Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology
2.2. Bibliometric Analysis
2.3. Classification of Literature
3. Results and Discussion
3.1. Overview Source of Delays
3.2. Impact of Weather on Task Feasibility
3.2.1. Labor
3.2.2. Materials
3.2.3. Equipment
3.3. Methods to Model or Predict Delays
3.4. Mitigation Techniques/Adaptation Strategies
3.4.1. Physical
3.4.2. Administrative
3.5. Climate Change Considerations
4. Discussion
4.1. Extreme Temperatures
4.2. Precipitation
4.3. Wind
4.4. Materials
4.5. Equipment
4.6. Climate Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshebani, M.N.; Wedawatta, G. Making the Construction Industry Resilient to Extreme Weather: Lessons from Construction in Hot Weather Conditions. Procedia Econ. Financ. 2014, 18, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Sebt, M.H.; Rajaei, H.; Pakseresht, M.M. A Fuzzy Modeling Approach to Weather Delays Analysis in Construction Projects. Int. J. Civ. Eng. 2007, 5, 13. Available online: http://ijce.iust.ac.ir/article-1-322-en.html (accessed on 1 November 2020).
- Senouci, A.B.; Mubarak, S.A. Multiobjective Optimization Model for Scheduling of Construction Projects Under Extreme Weather. J. Civ. Eng. Manag. 2016, 22, 373–381. [Google Scholar] [CrossRef]
- Donald McDonald Weather Delays and Impacts. Aace-Cost Eng. 2000, 42, 34.
- Finke, M. Weather-Related Delays on Government Contracts. Aace Int. Trans. 1990, 51. Available online: https://afit.idm.oclc.org/login?url=https://www.proquest.com/scholarly-journals/weather-related-delays-on-government-contracts/docview/208193364/se-2?accountid=26185 (accessed on 1 November 2020).
- Nguyen, L.D.; Kneppers, J.; García de Soto, B.; Ibbs, W. Analysis of Adverse Weather for Excusable Delays. J. Constr. Eng. Manag. 2010, 136, 1258–1267. [Google Scholar] [CrossRef]
- Yates, J.K.; Epstein, A. Avoiding and Minimizing Construction Delay Claim Disputes in Relational Contracting. J. Prof. Issues Eng. Educ. Pr. 2006, 132, 168–179. [Google Scholar] [CrossRef]
- Moda, H.M.; Minhas, A. Minhas Impacts of Climate Change on Outdoor Workers and Their Safety: Some Research Priorities. IJERPH 2019, 16, 3458. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros-Pérez, P. Weather-Wise_ A Weather-Aware Planning Tool for Improving Construction Productivity and Dealing with Claims. Autom. Constr. 2017, 15, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Sett, M.; Sahu, S. Effects of Occupational Heat Exposure on Female Brick Workers in West Bengal, India. Glob. Health Action 2014, 7, 21923. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.W. Stochastic Simulation of Daily Precipitation, Temperature, and Solar Radiation. Water Resour. Res. 1981, 17, 182–190. [Google Scholar] [CrossRef]
- Al-Bouwarthan, M.; Quinn, M.M.; Kriebel, D.; Wegman, D.H. Assessment of Heat Stress Exposure among Construction Workers in the Hot Desert Climate of Saudi Arabia. Ann. Work Expo. Health 2019, 63, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Bekr, G. Study of Significant Factors Affecting Labor Productivity at Construction Sites in Jordan: Site Survey. J. Eng. Technol. (Jet) 2016, 4, 92–97. [Google Scholar] [CrossRef]
- Ghoddousi, P.; Hosseini, M.R. A Survey of the Factors Affecting the Productivity of Construction Projects in Iran. Technol. Econ. Dev. Econ. 2012, 18, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Jarkas, A.M. Factors Influencing Labour Productivity in Bahrain’s Construction Industry. Int. J. Constr. Manag. 2015, 15, 94–108. [Google Scholar] [CrossRef]
- Senouci, A.; Al-Abbasi, M.; Eldin, N.N. Impact of Weather Conditions on Construction Labour Productivity in Qatar. Middle East J. Manag. 2017, 5, 34–49. [Google Scholar] [CrossRef]
- Shehata, M.E.; El-Gohary, K.M. Towards Improving Construction Labor Productivity and Projects’ Performance. Alex. Eng. J. 2011, 50, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Al Refaie, A.M.; Alashwal, A.M.; Abdul-Samad, Z.; Salleh, H. Weather and Labor Productivity in Construction: A Literature Review and Taxonomy of Studies. IJPPM 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Budhathoki, N.K.; Zander, K.K. Socio-Economic Impact of and Adaptation to Extreme Heat and Cold of Farmers in the Food Bowl of Nepal. IJERPH 2019, 16, 1578. [Google Scholar] [CrossRef] [Green Version]
