The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective
Abstract
:1. Introduction
- (i)
- analyze why sustainability is important to grape and wine farmers;
- (ii)
- analyze current trends in the economic, environmental, and social sustainability of grape and wine production and how climate change is affecting these trends.
2. Methodology
3. Results
4. Discussion
4.1. Why Do Grape Farmers Become Sustainable?
4.2. The Historical Context of Grape and Wine Production in South Africa
4.3. Climate Change in Grape and Wine Production
4.4. Economic Sustainability of Grape and Wine Production
4.5. Economic Sustainability in Climate Change of Grape and Wine Production
Economic Indicator | Temperature |
---|---|
Yield | 90% and 65% increase in vine yield with and without CO2 fertilization, respectively, corresponded with 3 °C increase in temperature [88] |
Wine quality | 0.23% increase in Brix levels per year between 1980 and 2005 [91] |
Revenue | 150–180% increase in revenue with a 3 °C increase in temperature [91] |
Price | 61.6% increase in price with 1 °C increase in temperature [95] |
4.6. Environmental Sustainability of Grape and Wine Production
4.6.1. Water Use Efficiency
4.6.2. Organic and Inorganic Waste
4.6.3. Chemical Use
4.6.4. (Un)Sustainable Agronomic Management and Resulting Soil Loss
4.7. Environmental Sustainability in Climate Change of Grape and Wine Production
4.8. Social Sustainability in Grape and Wine Production
4.9. Social Sustainability in Climate Change of Grape and Wine Production
4.10. Climate Change Adaptation Strategies
4.11. Knowledge Gaps and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altieri, M.A. Agroecological foundations of alternative agriculture in California. Agric. Ecosyst. Environ. 1992, 39, 23–53. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Woodhouse, P. Beyond Industrial Agriculture? Some Questions about Farm Size, Productivity and Sustainability. J. Agrar. Chang. 2010, 10, 437–453. [Google Scholar] [CrossRef]
- United Nations. Report of the World Commission on Environment and Development. General Assembly Resolution 42/187. 11 December 1987. Available online: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf (accessed on 26 February 2021).
- Martins, A.A.; Araújo, A.R.; Graça, A.; Caetano, N.S.; Mata, T.M. Towards sustainable wine: Comparison of two Portuguese wines. J. Clean. Prod. 2018, 183, 662–676. [Google Scholar] [CrossRef]
- United Nations. UN Sustainable Development Goals 17 Goals to Transform Our World. 2015. United Nations. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 26 February 2021).
- A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 21 September 2020).
- Goals and Priority Areas of Agenda 2063. Available online: https://au.int/en/agenda2063/goals (accessed on 15 August 2020).
- Szolnoki, G. A cross-national comparison of sustainability in the wine industry. J. Clean. Prod. 2013, 53, 243–251. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nat. Cell Biol. 2013, 495, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Robert, K.W.; Parris, T.M.; Leiserowitz, A.A. What is Sustainable Development? Goals, Indicators, Values, and Practice. Environ. Sci. Policy Sustain. Dev. 2005, 47, 8–21. [Google Scholar] [CrossRef]
- Elkington, J. Partnerships fromcannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 1998, 8, 37–51. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C.M. Sustainable Food Systems from Agriculture to Industry: Improving Production and Processing, 1st ed.; Academic Press: London, UK, 2018. [Google Scholar]
- Christ, K.L.; Burritt, R.L. Critical environmental concerns in wine production: An integrative review. J. Clean. Prod. 2013, 53, 232–242. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Using a synoptic climatological approach to understand climate-viticulture relationships. Int. J. Clim. 2000, 20, 813–837. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubordieu, D. Influence of climate, soil, and cultivar on ter-roir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Tonietto, J. Les Macroclimats Viticoles Mondiaux et l’Influence du Mésoclimat sur la Typicité de la Syrah et du Muscat de Hambourg dans le sud de la France: Méthodologie de Caractérisation. Ph.D. Thesis, Ecole Nationale Supérieure Agronomique, Montpellier, France, 1999; 233p. [Google Scholar]
- Keller, M. The Science of Grapevines: Anatomy and Physiology, 1st ed.; Elsevier Inc.: Amsterdam, The Neatherlands, 2010. [Google Scholar]
- De Orduña, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Santos, J.A.; Malheiro, A.C.; Karremann, M.K.; Pinto, J.G. Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. Int. J. Biometeorol. 2010, 55, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Bock, A.; Sparks, T.H.; Estrella, N.; Menzel, A. Climate-Induced Changes in Grapevine Yield and Must Sugar Content in Franconia (Germany) between 1805 and 2010. PLoS ONE 2013, 8, e69015. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Cardoso, R.M.; Soares, P.M.M.; Cancela, J.J.; Pinto, J.G.; Santos, J.A. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions. PLoS ONE 2014, 9, e108078. [Google Scholar] [CrossRef]
- South African Table Grape Industry. Statistics of Table Grapes in South Africa. Available online: https://user-hpa96tt.cld.bz/SATI-STATISTICS-OF-TABLE-GRAPES-IN-SOUTH-AFRICA-2020/6/ (accessed on 15 July 2020).
