Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection of Soil, Feedstocks and FYM
2.2. Preparation and Characterization of Biochar
2.3. Pot Experiment and Treatments
2.4. Plant Harvest and Analysis
2.5. Soil Analysis
2.5.1. Initial Analysis
2.5.2. Post-Experimental Soil Analysis
2.6. Statistical Analysis
3. Results
3.1. Properties of Soil, Farmyard Manure and Biochar
3.2. Effects on Tomato Growth and Physiological Attributes
3.3. Effects on Soil Physico–Chemical Properties and SOC Dynamics
3.4. Effects on Microbial Biomass
3.5. Changes in Soil Mineral N, P and K Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mojiri, A.; Baharlooeian, M.; Kazeroon, R.A.; Farraji, H.; Lou, Z. Removal of pharmaceutical micropollutants with integrated biochar and marine microalgae. Microorganisms 2021, 9, 4. [Google Scholar] [CrossRef]
- Mojiri, A.; Kazeroon, R.A.; Gholami, A. Cross-lined magnetic chitosan/activated biochar for removal of emerging micropollutants from water: Optimization by the artificial neural network. Water 2019, 11, 551. [Google Scholar] [CrossRef] [Green Version]
- Rafique, M.; Ibrahim, O.; Rizwan, M.; Chaudhary, H.J.; Gurmani, A.R.; Munis, M.F.H. Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere 2020, 238, 124710. [Google Scholar] [CrossRef]
- Ali, M.A.; Ajaz, M.M.; Rizwan, M.; Qayyum, M.F.; Arshad, M.; Hussain, S.; Ahmad, N.; Qureshi, M.A. Effect of biochar and phosphate solubilizing bacteria on growth and phosphorus uptake by maize in an Aridisol. Arab. J. Geosci. 2020, 13, 333. [Google Scholar] [CrossRef]
- Rafique, M.; Ibrahim, O.; Ibrahim, A.M.A.; Rizwan, M.; Afridi, M.S.; Sultan, T.; Chaudhary, H.J. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. J. Environ. Manag. 2020, 238, 124710. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.M.; Nardella, E.; Gagliardi, A.; Gatta, G. Deficit irrigation and partial root-zone drying techniques in processing tomato cultivated under Mediterranean climate conditions. Sustainability 2017, 9, 2197. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems: A review. Mitigat. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Sohi, S.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Adv. Agron. 2011, 112, 103–143. [Google Scholar]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H.M. Dry land maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Blanco-Canquie, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Joseph, S.; Pow, D.; Dawson, K.; Rust, J.; Munroe, P.; Taherymoosavi, S.; Mitchell, D.R.G.; Robb, S.; Solaiman, Z.M. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total Environ. 2020, 724, 138–153. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A.; Baker, J.M.; Reicosky, D.C. Ethylene: Potential key for biochar amendment impacts. Plant Soil 2010, 333, 443–452. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J.; Engelhard, M. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.D.; Molina Riha, S.J.; Lehmann, J. Maize yield and nutrition after 4 years of doing biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Arif., M.; Ali, S.; Ilyas, M.; Riaz, M.; Akhtar, K.; Ali, K.; Adnan, M.; Fahad, S.; Khan, I.; Shah, S.; et al. Enhancing phosphorus availability, soil organic carbon, maize productivity and farm profitability through biochar and organic-inorganic fertilizers in an irrigated maize agroecosystem under semi-arid climate. Soil Use Manag. 2020, in press. [Google Scholar] [CrossRef]