- Ghani, N.; Tariq, F.; Javed, H.; Nisar, N.; Tahir, A. Low-Temperature Health Hazards Among Workers of Cold Storage Facilities in Lahore, Pakistan. Med. Pr. 2020, 71, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chow, K.H.; Zhu, Y.; Lin, Y. Evaluating the Impacts of High-Temperature Outdoor Working Environments on Construction Labor Productivity in China: A Case Study of Rebar Workers. Build. Environ. 2016, 95, 42–52. [Google Scholar] [CrossRef]
- Yi, W.; Chan, A.P.C. Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers. Int. J. Environ. Res. Public Health 2017, 14, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, R.; Rudberg, M. Impact of Weather Conditions on In Situ Concrete Wall Operations Using a Simulation-Based Approach. J. Constr. Eng. Manag. 2019, 145, 05019009. [Google Scholar] [CrossRef] [Green Version]
- Risikko, T.; Mäkinen, T.M.; Påsche, A.; Toivonen, L.; Hassi, J. A Model for Managing Cold-Related Health and Safety Risks at Workplaces. Int. J. Circumpolar Health 2003, 13, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Place Hansen, E.J.; Larsen, J.N. Employment and Winter Construction: A Comparative Analysis of Denmark and Western European Countries with a Similar Climate. Constr. Manag. Econ. 2011, 29, 875–890. [Google Scholar] [CrossRef]
- Czarnecki, B.; Chyc-Cies, J. An Innovative Process for Winter Construction of Concrete Sidewalks. In Proceedings of the 2015 Annual Conference of the Transportation Association of Canada Charlottetown, PEI, Charlottetown, PE, Canada, 27–30 September 2015. [Google Scholar]
- Moselhi, O.; Gong, D.; El-Rayes, K. Estimating Weather Impact on the Duration of Construction Activities. Can. J. Civ. Eng. 1997, 24, 8. [Google Scholar] [CrossRef]
- Evseev, V.; Barkhi, R.; Pleshivtsev, A.; Scrynnik, A. Modeling the Influence of Weather and Climatic Conditions on the Safety Characteristics of the Construction Process. E3S Web Conf. 2019, 97, 03035. [Google Scholar] [CrossRef]
- Feuchtwang, J.; Infield, D. Offshore Wind Turbine Maintenance Access: A Closed-Form Probabilistic Method for Calculating Delays Caused by Sea-State: Probabilistic Method for Calculating Access Delays Caused by Sea-State. Wind Energ. 2013, 16, 1049–1066. [Google Scholar] [CrossRef]
- Kerkhove, L.-P.; Vanhoucke, M. Optimised Scheduling for Weather Sensitive Offshore Construction Projects. Omega 2017, 66, 58–78. [Google Scholar] [CrossRef]
- Aibinu, A.A.; Jagboro, G.O. The Effects of Construction Delays on Project Delivery in Nigerian Construction Industry. Int. J. Project Manag. 2002, 20, 593–599. [Google Scholar] [CrossRef]
- Amadi, A.I. A Back-End View to Climatic Adaptation: Partitioning Weather-Induced Cement Demand Variance in Wet Humid Environment. IJBPA 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Muhammad, N.Z.; Keyvanfar, A.; Abd Majid, M.Z.; Shafaghat, A.; Muhammad Magana, A.; Sabiu Dankaka, N. Causes of Variation Order in Building and Civil Engineering Projects in Nigeria. J. Teknol. 2015, 77. [Google Scholar] [CrossRef] [Green Version]
- Alfakhri, A.; Ismail, A.; Khoiry, M.A. A Conceptual Model of Delay Factors Affecting Road Construction Projects in Libya. J. Eng. Sci. Technol. 2017, 12, 3286–3298. [Google Scholar]
- Aziz, R.F.; Abdel-Hakam, A.A. Exploring Delay Causes of Road Construction Projects in Egypt. Alex. Eng. J. 2016, 55, 1515–1539. [Google Scholar] [CrossRef] [Green Version]
- El-Kholy, A.M. Modeling Delay Percentage of Construction Projects in Egypt Using Statistical-Fuzzy Approach. Iosr Jmce 2013, 7, 47–58. [Google Scholar] [CrossRef]
- Kaliba, C.; Muya, M.; Mumba, K. Cost Escalation and Schedule Delays in Road Construction Projects in Zambia. Int. J. Proj. Manag. 2009, 27, 522–531. [Google Scholar] [CrossRef]
- Boateng, P.; Chen, Z.; Ogunlana, S. A Conceptual System Dynamic Model to Describe the Impacts of Critical Weather Conditions in Megaproject Construction. J. Constr. Proj. Manag. Innov. 2012, 2, 208–224. [Google Scholar]
