Grassed | Tilled | Grassed | Tilled | Grassed | Tilled | |||||||||
pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | pen. res., MPa | s.d. | |
1–10 | 2.10 | 0.81 | 1.68 * | 0.70 | n.d. | 2.86 | 1.68 | 3.27 | 1.71 | 1.96 * | 1.48 | 6.45 | 2.24 | 6.01 * | 2.31 | |
11–20 | 2.43 | 0.74 | 1.92 * | 0.60 | 3.77 | 1.32 | 4.26 | 1.91 | 3.86 * | 1.67 | 5.89 | 2.27 | 5.66 | 2.56 | ||
21–30 | 2.34 | 0.85 | 2.00 | 0.66 | 3.21 | 1.47 | 3.71 | 1.90 | 3.66 | 1.93 | 5.26 | 2.42 | 5.71 | 2.49 | ||
31–40 | 2.13 | 0.97 | 1.73 * | 0.63 | 2.29 | 1.26 | 3.67 | 2.01 | 3.03 * | 1.52 | 5.33 | 2.79 | 5.75 | 2.53 | ||
41–50 | 2.25 | 1.01 | 1.86 | 0.61 | 2.53 | 1.00 | 3.88 | 1.56 | 4.12 | 1.44 | 6.40 | 2.49 | 5.76 * | 2.50 | ||
51–60 | 2.08 | 0.79 | 1.87 | 0.54 | 2.68 | 0.71 | 3.89 | 1.22 | 3.93 | 0.96 | 7.02 | 1.74 | 4.39 * | 2.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessina, D.; Galli, L.E.; Santoro, S.; Facchinetti, D. Sustainability of Machinery Traffic in Vineyard. Sustainability 2021, 13, 2475. https://doi.org/10.3390/su13052475
Pessina D, Galli LE, Santoro S, Facchinetti D. Sustainability of Machinery Traffic in Vineyard. Sustainability. 2021; 13(5):2475. https://doi.org/10.3390/su13052475
Chicago/Turabian StylePessina, Domenico, Lavinia Eleonora Galli, Stefano Santoro, and Davide Facchinetti. 2021. "Sustainability of Machinery Traffic in Vineyard" Sustainability 13, no. 5: 2475. https://doi.org/10.3390/su13052475
APA StylePessina, D., Galli, L. E., Santoro, S., & Facchinetti, D. (2021). Sustainability of Machinery Traffic in Vineyard. Sustainability, 13(5), 2475. https://doi.org/10.3390/su13052475