- Wang, L.; Xue, C.; Nie, X.; Liu, Y.; Chen, F. Effects of biochar application on soil potassium dynamics and crop uptake. J. Plant Nutr. Soil Sci. 2018, 181, 635–643. [Google Scholar] [CrossRef]
- Arif, M.; Ilyas, M.; Riaz, M.; Ali, K.; Shah, K.; Haq, I.U.; Fahad, S. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Res. 2017, 214, 25–37. [Google Scholar] [CrossRef]
- Wu, X.; Wang, D.; Riaz, M.; Zhang, L.; Jiang, C. Investigating the effect of biochar on the potential of increasing cotton yield, potassium efficiency and soil environment. Ecotoxicol. Environ. Saf. 2019, 182, 109–115. [Google Scholar] [CrossRef]
- Ding, W.; Xu, X.; He, P.; Ullah, S.; Zhang, J.; Cui, Z.; Zhou, W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: A meta-analysis. Field Crops Res. 2018, 227, 11–18. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Sial, T.A.; Khan, M.N.; Lan, Z.; Kumbhar, F.; Ying, Z.; Zhang, J.; Sun, D.; Li, X. Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Proc. Saf. Environ. Prot. 2019, 122, 366–377. [Google Scholar] [CrossRef]
- Arif, M.S.; Riaz, M.; Shahzad, S.M.; Yasmeen, T.; Ashraf, M.; Siddique, M.; Mubarik, M.S.; Bragazza, L.; Buttler, A. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. Sci. Total Environ. 2018, 619, 517–527. [Google Scholar] [CrossRef]
- Sial, T.A.; Liu, J.; Zhao, Y.; Khan, M.N.; Lan, Z.; Zhang, J.; Kumbhar, F.; Akhtar, K.; Rajpar, I. Co-application of milk tea waste and NPK fertilizers to improve sandy soil biochemical properties and wheat growth. Molecules 2019, 24, 423. [Google Scholar] [CrossRef] [Green Version]
- Dias, B.O.; Silva, C.A.; Higashikawa, F.S.; Roig, A.; Sanchez-Monedero, M.A. Use of biochar as bulking agent for the composting of poultry manure; effect on organic matter degradation and humification. Bioresour. Technol. 2010, 101, 1239–1246. [Google Scholar] [CrossRef]
- Yadav, V.; Karak, T.; Singh, S.; Singh, A.K.; Khare, P. Benefits of biochar over other organic amendments: Responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Ind. Crops Prod. 2019, 131, 96–105. [Google Scholar] [CrossRef]
- Bonanomi, G.; Ippolito, F.; Cesarano, G.; Nanni, B.; Lombardi, N.; Rita, A.; Saracino, A.; Scala, F. Biochar as plant growth promoter:better off alone or mixed with organic amendments? Front. Plant Sci. 2017, 8, 1570. [Google Scholar] [CrossRef]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 44–49. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 53–61. [Google Scholar] [CrossRef]
- Ye, C.; Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Jia, J.; Li, B.; Chen, Z.; Xie, Z.; Xiong, Z. Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Sci. Plant Nutr. 2012, 58, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Boersma, M.; Wrobel-Tobiszewska, A.; Murphy, L.; Eyles, A. Impact of biochar application on the productivity of a temperate vegetable cropping system. N. Z. J. Crop Hortic. Sci. 2017, 45, 277–288. [Google Scholar] [CrossRef]