- Acharya, P.; Boggess, B.; Zhang, K. Assessing Heat Stress and Health among Construction Workers in a Changing Climate: A Review. IJERPH 2018, 15, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S.J. The Direct Impact of Climate Change on Regional Labor Productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Koehn, E.; Brown, G. Climatic Effects on Construction. J. Constr. Eng. Manag. 1985, 111, 129–137. [Google Scholar] [CrossRef]
- Moohialdin, A.S.M.; Lamari, F.; Miska, M.; Trigunarsyah, B. Construction Worker Productivity in Hot and Humid Weather Conditions: A Review of Measurement Methods at Task, Crew and Project Levels. ECAM 2019, 27, 83–108. [Google Scholar] [CrossRef]
- Muqeem, S.; Idrus, A.; Khamidi, M.F.; Bin Ahmad, J.; Bin Zakaria, S. Construction Labor Production Rates Modeling Using Artificial Neural Network. Electron. J. Inf. Technol. Constr. 2011, 16, 713–726. [Google Scholar]
- Moselhi, O.; Khan, Z. Analysis of Labour Productivity of Formwork Operations in Building Construction. Int. J. Civ. Environ. Eng. 2014, 8, 20. [Google Scholar] [CrossRef]
- Rowlinson, S.; Yunyanjia, A.; Li, B.; Chuanjingju, C. Management of Climatic Heat Stress Risk in Construction: A Review of Practices, Methodologies, and Future Research. Accid. Anal. Prev. 2014, 66, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Samaniego-Rascón, D.; Gameiro da Silva, M.C.; Ferreira, A.D.; Cabanillas-Lopez, R.E. Solar Energy Industry Workers under Climate Change: A Risk Assessment of the Level of Heat Stress Experienced by a Worker Based on Measured Data. Saf. Sci. 2019, 118, 33–47. [Google Scholar] [CrossRef]
- Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ Health and Productivity under Occupational Heat Strain: A Systematic Review and Meta-Analysis. Lancet Planet. Health 2018, 2, e521–e531. [Google Scholar] [CrossRef] [Green Version]
- Orlov, A.; Sillmann, J.; Aunan, K.; Kjellstrom, T.; Aaheim, A. Economic Costs of Heat-Induced Reductions in Worker Productivity Due to Global Warming. Glob. Environ. Chang. 2020, 63, 102087. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Freyberg, C.; Lemke, B.; Otto, M.; Briggs, D. Estimating Population Heat Exposure and Impacts on Working People in Conjunction with Climate Change. Int. J. Biometeorol. 2018, 62, 291–306. [Google Scholar] [CrossRef]
- Thomas, H.R.; Riley, D.R.; Sanvido, V.E. Loss of Labor Productivity Due to Delivery Methods and Weather. J. Constr. Eng. Manag. 1999, 125, 39–46. [Google Scholar] [CrossRef]
- Ballesteros-Pérez, P.; Smith, S.T.; Lloyd-Papworth, J.G.; Cooke, P. Incorporating the Effect of Weather in Construction Scheduling and Management with Sine Wave Curves: Application in the United Kingdom. Constr. Manag. Econ. 2018, 36, 666–682. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Park, M.; Lee, H.-S.; Kim, H. Weather-Delay Simulation Model Based on Vertical Weather Profile for High-Rise Building Construction. J. Constr. Eng. Manag. 2016, 142, 04016007. [Google Scholar] [CrossRef]
- Usukhbayar, R.; Choi, J. Determining the Impact of Key Climatic Factors on Labor Productivity in the Mongolian Construction Industry. J. Asian Archit. Build. Eng. 2018, 17, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros-Pérez, P.; del Campo-Hitschfeld, M.L.; González-Naranjo, M.A.; González-Cruz, M.C. Climate and Construction Delays: Case Study in Chile. Eng. Const. Arch. Man. 2015, 22, 596–621. [Google Scholar] [CrossRef]
- Nmai, C.K. Cold Weather Concreting Admixtures. Cem. Concr. Compos. 1998, 20, 121–128. [Google Scholar] [CrossRef]
- Al-Negheimish, A.I.; Alhozaimy, A.M. Impact of Extremely Hot Weather and Mixing Method on Changes in Properties of Ready Mixed Concrete during Delivery. Aci. Mater. J. 2008, 105, 438–444. [Google Scholar]
- Abbasi, A.F.; Al-Tayyib, A.J. Effect of Hot Weather on Modulus of Rupture and Splitting Tensile Strength of Concrete. Cem. Concr. Res. 1985, 15, 233–244. [Google Scholar] [CrossRef]
- El-Rayes, K.; Moselhi, O. Impact of Rainfall on the Productivity of Highway Construction. J. Constr. Eng. Manag. 2001, 127, 125–131. [Google Scholar] [CrossRef]
- Apipattanavis, S.; Sabol, K.; Molenaar, K.R.; Rajagopalan, B.; Xi, Y.; Blackard, B.; Patil, S. Integrated Framework for Quantifying and Predicting Weather-Related Highway Construction Delays. J. Constr. Eng. Manag. 2010, 136, 1160–1168. [Google Scholar] [CrossRef]
- Hot and Cold Weather Construction 2018.
