Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis
Abstract
:1. Introduction
- High government per capita subsidies for the electric sector: Despite the economic depression due to low oil prices, the government subsidies for the power sector per capita rose by 5.09% from $1202 in 2018 to $1271 in 2019 [1].
- A steady increase in energy demand: The energy peak demand increases at about 9% annually, from 5122 MW in 2014, and is forecast to hit 9530 MW in 2021 [1].
- GHG emissions’ exponential rise: The GHG volume emitted from 2000 to 2015 has risen 5.64 times from 21,666 Gg in 2000 to 97,072 Gg in 2015. The energy sector accounts for 63% of all GHG emissions [2].
- The renewables make up less than 1% of the country’s electricity mix in 2020: Oman’s electricity supply is still entirely powered by nationally produced natural gas and diesel [3].
2. Dataset and Methodology
2.1. ECMWRF ERA5 Reanalysis Wind Data
2.2. Methodology for Hub-Height Wind Speed
- Power law
- Weibull distribution
- Wind power density
- Capacity factor
2.3. Description of the Monitoring Sites
2.4. Wind Turbines Description
3. Results and Discussion
3.1. Wind Speeds Characteristics
3.2. Wind Power Density
3.3. Capacity Factor
3.4. Output Energy
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- The Oman Power and Water Procurement Company (OPWP). 7 Year Statement 2019–2025. Available online: https://omanpwp.om/PDF/7%20Year%20Statement%202019-2025%20New.pdf (accessed on 16 February 2021).
- BUR. Biennial Update Report to the United Nations Framework Convention on Climate Change (UNFCCC). 2019. Available online: https://unfccc.int/sites/default/files/resource/BUR%20%2817%20nov%202019%29%20%28Final%29%20%281%29.pdf (accessed on 18 February 2020).
- Authority for Public Services Regulation. Annual Report. 2019. Available online: https://www.apsr.om/downloadsdocs/annual-reports/AnnualReport2019English.pdf (accessed on 26 February 2020).
- Khalifehei, K.; Azizyan, G.; Gualtieri, C. Analyzing the Performance of Wave-Energy Generator Systems (SSG) for the Southern Coasts of Iran, in the Persian Gulf and Oman Sea. Energies 2018, 11, 3209. [Google Scholar] [CrossRef] [Green Version]
- AlKhars, M.; Miah, F.; Qudrat-Ullah, H.; Kayal, A. A Systematic Review of the Relationship Between Energy Consumption and Economic Growth in GCC Countries. Sustainability 2020, 12, 3845. [Google Scholar] [CrossRef]
- Al-Badi, A.H.; Ahshan, R.; Hosseinzadeh, N.; Ghorbani, R.; Hossain, E. Survey of smart grid concepts and technological demonstrations worldwide emphasizing on the Oman perspective. Appl. Syst. Innov. 2020, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Kaboli, A.; Hr, S.; Al Hinai, A.; Al-Badi, A.H.; Charabi, Y.; Al Saifi, A. Prediction of metallic conductor voltage owing to electromagnetic coupling via a hybrid ANFIS and backtracking search algorithm. Energies 2019, 12, 3651. [Google Scholar] [CrossRef] [Green Version]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A.; Al-Alawi, S. Assessment of wind energy potential locations in Oman using data from existing weather stations. Renew. Sustain. Energy Rev. 2010, 14, 1428–1436. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A. Review of the use of Numerical Weather Prediction (NWP) Models for Wind Energy Assessment. Renew. Sustain. Energy Rev. 2010, 14, 3192–3198. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A.A.A. Nested Ensemble NWP Approach for Wind Energy Assessment. Renew. Energy 2012, 37, 150–160. [Google Scholar] [CrossRef]
- Charabi, Y.; Al-Hinai, Y.A.; Al-Yahyai, S.; Al-Awadhi, T.; Choudri, B.S. Offshore wind potential and wind atlas over the Oman Maritime Zone. Energy Ecol. Environ. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Lydia, M.; Selvakumar, A.I.; Kumar, S.S.; Kumar, G.E.P. Advanced algorithms for wind turbine power curve modeling. IEEE Trans. Sustain. Energy 2013, 4, 827–835. [Google Scholar] [CrossRef]
- Zheng, C.W.; Li, C.Y.; Pan, J.; Liu, M.Y.; Xia, L.L. An overview of global ocean wind energy resource evaluations. Renew. Sustain. Energy Rev. 2016, 53, 1240–1251. [Google Scholar] [CrossRef]
- Dvorak, M.J.; Archer, C.L.; Jacobson, M.Z. California offshore wind energy potential. Renew. Energy 2010, 35, 1244–1254. [Google Scholar] [CrossRef]
- European Center for Medium-Range Weather Forecasts (ECMWF) ERA5. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 12 September 2019).