- Singh, M.; Saini, R.K.; Singh, S.; Sharma, S.P. Potential of integrating biochar and deficit irrigation strategies for sustaining vegetable production in water-limited regions: A review. HortScience 2019, 54, 1872–1878. [Google Scholar] [CrossRef] [Green Version]
- Hol, W.G. Transient negative biochar effects on plant growth are strongest after microbial species loss. Soil Biol. Biochem. 2017, 115, 442–451. [Google Scholar] [CrossRef]
- Bao, H.; Li, Y. Effect of stage specific saline irrigation on greenhouse tomato production. Irrig. Sci. 2014, 28, 421–430. [Google Scholar] [CrossRef]
- Wolf, B. The comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Comm. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved salts. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle-size analysis of soils. Agron. J. 1962, 53, 464–465. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monograph: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods-Australasia; CSIRO: Canberra, Australia, 2011. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part 3-Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Bremner, J.; Mulvaney, C. Nitrogen-Total. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Øien, A.; Selmer-Olsen, A.R. A Laboratory method for evaluation of available nitrogen in soil. Acta Agr. Scand. 1980, 30, 149–156. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; University of California, Division of Agriculture Science: Riverside, CA, USA, 1961. [Google Scholar]
- Kue, S. Phosphorus. In Methods of Soil Analysis Part 3. Chemical Methods; Spakr, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem. 2003, 35, 1231–1243. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Ladd, J.N.; Amato, M. Relationship between microbial biomass carbon in soil and absorbance of extracts of fumigated soils. Soil Biol. Biochem. 1989, 21, 457–459. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. Microbial biomass measurements in forest soil: The use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol. Biochem. 1987, 19, 697–702. [Google Scholar] [CrossRef]
- Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biology and Fertility a Handbook of Methods, 2nd ed.; CAB International: Wallingford, UK, 1996; p. 221. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Miranda, N.O.; Pimenta, A.S.; Silva, G.G.C.D.; Oliveira, E.; Mota, M.; Carvalho, M.A.B.D. Biochar as soil conditioner in the succession of upland rice and cowpea fertilized with nitrogen. Rev. Caatinga 2017, 30, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.S.; Li, G.T.; Andersen, M.N.; Liu, F.L. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014, 38, 37–44. [Google Scholar] [CrossRef]
- She, D.; Sun, X.; Gamareldawla, A.H.D.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S. Benefits of soil biochar amendments to tomato growth under saline water irrigation. Sci. Rep. 2018, 8, 14743. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.M.; Zhu, L.D.; Jin, Q. Surface drainage and mulching drip-irrigated tomatoes reduces soil salinity and improves fruit yield. PLoS ONE 2001, 11, 1–14. [Google Scholar] [CrossRef]