- Thomas, H.R.; Ellis, R.D. Construction Site Management and Labor Productivity Improvement: How to Improve the Bottom Line and Shorten the Project Schedule; American Society of Civil Engineers: Reston, VA, USA, 2017; ISBN 978-0-7844-1465-1. [Google Scholar]
- Ibbs, W.; Sun, X. Weather’s Effect on Construction Labor Productivity. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2017, 9, 04517002. [Google Scholar] [CrossRef]
- Sanders, S.R.; Thomas, H.R. Factors Affecting Masonry-Labor Productivity. J. Constr. Eng. Manag. 1991, 117, 626–644. [Google Scholar] [CrossRef]
- Havers, J.A.; Morgan, R.M. Literature Survey of Cold Weather Construction Practices; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1972; p. 91. [Google Scholar]
- Shan, Y.; Goodrum, P. Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level. Buildings 2014, 4, 295–319. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.R.; Ellis Jr., R. D. Fundamental Principles of Weather Mitigation. Pract. Period. Struct. Des. Constr. 2009, 14, 29–35. [Google Scholar] [CrossRef]
- Alvanchi, A.; JavadiAghdam, S. Job Site Weather Index: An Indicator for Open Environment Construction Projects. Constr. Innov. 2019, 19, 110–124. [Google Scholar] [CrossRef]
- Shahin, A.; AbouRizk, S.M.; Mohamed, Y.; Fernando, S. Simulation Modeling of Weather-Sensitive Tunnelling Construction Activities Subject to Cold Weather. Can. J. Civ. Eng. 2014, 41, 48–55. [Google Scholar] [CrossRef]
- JavadiAghdam, S. Identifying Climate Conditions Change Parameters and Their Impacts on The Progress of Civil Projects in Alborz Province of Iran. J. Fundam. Appl. Sci. 2016, 8, 2326-U2219. [Google Scholar]
- Cantwell, F.A. A Model for Scheduling and Analyzing Construction Weather Delays. Master’s Thesis, The Pennsylvania State University, University Park, PA, USA, September 1987. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a185024.pdf (accessed on 1 November 2020).
- Marzoughi, F.; Arthanari, T.; Askarany, D. A Decision Support Framework for Estimating Project Duration under the Impact of Weather. Autom. Constr. 2018, 87, 287–296. [Google Scholar] [CrossRef]
- Shahin, A.; AbouRizk, S.M.; Mohamed, Y. Modeling Weather-Sensitive Construction Activity Using Simulation. J. Constr. Eng. Manag. 2011, 137, 238–246. [Google Scholar] [CrossRef]
- Diemand, D. Winterization and Winter Operation of Automotive and Construction Equipment; No. 92. US Army Corps of Engineers; Cold Regions Research & Engineering Laboratory: Hanover, NH, USA, 1992; p. 37. [Google Scholar]
- Windcrane Advanced Remote Wind Monitoring; 2020. Available online: https://www.windcrane.com/blog/construction/tower-cranes-wind-speed-lifting-guidance (accessed on 1 November 2020).
- Jin, L.; Liu, H.; Zheng, X.; Chen, S. Exploring the Impact of Wind Loads on Tower Crane Operation. Math. Probl. Eng. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Hornback, P. The Wheel Versus Track Dilemma. 1998, p. 2. Available online: https://fas.org/man/dod-101/sys/land/docs/2wheels98.pdf (accessed on 1 November 2020).