- Manwell, J.F.; Mc Gowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design, and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Fırtın, E.; Güler, Ö.; Akdağ, S.A. Investigation of wind shear coefficients and their effect on electrical energy generation. Appl. Energy 2011, 88, 4097–4105. [Google Scholar] [CrossRef]
- Bañuelos-Ruedas, F.; Angeles-Camacho, C.; Rios-Marcuello, S. Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renew. Sustain. Energy Rev. 2010, 14, 2383–2391. [Google Scholar] [CrossRef]
- Abbes, M.; Belhadj, J. Wind resource estimation and wind park design in El-Kef region, Tunisia. Energy 2012, 40, 348–357. [Google Scholar] [CrossRef]
- Saleh, H.; Aly, A.A.E.-A.; Abdel-Hady, S. Assessment of different methods used to estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt. Energy 2012, 44, 710–719. [Google Scholar] [CrossRef]
- Akpinar, S.; Akpinar, E.K. Estimation of wind energy potential using finite mixture distribution models. Energy Convers. Manag. 2009, 50, 877–884. [Google Scholar] [CrossRef]
- Soler-Bientz, R. Preliminary results from a network of stations for wind resource assessment at North of Yucatan Peninsula. Energy 2011, 36, 538–548. [Google Scholar] [CrossRef]
- Rocha, P.A.C.; de Sousa, R.C.; de Andrade, C.F.; da Silva, M.E.V. Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Appl. Energy 2012, 89, 395–400. [Google Scholar] [CrossRef]
- Kusiak, A.; Zheng, H.; Song, Z. On-line monitoring of power curves. Renew. Energy 2009, 34, 1487–1493. [Google Scholar] [CrossRef]
- Akpinar, E.K.; Akpinar, S. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics. Energy Convers. Manag. 2005, 46, 1848–1867. [Google Scholar] [CrossRef]
- Ohunakin, M.; Adaramola, S.; Oyewola, M. Wind energy evaluation for electricity generation using WECS in seven selected locations in Nigeria. Appl. Energy 2011, 88, 3197–3206. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.B. Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis. Energy 2018, 147, 1092–1107. [Google Scholar] [CrossRef]
- Kazem, H.A. Renewable energy in Oman: Status and future prospects. Renew. Sustain. Energy Rev. 2011, 15, 3465–3469. [Google Scholar] [CrossRef]
Terrain Type | WSC |
---|---|
Ocean, lake, and flat area | 0.10 |
Tallgrass | 0.15 |
Shrubs, hedges, and tall crops | 0.20 |
Forest area | 0.25 |
Small city | 0.30 |
Town with high-rise buildings | 0.40 |
Wind Turbine | Rated Power (kW) | Cut-In Wind Speed (m/s) | Rated Wind Speed (m/s) | Cut-Off Wind Speed (m/s) | Hub Height (m) |
---|---|---|---|---|---|
VESTAS (V164) | 9500 | 3.5 | 14 | 25 | 110 |
GE (3.6sl) | 3600 | 3.5 | 14 | 27 | 100 |
SIEMENS (SWT113) | 3200 | 2.5 | 13.5 | 22 | 80 |
Astronomical Seasons | Wind Speed (m/s) | |||||||
---|---|---|---|---|---|---|---|---|