- Agbna, G.; Ali, A.; Bashir, A.; Eltoum, F.; Hassan, M. Influence of biochar amendment on soil water characteristics and crop growth enhancement under salinity stress. Int. J. Eng. 2017, 4, 49–54. [Google Scholar]
- Batool, A.; Taj, S.; Rashid, A.; Khalid, A.; Qadeer, S.; Saleem, A.R.; Ghufran, M.A. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Front. Plant Sci. 2015, 6, 733. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, S.M.; Imran, M.; Naveed, M.; Khan, M.Y.; Ahmad, M.; Zahir, Z.A.; Crowley, D.E. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J. Sci. Food Agr. 2017, 97, 5139–5145. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, F.; Ravnskov, S.; Rubaek, G.H.; Sun, Z.; Andersen, M.N. Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. J. Agron. Crop Sci. 2017, 203, 131–145. [Google Scholar] [CrossRef]
- Li, C.J.; Xiong, Y.W.; Qu, Z.; Xu, X.; Huang, Q.; Huang, G. Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma 2018, 331, 100–108. [Google Scholar] [CrossRef]
- Langeroodi, A.R.S.; Campiglia, E.; Mancinelli, R.; Radicetti, E. Can biochar improve pumpkin productivity and its physiological characteristics under reduced irrigation regimes? Sci. Hortic. 2019, 247, 195–204. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K. Biochemical cycling of nitrogen and phosphorus cycling in biochar amended soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. Biochar Environ. Manag. Sci. Technol. 2009, 1, 67–84. [Google Scholar]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Masto, R.E.; Ansari, M.A.; George, J.; Selvi, V.; Ram, L. Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays. Ecol. Eng. 2013, 58, 314–322. [Google Scholar] [CrossRef]
- Cely, P.; Gascó, G.; Paz-Ferreiro, J.; Méndez, A. Agronomic properties of biochars from different manure wastes. J. Anal. Appl. Pyrol. 2015, 111, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Usman, A.R.A.; Al-Wabel, M.I.; Abdulaziz, A.-H.; Mahmoud, W.-A.; El-Naggar, A.H.; Ahmad, M.; Abdulelah, A.F.; Abdulrasoul, A.O. Conocarpus biochar induces matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Am. J. 2016, 74, 1259–1270. [Google Scholar]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Ok, Y.S.; Usman, A.R.; Al-Wabel, M.I.; Oleszczuk, P.; Lee, S.S. The effects of biochar amendment on soil fertility. Agric. Environ. Appl. Biochar Adv. Barriers 2016, 63, 123–144. [Google Scholar]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Riaz, M.; Roohi, M.; Arif, M.S.; Hussain, Q.; Yasmeen, T.; Shahzad, T.; Shahzad, S.M.; Muhammad, H.F.; Arif, M.; Khalid, M. Corncob-derived biochar decelerates mineralization of native and added organic matter (AOM) in organic matter depleted alkaline soil. Geoderma 2017, 294, 19–28. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Fatima, S.; Riaz, M.; Al-Wabel, M.I.; Arif, M.S.; Yasmeen, T.; Hussain, Q.; Roohi, M.; Fahad, S.; Ali, K.; Arif, M. Higher biochar rate strongly reduced decomposition of soil organic matter to enhance C and N sequestration in nutrient-poor alkaline calcareous soil. J. Soils Sediments 2020, in press. [Google Scholar] [CrossRef]