- Liu, A.; Soneja, S.I.; Jiang, C.; Huang, C.; Kerns, T.; Beck, K.; Mitchell, C.; Sapkota, A. Frequency of Extreme Weather Events and Increased Risk of Motor Vehicle Collision in Maryland. Sci. Total Environ. 2017, 580, 550–555. [Google Scholar] [CrossRef]
- Eisenberg, D. The Mixed Effects of Precipitation on Traffic Crashes. Accid. Anal. Prev. 2004, 36, 637–647. [Google Scholar] [CrossRef]
- Racsko, P.; Szeidl, L.; Semenov, M. A Serial Approach to Local Stochastic Weather Models. Ecol. Model. 1991, 57, 27–41. [Google Scholar] [CrossRef]
- Wilks, D.S. A Gridded Multisite Weather Generator and Synchronization to Observed Weather Data. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Caraway, N.M.; McCreight, J.L.; Rajagopalan, B. Multisite Stochastic Weather Generation Using Cluster Analysis and K-Nearest Neighbor Time Series Resampling. J. Hydrol. 2014, 508, 197–213. [Google Scholar] [CrossRef]
- Lee, T.; Ouarda, T.B.M.J.; Jeong, C. Nonparametric Multivariate Weather Generator and an Extreme Value Theory for Bandwidth Selection. J. Hydrol. 2012, 452–453, 161–171. [Google Scholar] [CrossRef]
- Al-Alawi, M.; Bouferguene, A.; Mohamed, Y. Non-Parametric Weather Generator for Modelling Construction Operations: Comparison with the Parametric Approach and Evaluation of Construction-Based Impacts. Autom. Constr. 2017, 75, 108–126. [Google Scholar] [CrossRef]
- Castro, S.; Dawood, N.N. Road Construction Planning (Roadsim): A Knowledge-Based Simulation System; CRC Press: Boca Raton, FL, USA, 2006; p. 8. [Google Scholar]
- Gunduz, M.; Nielsen, Y.; Ozdemir, M. Fuzzy Assessment Model to Estimate the Probability of Delay in Turkish Construction Projects. J. Manag. Eng. 2015, 31, 04014055. [Google Scholar] [CrossRef]
- Sheng, R.; Li, C.; Wang, Q.; Yang, L.; Bao, J.; Wang, K.; Ma, R.; Gao, C.; Lin, S.; Zhang, Y.; et al. Does Hot Weather Affect Work-Related Injury? A Case-Crossover Study in Guangzhou, China. Int. J. Hyg. Environ. Health 2018, 221, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Shahin, A.; AbouRizk, S.; Mohamed, Y.; Fernando, S. A Simulation-Based Framework for Quantifying the Cold Regions Weather Impacts on Construction Schedules. In Proceedings of the 2007 Winter Simulation Conference; IEEE: Washington, DC, USA, 2007; pp. 1798–1804. [Google Scholar]
- Chan, A.P.C.; Wong, F.K.W.; Wong, D.P.; Lam, E.W.M.; Yi, W. Determining an Optimal Recovery Time after Exercising to Exhaustion in a Controlled Climatic Environment: Application to Construction Works. Build. Environ. 2012, 56, 28–37. [Google Scholar] [CrossRef]
- Choi, J.; Ryu, H.-G. Statistical Analysis of Construction Productivity for Highway Pavement Operations. Ksce J. Civ. Eng. 2015, 19, 1193–1202. [Google Scholar] [CrossRef]
- Gatti, U.C.; Schneider, S.; Migliaccio, G.C. Physiological Condition Monitoring of Construction Workers. Autom. Constr. 2014, 44, 227–233. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Ali, Z.H.; Salih, S.Q.; Al-Ansari, N. Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model. Sustainability 2020, 12, 1514. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Bi, P.; Pisaniello, D.; Hansen, A.; Sullivan, T. Association between High Temperature and Work-Related Injuries in Adelaide, South Australia, 2001–2010. Occup. Environ. Med. 2014, 71, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Moselhi, O.; Khan, Z. Significance Ranking of Parameters Impacting Construction Labour Productivity. Constr. Innov. 2012, 12, 272–296. [Google Scholar] [CrossRef]
- Yi, W.; Chan, A.P.C. Which Environmental Indicator Is Better Able to Predict the Effects of Heat Stress on Construction Workers? J. Manag. Eng. 2015, 31, 04014063. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.-C. Conceptual Weather Environmental Forecasting System for Identifying Potential Failure of Under-Construction Structures during Typhoons. J. Wind Eng. Ind. Aerodyn. 2017, 168, 48–59. [Google Scholar] [CrossRef]
- Dytczak, M.; Ginda, G.; Szklennik, N.; Wojtkiewicz, T. Weather Influence-Aware Robust Construction Project Structure. Procedia Eng. 2013, 57, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Hassanein, A.; Moselhi, O. Planning and Scheduling Highway Construction. J. Constr. Eng. Manag. 2004, 130, 638–646. [Google Scholar] [CrossRef]