- International Organization of Vine and Wine. Statistical Report on World Vitiviniculture. Available online: http://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 22 July 2020).
- Midgley, G.F.; Chapman, R.A.; Hewitson, B.; Johnston, P.; de Wit, M.; Ziervogel, G.; Mukheibir, P.; van Niekerk, L.; Tadross, M.; van Wilgen, B.W.; et al. A Status Quo, Vulnerability and Adapta-tion Assessment of the Physical and Socio-economic Effects of Climate Change in the Western Cape. Report to the Western Cape Government, Cape Town, South Africa. 2005, CSIR Report No. ENV-S-C 2005-073, Stellenbosch. Available online: https://www.westerncape.gov.za/other/2006/9/wcape_climate_change_impacts_sep06.pdf (accessed on 24 February 2021).
- Naude, R. Impact of Climate Change and Extreme Weather Conditions on wine growing within the Stellenbosch region. J. Contemp. Manag. 2019, 16, 111–134. [Google Scholar] [CrossRef] [Green Version]
- Carter, S. The Projected Influence of Climate Change on the South African Wine Industry. 2006, IIASA Interim Report. Available online: https://core.ac.uk/download/pdf/33899523.pdf (accessed on 24 February 2021).
- Bonnardot, V.; Carey, V.A. Observed climatic trends in South African wine regions and potential implications for viticulture. In Proceedings of the VIIth International Viticultural Terroir Congress, Nyon, Switzerland, 19–23 May 2008; pp. 216–221. [Google Scholar]
- Aslund, I. Opportunities for Improved Environmental Sustainability of a Wine Producer in South Africa–Natural Resource Man-Agement and Climate Change Adaptation and Mitigation. Masters’ Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2013. [Google Scholar]
- PRISMA Flow Diagram. Available online: http://www.prisma-statement.org/PRISMAStatement/FlowDiagram (accessed on 17 May 2020).
- Pomarici, E.; Vecchio, R.; Mariani, A. Wineries’ Perception of Sustainability Costs and Benefits: An Exploratory Study in California. Sustainanility 2015, 7, 16164–16174. [Google Scholar] [CrossRef] [Green Version]
- Marshall, R.S.; Akoorie, M.E.; Hamann, R.; Sinha, P.N. Environmental practices in the wine industry: An empirical application of the theory of reasoned action and stakeholder theory in the United States and New Zealand. J. World Bus. 2010, 45, 405–414. [Google Scholar] [CrossRef]
- Flores, S.S. What is sustainability in the wine world? A cross-country analysis of wine sustainability frameworks. J. Clean. Prod. 2018, 172, 2301–2312. [Google Scholar] [CrossRef]
- Bansal, P.; Roth, K. Why Companies go green: A model of ecological responsiveness. Acad. Manag. J. 2000, 43, 717–736. [Google Scholar] [CrossRef]
- Hamann, R.; Smith, J.; Tashman, P.; Marshall, R.S. Why Do SMEs Go Green? An Analysis of Wine Firms in South Africa. Bus. Soc. 2016, 56, 23–56. [Google Scholar] [CrossRef]
- Gabzdylova, B.; Raffensperger, J.F.; Castka, P. Sustainability in the New Zealand wine industry: Drivers, stakeholders and practices. J. Clean. Prod. 2009, 17, 992–998. [Google Scholar] [CrossRef]
- Dodds, R.; Graci, S.; Ko, S.; Walker, L. What drives environmental sustainability in the New Zealand wine industry? Int. J. Wine Bus. Res. 2013, 25, 164–184. [Google Scholar] [CrossRef]
- Elsayed, K. Reexamining the Expected Effect of Available Resources and Firm Size on Firm Environmental Orientation: An Empirical Study of UK Firms. J. Bus. Ethic 2006, 65, 297–308. [Google Scholar] [CrossRef]
- Melnyk, S.; Sroufe, R.P.; Calantone, R. Assessing the impact of environmental management systems on corporate and environmental performance. J. Oper. Manag. 2002, 21, 329–351. [Google Scholar] [CrossRef]
- York, J.G.; Venkataraman, S. The entrepreneur–environment nexus: Uncertainty, innovation, and allocation. J. Bus. Ventur. 2010, 25, 449–463. [Google Scholar] [CrossRef]
- Marshall, R.S.; Cordano, M.; Silverman, M. Exploring individual and institutional drivers of proactive environmentalism in the US Wine industry. Bus. Strat. Environ. 2005, 14, 92–109. [Google Scholar] [CrossRef]