- Zavalloni, C.; Alberti, G.; Biasiol, S.; Vedove, G.D.; Fornasier, F.; Liu, J.; Peressotti, A. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Appl. Soil Ecol. 2011, 50, 45–51. [Google Scholar] [CrossRef]
- Jiang, X.; Denef, K.; Stewart, C.; Cotrufo, M.F. Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations. Biol. Fertil. Soils 2016, 52, 1–14. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Liu, W.; Bian, R.; Ge, T.; Zhang, W.; Zheng, J.; Drosos, M.; Liu, X.; Zhang, X.; et al. Greater microbial carbon use efficiency and carbon sequestration in soils: Amendment of biochar versus crop straws. GCB Bioenergy 2020, 12, 1092–1103. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Zech, W. Microbial response of charcoal amendments of highly weathered soils and Amazonian dark earths in central Amazonia-preliminary results. In Amazonian Dark Earths: Exploration in Space and Time; Glaser, B., Woods, W.I., Eds.; Springer: Berlin, Germany, 2004; pp. 195–212. [Google Scholar]
- Zhou, H.; Zhang, D.; Wang, P.; Liu, X.; Cheng, K.; Li, L.; Zheng, J.; Zhang, X.; Zheng, J.; Crowley, D.; et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agric. Ecosyst. Environ. 2017, 239, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Bailey, V.L.; Fansler, S.J.; Smith, J.L.; Bolton, H., Jr. Reconciling apparent variability in biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol. Fertil. Soils 2011, 50, 1189–1200. [Google Scholar]
- Liu, Z.; Zhu, M.; Wang, J.; Liu, X.; Guo, W.; Zheng, J.; Bian, R.; Wang, G.; Zhang, X.; Cheng, K.; et al. The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments. GCB Bioenergy 2019, 11, 1408–1420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xiang, Y.; Jing, Y.; Zhang, R. Biochar amendment effects on the activities of soil carbon, nitrogen, and phosphorus hydrolytic enzymes: A meta-analysis. Environ. Sci. Pollut. Res. 2019, 26, 22990–23001. [Google Scholar] [CrossRef] [PubMed]
- Oladele, S.; Adeyemo, A.; Adegaiye, A.; Awodun, M. Effects of biochar amendment and nitrogen fertilization on soil microbial biomass pools in an Alfisol under rain fed rice cultivation. Biochar 2019, 1, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Prayogo, C.; Jones, J.E.; Baeyens, J.; Bending, G.D. Impact of biochar on mineralization of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol. Fertil. Soils 2014, 50, 695–702. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agron. J. 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Stott, A.W.; Grant, H.K.; Whitaker, J. Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol. Biochem. 2015, 81, 178–185. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Liu, Y.; Zhao, J.; Bi, Y.; Zhao, X.; Wang, S.; Xing, G. Comparison of strawbiochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols. Biol. Fertil. Soils 2016, 52, 137–149. [Google Scholar] [CrossRef]
- He, T.; Liu, D.; Yuan, J.; Luo, J.; Lindsey, S.; Bolan, N.; Ding, W. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Sci. Total Environ. 2018, 628, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Borchard, N.; Wolf, A.; Laabs, V.; Aeckersberg, R.; Scherer, H.; Moeller, A.; Amelung, W. Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use Manag. 2012, 28, 177–184. [Google Scholar] [CrossRef]