- Moselhi, O.; Nicholas, M.J. Hybrid Expert System for Construction Planning and Scheduling. J. Constr. Eng. Manag. 1990, 116, 221–238. [Google Scholar] [CrossRef]
- Pan, N.-F. Assessment of Productivity and Duration of Highway Construction Activities Subject to Impact of Rain. Expert Syst. Appl. 2005, 28, 313–326. [Google Scholar] [CrossRef]
- Wales, R.J.; AbouRizk, S.M. An Integrated Simulation Model for Construction. Simul. Pract. Theory 1996, 3, 401–420. [Google Scholar] [CrossRef]
- Yi, W.; Wang, S. Mixed-Integer Linear Programming on Work-Rest Schedule Design for Construction Sites in Hot Weather. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 429–439. [Google Scholar] [CrossRef]
- Al-Momani, A.H. Construction Delay: A Quantitative Analysis. Int. J. Proj. Manag. 2000, 18, 51–59. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Guo, Y.P.; Wong, F.K.W.; Li, Y.; Sun, S.; Han, X. The Development of Anti-Heat Stress Clothing for Construction Workers in Hot and Humid Weather. Ergonomics 2016, 59, 479–495. [Google Scholar] [CrossRef] [PubMed]
- Dehury, R.K. A Review of Measures against Increasing Temperature and Climate Change for the Safeguard of Workers in India. JCDR 2017. [Google Scholar] [CrossRef]
- Edwards, J. The Effect of Severe Weather on Logistics in the UK; Heriot-Watt University: Edinburgh, UK, 2010; p. 7. [Google Scholar]
- Gubernot, D.M.; Anderson, G.B.; Hunting, K.L. Characterizing Occupational Heat-Related Mortality in the United States, 2000-2010: An Analysis Using the Census of Fatal Occupational Injuries Database: Occupational Heat-Related Mortality in the US. Am. J. Ind. Med. 2015, 58, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.-Y.; Aurisicchio, M.; Angeloudis, P. Optimal Logistics Planning for Modular Construction Using Multi-Stage Stochastic Programming. Transp. Res. Procedia 2020, 46, 245–252. [Google Scholar] [CrossRef]
- Grethe, T.; Borczyk, S.; Plenkmann, K.; Normann, M.; Rabe, M.; Schwarz-Pfeiffer, A. Textile Humidity Sensors. In Proceedings of the 2018 Symposium on Design, Test, Integration Packaging of MEMS and MOEMS (DTIP), Rome, Italy, 22–25 May 2018; pp. 1–3. [Google Scholar]
- Wang, L.; Tian, M.; Zhang, Y.; Sun, F.; Qi, X.; Liu, Y.; Qu, L. Helical Core-Sheath Elastic Yarn-Based Dual Strain/Humidity Sensors with MXene Sensing Layer. J. Mater. Sci. 2020, 55. [Google Scholar] [CrossRef]
- He, C.; Korposh, S.; Hernandez, F.U.; Liu, L.; Correia, R.; Hayes-Gill, B.R.; Morgan, S.P. Real-Time Humidity Measurement during Sports Activity Using Optical Fibre Sensing. Available online: https://doaj.org (accessed on 12 February 2021).
- Aravinth, T.S.; Sasikala, P.; Bhuvaneswari, M.; Mansoor, J.S. Bio Sensing Chip for Smart Clothes. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020; pp. 917–919. [Google Scholar]
- De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V.N.; Habert, G.; Agusti-Juan, I. Vision of 3D Printing with Concrete—Technical, Economic and Environmental Potentials. Cem. Concr. Res. 2018, 112, 25–36. [Google Scholar] [CrossRef]
- Wu, P.; Zhao, X.; Baller, J.H.; Wang, X. Developing a Conceptual Framework to Improve the Implementation of 3D Printing Technology in the Construction Industry. Archit. Sci. Rev. 2018, 61, 133–142. [Google Scholar] [CrossRef]
- Ibbs, W.; Kang, J.M. Weather-Related Delay Provisions in Public Transportation Construction Contracts. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2018, 10, 04518009. [Google Scholar] [CrossRef]
- Chen, Y.; Okudan, G.; Riley, D. Decision Support for Construction Method Selection in Concrete Buildings: Prefabrication Adoption and Optimization. Autom. Constr. 2010, 19, 665–675. [Google Scholar] [CrossRef]
- Malacarne, G.; Toller, G.; Marcher, C.; Riedl, M.; Matt, D. Investigating Benefits and Criticisms of BIM for Construction Scheduling in SMEs: An Italian Case Study. Int. J. Sustain. Dev. Plan. 2018, 13, 139–150. [Google Scholar] [CrossRef]
- Choi, J.; Chen, X.; Kim, T. Opportunities and Challenges of Modular Methods in Dense Urban Environment. Int. J. Constr. Manag. 2019, 19, 93–105. [Google Scholar] [CrossRef]