Mean | Maximum | Standard Deviation | Coefficient of Variation (%) | Weibull Shape Factor k | Weibull Scale Factor c | Beaufort Scale | ||
Site A | Spring | 10.43 | 21.02 | 4.84 | 46.37 | 2.31 | 11.81 | 5-Fresh breeze |
Summer | 16.85 | 23.89 | 4.57 | 27.14 | 4.64 | 18.36 | 7-Near gale | |
Autumn | 5.02 | 20.03 | 3.16 | 62.91 | 1.69 | 5.65 | 3-Gentle breeze | |
Winter | 5.07 | 13.42 | 2.76 | 54.41 | 1.91 | 5.72 | 3-Gentle breeze | |
Site B | Spring | 11.27 | 22.97 | 4.72 | 41.87 | 2.57 | 12.70 | 6-Strong breeze |
Summer | 17.27 | 23.86 | 4.27 | 24.74 | 5.19 | 18.69 | 8-Fresh gale | |
Autumn | 5.21 | 20.95 | 3.27 | 62.79 | 1.69 | 5.85 | 3-Gentle breeze | |
Winter | 5.83 | 14.64 | 3.18 | 54.63 | 1.90 | 6.57 | 4-Moderate breeze | |
Site C | Spring | 8.54 | 18.87 | 3.56 | 41.73 | 2.56 | 9.62 | 5-Fresh breeze |
Summer | 11.61 | 17.94 | 3.44 | 29.64 | 3.90 | 12.84 | 6-Strong breeze | |
Autumn | 5.08 | 13.59 | 2.48 | 48.82 | 2.16 | 5.74 | 3-Gentle breeze | |
Winter | 4.52 | 11.91 | 2.14 | 47.49 | 2.22 | 5.10 | 3-Gentle breeze |
Astronomical Seasons | Error | Distribution | |||
---|---|---|---|---|---|
Gamma | Lognormal | Weibull | |||
Site A | Spring | SAE | 0.3113 | 0.3115 | 0.3825 |
Summer | 0.5101 | 0.5744 | 0.4325 | ||
Autumn | 0.2851 | 0.3201 | 0.2624 | ||
Winter | 0.6521 | 0.7075 | 0.5967 | ||
Site B | Spring | SAE | 0.3591 | 0.3225 | 0.4332 |
Summer | 0.5246 | 0.6037 | 0.4887 | ||
Autumn | 0.3082 | 0.3294 | 0.2865 | ||
Winter | 0.4923 | 0.5580 | 0.4690 | ||
Site C | Spring | SAE | 0.2558 | 0.3532 | 0.1933 |
Summer | 0.4515 | 0.4570 | 0.4380 | ||
Autumn | 0.7048 | 0.7481 | 0.6453 | ||
Winter | 0.8928 | 0.9044 | 0.8842 | ||
Mean | 0.4789 | 0.5158 | 0.4593 |
Wind Turbine | Site A | Site B | Site C | Site D | |
---|---|---|---|---|---|
VESTAS (V164) | Eout (GWh) | 36.33 | 40.15 | 28.76 | 29.98 |
Cf (%) | 43.66 | 48.24 | 34.56 | 36.02 | |
GE (3.6sl) | Eout (GWh) | 15.03 | 16.60 | 12.65 | 13.10 |
Cf (%) | 47.68 | 52.66 | 40.12 | 41.55 | |
SIEMENS (SWT113) | Eout (GWh) | 13.50 | 14.93 | 11.72 | 12.03 |
Cf (%) | 48.17 | 53.26 | 41.81 | 42.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hinai, A.; Charabi, Y.; Aghay Kaboli, S.H. Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis. Sustainability 2021, 13, 2862. https://doi.org/10.3390/su13052862
Al-Hinai A, Charabi Y, Aghay Kaboli SH. Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis. Sustainability. 2021; 13(5):2862. https://doi.org/10.3390/su13052862
Chicago/Turabian StyleAl-Hinai, Amer, Yassine Charabi, and Seyed H. Aghay Kaboli. 2021. "Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis" Sustainability 13, no. 5: 2862. https://doi.org/10.3390/su13052862
APA StyleAl-Hinai, A., Charabi, Y., & Aghay Kaboli, S. H. (2021). Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis. Sustainability, 13(5), 2862. https://doi.org/10.3390/su13052862