- Amin, A.E.A.Z. Impact of corn cob biochar on potassium status and wheat growth in a calcareous sandy soil. Comm. Soil Sci. Plant Anal. 2016, 47, 2026–2033. [Google Scholar] [CrossRef]
- Qayyum, M.F.; Haider, G.; Raza, M.A.; Mohamed, A.K.S.H.; Rizwan, M.; El-Sheikh, M.A.; Alyemeni, M.N.; Ali, S. Straw-based biochar mediated potassium availability and increased growth and yield of cotton (Gossypium hirsutum L.). J. Saudi Chem. Soc. 2020, 24, 963–973. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Chakrabarti, K.; Chakraborty, A.; Nayak, D.C.; Tripathy, S.; Powell, M.A. Municipal waste compost as an alternative to cattle manure for supplying potassium to lowland rice. Chemosphere 2007, 66, 1789–1793. [Google Scholar] [CrossRef]
- Demir, K.; Sahin, O.; Kadioglu, Y.K.; Pilbeam, D.J.; Gunes, A.. Essential and non-essential element composition of tomato plants fertilized with poultry manure. Sci. Hortic. 2010, 127, 16–22. [Google Scholar] [CrossRef]
- Wang, L.; Sun, X.Y.; Li, S.Y.; Zhang, T.; Zhang, W.; Zhai, P.H. Application of organic amendments to a coastal saline soil in North China: Effects on soil physical and chemical properties and tree growth. PLoS ONE 2014, 9, e89185. [Google Scholar] [CrossRef] [Green Version]
- Raboin, L.M.; Razafimahafaly, A.H.D.; Rabenjarisoa, M.B.; Rabary, B.; Dusserre, J.; Becquer, T. Improving the fertility of tropical acid soils: Liming versus biochar application? A long term comparison in the highlands of Madagascar. Field Crops Res. 2016, 199, 99–108. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Bass, A.M.; Bird, M.I.; Kay, G.; Muirhead, B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci. Total Environ. 2016, 550, 459–470. [Google Scholar] [CrossRef] [PubMed]
Property | Value |
---|---|
pH | 8.03 |
EC (dS m−1) | 0.16 |
Sand (g kg−1) | 467 |
Silt (g kg−1) | 501 |
Clay (g kg−1) | 32 |
Textural class | Silty clay loam |
BD (t m−3) | 1.50 |
CEC (cmolc kg−1) | 14.1 |
Total organic C (g kg−1) | 12.5 |
Total N (g kg−1) | 0.61 |
Total P (g kg−1) | 0.24 |
Total K (g kg−1) | 14.3 |
Available N (mg kg−1) | 23.7 |
Available P (mg kg−1) | 3.20 |
Available K (mg kg−1) | 85.8 |
Property | Biochar | FYM | ||
---|---|---|---|---|
Cotton Stick | Corncob | Rice Straw | ||
Total organic C (g kg−1) | 463 | 732 | 518 | 232 |
Total N (g kg−1) | 11.2 | 13.4 | 10.3 | 12.7 |
Total P (g kg−1) | 4.03 | 6.41 | 2.60 | 13.4 |
Total K (g kg−1) | 16.2 | 17.4 | 21.3 | 24.6 |
Biochar Type | FYM (t ha−1) | Biochar Rate (%) | Fresh Shoot Weight (g) | Fresh Root Weight (g) | Oven-Dry Shoot Weight (g) | Oven-Dry Root Weight (g) |
---|---|---|---|---|---|---|
Cotton stick | 0 | 0 | 9.37 ± 0.75 a | 0.77 ± 0.13 a | 0.89 ± 0.10 a | 0.21 ± 0.04 a |
1.5 | 13.99 ± 1.25 ab | 1.72 ± 0.09 cd | 1.38 ± 0.10 ab | 0.49 ± 0.02 b–h | ||
3 | 20.92 ± 1.93 de | 2.53 ± 0.13 ef | 2.28 ± 0.09 cde | 0.59 ± 0.03 e–h | ||
30 | 0 | 13.70 ± 1.08 ab | 1.71 ± 0.13 cd | 1.47 ± 0.13 abc | 0.37 ± 0.03 a–d | |
1.5 | 21.87 ± 0.93 de | 2.56 ± 0.16 ef | 2.42 ± 0.14 def | 0.60 ± 0.02 e–h | ||