- Wuni, I.; Shen, G. Holistic Review and Conceptual Framework for the Drivers of Offsite Construction: A Total Interpretive Structural Modelling Approach. Buildings 2019, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Shahtaheri, Y.; Rausch, C.; West, J.; Haas, C.; Nahangi, M. Managing Risk in Modular Construction Using Dimensional and Geometric Tolerance Strategies. Autom. Constr. 2017, 83, 303–315. [Google Scholar] [CrossRef]
- Wuni, I.; Shen, G. Barriers to the Adoption of Modular Integrated Construction: Systematic Review and Meta-Analysis, Integrated Conceptual Framework, and Strategies. J. Clean. Prod. 2020, 249, 119347. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.; Hampson, K. Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. Isprs Int. J. Geo-Inf. 2017, 6, 397. [Google Scholar] [CrossRef] [Green Version]
- Hardin, B.; McCool, D. BIM and Construction Management: Proven Tools, Methods, and Workflows; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Altinsoy, H.; Yildirim, H.A. Labor Productivity Losses over Western Turkey in the Twenty-First Century as a Result of Alteration in WBGT. Int. J. Biometeorol. 2015, 59, 463–471. [Google Scholar] [CrossRef]
- Chinowsky, P.S. Assessment of Climate Change Adaptation Costs for the U.S. Road Network. Glob. Environ. Chang. 2013, 10, 764–773. [Google Scholar] [CrossRef]
- Haraguchi, M.; Lall, U. Flood Risks and Impacts: A Case Study of Thailand’s Floods in 2011 and Research Questions for Supply Chain Decision Making. Int. J. Disaster Risk Reduct. 2015, 14, 256–272. [Google Scholar] [CrossRef]
- Varghese, B.M.; Hansen, A.; Bi, P.; Pisaniello, D. Are Workers at Risk of Occupational Injuries Due to Heat Exposure? A Comprehensive Literature Review. Saf. Sci. 2018, 110, 380–392. [Google Scholar] [CrossRef]
- Wedawatta, G. Resilience of Construction SMEs to Extreme Weather Events; The University of Salford: Salford, UK, 2013. [Google Scholar]
- Wedawatta, G.; Ingirige, B.; Amaratunga, D. Building Up Resilience of Construction Sector SMEs And Their Supply Chains to Extreme Weather Events. Int. J. Strateg. Prop. Manag. 2010, 14, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Fieldson, R. Climate Adaptation and Resilience on Construction Sites. In Proceedings of the RICS Construction and Property Conference, Salford, UK, 12–13 September 2011; pp. 208–219. [Google Scholar]
- Brusset, X.; Bertrand, J.-L. Hedging Weather Risk and Coordinating Supply Chains. J. Oper. Manag. 2018, 64, 41–52. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J. Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change. Saf. Health Work 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Stewart, M.G. Economic Assessment of Climate Adaptation Strategies for Existing Reinforced Concrete Structures Subjected to Chloride-Induced Corrosion. Struct. Infrastruct. Eng. 2016, 12, 432–449. [Google Scholar] [CrossRef] [Green Version]
- Chavaillaz, Y.; Roy, P.; Partanen, A.-I.; Da Silva, L.; Bresson, É.; Mengis, N.; Chaumont, D.; Matthews, H.D. Exposure to Excessive Heat and Impacts on Labour Productivity Linked to Cumulative CO2 Emissions. Sci. Rep. 2019, 9, 13711. [Google Scholar] [CrossRef] [PubMed]
- Knittel, N.; Jury, M.W.; Bednar-Friedl, B.; Bachner, G.; Steiner, A.K. A Global Analysis of Heat-Related Labour Productivity Losses under Climate Change—Implications for Germany’s Foreign Trade. Clim. Chang. 2020, 160, 251–269. [Google Scholar] [CrossRef] [Green Version]
- Salazar, M. The Effects of Climate on Output per Worker: Evidence from the Manufacturing Industry in Colombia. Rev. Desarro. Y Soc. 2017, 79, 55–90. [Google Scholar] [CrossRef]
No. | Source Title, Year | Title | Document Type | Times Cited |
---|---|---|---|---|
1 | Water Resources Research, 1981 | Stochastic simulation of daily precipitation, temperature, and solar radiation | Article | 439 |
2 | International Journal of Project Management, 2007 | Causes and effects of delays in Malaysian construction industry | Article | 398 |
3 | International Journal of Project Management, 1997 | A comparative study of causes of time overruns in Hong Kong construction projects | Article | 388 |