3 | 27.54 ± 0.69 f | 3.57 ± 0.13 gh | 3.18 ± 0.21 fgh | 0.76 ± 0.03 hi | ||
Corncob | 0 | 0 | 9.12 ± 0.58 a | 1.70 ± 0.18 cd | 0.97 ± 0.07 a | 0.28 ± 0.05 ab |
1.5 | 29.92 ± 2.02 fg | 3.82 ± 0.23 h | 2.93 ± 0.14 efg | 0.68 ± 0.03 gh | ||
3 | 36.17 ± 1.10 hi | 4.64 ± 0.13 i | 3.37 ± 0.17 gh | 1.00 ± 0.07 j | ||
30 | 0 | 14.20 ± 1.09 abc | 1.00 ± 0.09 ab | 1.70 ± 0.18 a–d | 0.41 ± 0.03 a–e | |
1.5 | 33.91 ± 1.38 gh | 2.69 ± 0.13 ef | 3.82 ± 0.23 hi | 0.97 ± 0.04 ij | ||
3 | 40.24 ± 1.14 i | 3.75 ± 0.19 gh | 4.64 ± 0.13 i | 1.62 ± 0.09 k | ||
Rice straw | 0 | 0 | 9.32 ± 0.50 a | 0.85 ± 0.10 ab | 0.85 ± 0.10 ab | 0.23 ± 0.02 a |
1.5 | 17.94 ± 0.92 bcd | 2.03 ± 0.08 cde | 2.21 ± 0.23 b–e | 0.45 ± 0.02 b–f | ||
3 | 21.42 ± 0.40 de | 2.16 ± 0.05 de | 2.72 ± 0.14 efg | 0.50 ± 0.03 | ||
30 | 0 | 12.70 ± 0.82 ab | 1.45 ± 0.13 bc | 1.66 ± 0.11 a–d | 0.34 ± 0.05 abc | |
1.5 | 19.78 ± 0.82 cd | 3.14 ± 0.06 fg | 2.68 ± 0.26 efg | 0.57 ± 0.04 d–h | ||
3 | 26.38 ± 0.66 ef | 2.86 ± 0.04 f | 4.00 ± 0.30 hi | 0.64 ± 0.02 fgh |
Biochar Type | FYM (t ha−1) | Biochar Rate (%) | Chlorophyll a (ug g−1) | Chlorophyll b (ug g−1) | Total Chlorophyll (ug g−1) |
---|---|---|---|---|---|
Cotton stick | 0 | 0 | 3.29 ± 0.06 a | 2.24 ± 0.04 a | 5.53 ± 0.07 a |
1.5 | 3.54 ± 0.12 abc | 2.46 ± 0.03 ab | 6.00 ± 0.10 abc | ||
3 | 3.51 ± 0.12 ab | 2.64 ± 0.12 bc | 6.15 ± 0.14 bc | ||
30 | 0 | 4.46 ± 0.03 efg | 3.16 ± 0.06 fg | 7.62 ± 0.08 fg | |
1.5 | 4.44 ± 0.07 efg | 3.60 ± 0.06 h | 8.04 ± 0.06 gh | ||
3 | 5.17 ± 0.08 h | 3.24 ± 0.08 fg | 8.40 ± 0.16 hi | ||
Corncob | 0 | 0 | 3.18 ± 0.07 a | 2.24 ± 0.06 a | 5.42 ± 0.07 a |
1.5 | 3.81 ± 0.07 bcd | 3.10 ± 0.02 de | 6.92 ± 0.08 de | ||
3 | 4.01 ± 0.07 cde | 3.45 ± 0.05 gh | 7.46 ± 0.08 efg | ||
30 | 0 | 4.36 ± 0.15 efg | 3.06 ± 0.08 de | 7.42 ± 0.22 ef | |
1.5 | 4.83 ± 0.03 gh | 3.92 ± 0.04 i | 8.76 ± 0.08 i | ||
3 | 5.91 ± 0.05 i | 3.65 ± 0.10 hi | 9.55 ± 0.13 j | ||
Rice straw | 0 | 0 | 3.46 ± 0.06 ab | 2.19 ± 0.09 a | 5.65 ± 0.05 ab |
1.5 | 3.33 ± 0.07 a | 2.41 ± 0.04 ab | 5.74 ± 0.11 abc | ||
3 | 3.10 ± 0.08 a | 2.58 ± 0.04 bc | 5.68 ± 0.04 ab | ||
30 | 0 | 4.52 ± 0.19 fg | 3.19 ± 0.05 fg | 7.71 ± 0.19 gh | |
1.5 | 4.23 ± 0.03 def | 3.27 ± 0.07 fg | 7.50 ± 0.05 efg | ||
3 | 3.52 ± 0.14 ab | 2.82 ± 0.06 cd | 6.34 ± 0.19 cd |
Biochar Type | FYM (t ha−1) | Biochar Rate (%) | pH | EC (dS m−1) | CEC (cmolc kg−1) | Basal Respiration (mg CO2-C g−1 d−1) | WEOC (mg kg−1) | SOC (g kg−1) |
---|---|---|---|---|---|---|---|---|
Cotton stick | 0 | 0 | 7.54 ± 0.03 abc | 0.89 ± 0.01 a | 11.1 ± 0.35 a | 0.03 ± 0.00 a | 45.1 ± 2.03 ab | 8.43 ± 0.14 a |
1.5 | 7.82 ± 0.09 bc | 1.23 ± 0.03 bc | 22.7 ± 0.49 e | 0.12 ± 0.00 c | 64.2 ± 2.37 bcd | 14.9 ± 0.76 c | ||
3 | 8.25 ± 0.24 d | 1.45 ± 0.03 d | 31.8 ± 1.32 gh | 0.16 ± 0.00 de | 86.4 ± 2.04 ef | 20.1 ± 0.43 e | ||
30 | 0 | 7.46 ± 0.02 ab | 1.15 ± 0.01 bc | 15.8 ± 0.64 bc | 0.04 ± 0.00 a | 53.9 ± 1.35 abc | 12.1 ± 0.27 b | |
1.5 | 7.70 ± 0.07 abc | 1.20 ± 0.07 bc | 27.8 ± 0.70 fg | 0.15 ± 0.01 cde | 80.0 ± 2.49 def | 19.6 ± 0.26 de | ||
3 | 7.52 ± 0.16 abc | 1.46 ± 0.02 d | 42.7 ± 1.24 i | 0.16 ± 0.01 de | 120 ± 9.25 g | 23.3 ± 0.60 fg | ||
Corncob | 0 | 0 | 7.52 ± 0.07 abc | 0.90 ± 0.03 a | 11.4 ± 0.30 a | 0.03 ± 0.00 a | 41.3 ± 2.88 a | 8.93 ± 0.18 a |
1.5 | 7.63 ± 0.04 abc | 1.09 ± 0.03 b | 15.8 ± 0.55 bc | 0.17 ± 0.01 e | 89.0 ± 2.72 f | 21.6 ± 0.61 ef | ||
3 | 7.39 ± 0.03 a | 1.19 ± 0.02 bc | 20.9 ± 0.64 de | 0.23 ± 0.01 f | 129 ± 2.88 gh | 29.9 ± 0.09 h | ||
30 | 0 | 7.44 ± 0.03 ab | 1.15 ± 0.02 bc | 14.8 ± 0.43 abc | 0.04 ± 0.00 a | 53.2 ± 2.55 abc | 11.8 ± 0.42 b | |
1.5 | 7.39 ± 0.03 a | 1.23 ± 0.01 bc | 24.3 ± 1.46 ef | 0.25 ± 0.01 f | 114 ± 2.72 g | 24.9 ± 0.91 g | ||
3 | 7.28 ± 0.03 a | 1.23 ± 0.02 bc | 28.6 ± 1.16 g | 0.34 ± 0.01 g | 145 ± 4.07 h | 35.3 ± 0.22 i | ||
Rice straw | 0 | 0 | 7.50 ± 0.03 a | 0.89 ± 0.02 a | 11.6 ± 0.49 ab | 0.03 ± 0.00 a | 46.6 ± 2.27 abc | 8.63 ± 0.15 a |
1.5 | 7.82 ± 0.02 bcd | 1.18 ± 0.03 bc | 17.1 ± 0.47 cd | 0.09 ± 0.00 b | 68.0 ± 3.39 cde | 12.8 ± 0.25 bc | ||
3 | 7.90 ± 0.08 cd | 1.25 ± 0.02 c | 24.2 ± 0.88 ef | 0.12 ± 0.00 c | 85.8 ± 4.34 ef | 17.6 ± 0.32 d | ||
30 | 0 | 7.43 ± 0.02 ab | 1.13 ± 0.02 bc | 15.2 ± 0.36 abc | 0.04 ± 0.00 a | 55.7 ± 5.27 abc | 11.5 ± 0.48 b | |
1.5 | 7.69 ± 0.06 abc | 1.27 ± 0.02 c | 21.9 ± 0.70 e | 0.12 ± 0.00 c | 82.7 ± 2.54 def | 14.9 ± 0.69 c | ||
3 | 7.70 ± 0.06 abc | 1.49 ± 0.04 d | 33.1 ± 0.85 h | 0.13 ± 0.01 cd | 116 ± 3.64 g | 20.9 ± 0.60 ef |
Biochar Type | FYM (t ha−1) | Biochar Rate (%) | Soil P (mg kg−1) | Soil K (mg kg−1) |
---|---|---|---|---|
Cotton stick | 0 | 0 | 4.66 ± 0.46 a | 84.6 ± 3.99 a |
1.5 | 10.1 ± 0.43 cde | 240 ± 10.1 b | ||
3.0 | 16.1 ± 0.50 h | 420 ± 14.2 efg | ||
30 | 0 | 7.03 ± 0.30 ab | 113 ± 11.2 a | |
1.5 | 12.4 ± 0.42 efg | 273 ± 6.59 bc | ||
3.0 | 21.2 ± 0.49 i | 431 ± 19.9 fg | ||
Corncob | 0 | 0 | 4.72 ± 0.31 a | 76.4 ± 4.40 a |
1.5 | 8.04 ± 0.21 bc | 323 ± 8.89 cd | ||
3.0 | 12.0 ± 0.73 ef | 358 ± 7.78 def | ||
30 | 0 | 6.52 ± 0.30 ab | 119 ± 5.84 a | |
1.5 | 10.7 ± 0.48 de | 423 ± 17.2 efg | ||
3.0 | 14.4 ± 0.38 fgh | 532 ± 43.21 h | ||
Rice straw | 0 | 0 | 4.78 ± 0.24 a | 85.1 ± 3.49 a |
1.5 | 8.84 ± 0.45 bcd | 253 ± 13.1 bc | ||
3.0 | 11.4 ± 0.74 e | 371 ± 11.1 ef | ||
30 | 0 | 7.01 ± 0.40 ab | 131 ± 8.28 a | |
1.5 | 11.5 ± 0.30 e | 350 ± 4.84 de | ||
3.0 | 14.6 ± 0.78 gh | 440 ± 7.61 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, I.; Riaz, M.; Ali, S.; Arif, M.S.; Ali, S.; Alyemeni, M.N.; Alsahli, A.A. Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil. Sustainability 2021, 13, 2652. https://doi.org/10.3390/su13052652
Rehman I, Riaz M, Ali S, Arif MS, Ali S, Alyemeni MN, Alsahli AA. Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil. Sustainability. 2021; 13(5):2652. https://doi.org/10.3390/su13052652
Chicago/Turabian StyleRehman, Iqra, Muhammad Riaz, Sajid Ali, Muhammad Saleem Arif, Shafaqat Ali, Mohammed Nasser Alyemeni, and Abdulaziz Abdullah Alsahli. 2021. "Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil" Sustainability 13, no. 5: 2652. https://doi.org/10.3390/su13052652
APA StyleRehman, I., Riaz, M., Ali, S., Arif, M. S., Ali, S., Alyemeni, M. N., & Alsahli, A. A. (2021). Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil. Sustainability, 13(5), 2652. https://doi.org/10.3390/su13052652