4 | Ecological Modelling, 1991 | A serial approach to local stochastic weather models | Article | 311 |
5 | International Journal of Project Management, 2000 | Construction delay: A quantitative analysis | Article | 298 |
6 | International Journal of Project Management, 2002 | The effects of construction delays on project delivery in Nigerian construction industry | Article | 290 |
7 | International Journal of Project Management, 2009 | Cost escalation and schedule delays in road construction projects in Zambia | Article | 268 |
8 | Accident Analysis and Prevention, 2004 | The mixed effects of precipitation on traffic crashes | Article | 250 |
9 | Archives of Environmental and Occupational Health, 2009 | The direct impact of climate change on regional labor productivity | Article | 246 |
10 | Structural Survey, 2005 | Factors affecting construction labour productivity for Malaysian residential projects | Review | 233 |
Author | Affiliation | Papers | Citations |
---|---|---|---|
Moselhi, Osama El Sayed | Concordia University, Montreal, Canada | 7 | 204 |
Kjellström, Tord E. | Health and Environment International Trust, Nelson, New Zealand | 6 | 286 |
Ballesteros-Pérez, Pablo | Universidad de Cadiz, Cadiz, Spain | 5 | 58 |
Bi, Peng | The University of Adelaide, Adelaide, Australia | 4 | 279 |
Chan, Albert P.C. | Hong Kong Polytechnic University, Kowloon, Hong Kong | 4 | 96 |
Mohamed, Yasser Abdel Rady I. | University of Alberta, Edmonton, Canada | 4 | 47 |
Rowlinson, Steve | The University of Hong Kong, Pokfulam, Hong Kong | 4 | 106 |
Thomas, H. Randolph | Pennsylvania State University, University Park, United States | 4 | 180 |
Yi, Wen | Massey University Auckland, Albany, New Zealand | 4 | 88 |
Author | Model Type | Objectives | Data Used |
---|---|---|---|
Ballesteros et al. 2016 Wilks 2009 Racsko et al. 1991 Richardson 1981 | Weather | Weather prediction | Parametric weather data |
Caraway et al. 2013 Lee et al. 2012 | Weather | Weather prediction | Non-parametric weather data |
Chan et al. 2012 Choi and Ryu 2014 El-Rayes and Moselhi 2001 Risikko et al. 2003 Gatti et al. 2014 | Impact | Weather effects Impacts on workers | localized weather data |
Chan et al. 2012 Choi and Ryu 2014 Risikko et al. 2003 El-Rayes and Moselhi 2001 | Impact | Weather effects impacts on materials | localized weather data |
Yaseen et al. 2020 Xiang et al. 2013 Moselhi et al. 2012 Yi et al. 2015 Moohialdin et al. 2019 Boateng et al. 2012 Wei 2017 Ghani et al. 2020 | Impact | Weather prediction Impacts on construction | Parametric and/or non-parametric weather data |
Jung et al. 2016 Senouci et al. 2018 Thomas et al. 1999 Yi et al. 2017 Muqeem et al. 2011b Shahin et al. 2011 Shahin et al. 2014 Shahin et al. 2007 Dytczak et al. 2013 Hassanein and Moselhi 2004 Wales and AbouRizk 1995 Moselhi et al. 1990 Pan 2004 Senouci et al. 2017 Shan and Goodrum 2014 Al-alawi et al. 2017 | Construction Scheduling | Weather prediction Impacts on construction Optimized schedule/worker productivity | Parametric and/or non-parametric weather data |
Muqeem et al., 2011a Alfakhri et al. 2017 Kholy 2013 Gunduz et al. 2015 Taha et al. 2016 Sheng et al. 2018 Castro and Dawood. 2006 | Construction Scheduling | Schedule Optimization Cost Optimization Worker Productivity Weather is not the focus of research | Determined delays on equipment, materials, and personnel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuldt, S.J.; Nicholson, M.R.; Adams, Y.A., II; Delorit, J.D. Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review. Sustainability 2021, 13, 2861. https://doi.org/10.3390/su13052861
Schuldt SJ, Nicholson MR, Adams YA II, Delorit JD. Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review. Sustainability. 2021; 13(5):2861. https://doi.org/10.3390/su13052861
Chicago/Turabian StyleSchuldt, Steven J., Mathew R. Nicholson, Yaquarri A. Adams, II, and Justin D. Delorit. 2021. "Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review" Sustainability 13, no. 5: 2861. https://doi.org/10.3390/su13052861
APA StyleSchuldt, S. J., Nicholson, M. R., Adams, Y. A., II, & Delorit, J. D. (2021). Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review. Sustainability, 13(5), 2861. https://doi.org/10.3390/su13052861