- Williams, S.; Schaefer, A. Small and Medium-Sized Enterprises and Sustainability: Managers’ Values and Engagement with Environmental and Climate Change Issues. Bus. Strat. Environ. 2013, 22, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Baumann-Pauly, D.; Wickert, C.; Spence, L.J.; Scherer, A.G. Organizing Corporate Social Responsibility in Small and Large Firms: Size Matters. J. Bus. Ethic 2013, 115, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Berrone, P.; Cruz, C.; Gomez-Mejia, L.R.; Larraza-Kintana, M. Socioemotional Wealth and Corporate Responses to Institutional Pressures: Do Family-Controlled Firms Pollute Less? Adm. Sci. Q. 2010, 55, 82–113. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agric. Ecosyst. Environ. 2018, 258, 49–58. [Google Scholar] [CrossRef]
- Cambra-Fierro, J.; Ruiz-Benítez, R. Sustainable business practices in Spain: A two-case study. Eur. Bus. Rev. 2011, 23, 401–412. [Google Scholar] [CrossRef]
- Tee, E.; Boland, A.-M.; Medhurst, A. Voluntary adoption of Environmental Management Systems in the Australian wine and grape industry depends on understanding stakeholder objectives and drivers. Aust. J. Exp. Agric. 2007, 47, 273–283. [Google Scholar] [CrossRef]
- du Toit, A. ‘Hunger in the Valley of Fruitfulness: Globalization, “Social Exclusion” and Chronic Poverty in Ceres, South Africa’. In Proceedings of the ‘Staying Poor: Chronic Poverty and Development Policy’, Manchester, UK, 7–9 April 2003; pp. 1–45. [Google Scholar]
- Williams, G. Black Economic Empowerment in the South African Wine Industry. J. Agrar. Chang. 2005, 5, 476–504. [Google Scholar] [CrossRef]
- Vink, N.; Williams, G.; Kirsten, J. South Africa. In The World’s Wine Markets: Globalization at Work, 1st ed.; Anderson, K., Ed.; Edward Elgar: Cheltenham, U.K, 2004. [Google Scholar]
- Crais, C. White Supremacy and Black Resistance in Pre-industrial South Africa: The Making of the Colonial Order in the Eastern Cape, 1707–1875, 1st ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Ewert, J.; Du Toit, A. A Deepening Divide in the Countryside: Restructuring and Rural Livelihoods in the South African Wine Industry. J. South. Afr. Stud. 2005, 31, 315–332. [Google Scholar] [CrossRef]
- Mayson, D. The Rural Foundation–Management and Change on Fruit Farms: A Case Study of Selected Farms in the Elgin Area. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 1990. [Google Scholar]
- Du Toit, A. The micro-politics of paternalism: The discourses of management and resistance on South African fruit and wine farms. J. South. Afr. Stud. 1993, 19, 314–336. [Google Scholar] [CrossRef]
- Ewert, J.; Hamman, J. Labour organisation in Western cape agriculture: An ethnic corporatism? J. Peasant. Stud. 1996, 23, 146–165. [Google Scholar] [CrossRef]
- Kritzinger, A.; Barrientos, S.; Rossouw, H. Global Production and Flexible Employment in South African Horticulture: Experiences of Contract Workers in Fruit Exports. Sociol. Rural. 2004, 44, 17–39. [Google Scholar] [CrossRef]
- Barrientos, S.; Kritzinger, A. Squaring the circle: Global production and the informalization of work in South African fruit exports. J. Int. Dev. 2003, 16, 81–92. [Google Scholar] [CrossRef]
- Ponte, S.; Gibbon, P. Quality standards, conventions and the governance of global value chains. Econ. Soc. 2005, 34, 1–31. [Google Scholar] [CrossRef]
- Barrientos, S. Gender, Flexibility and Global Value Chains. IDS Bull. 2001, 32, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Molitor, D.; Junk, J. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing region. OENO One 2019, 53, 409–422. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Petrie, P.; Sadras, V. Advancement of grapevine maturity in Australia between 1993 and 2006: Putative causes, magnitude of trends and viticultural consequences. Aust. J. Grape Wine Res. 2008, 14, 33–45. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Schultz, H.R.; Jones, G.V. Climate Induced Historic and Future Changes in Viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Leolini, L.; Moriondo, M.; Romboli, Y.; Gardiman, M.; Costafreda-Aumedes, S.; Bindi, M.; Granchi, L.; Brilli, L. Modelling sugar and acid content in Sangiovese grapes under future climates: An Italian case study. Clim. Res. 2019, 78, 211–224. [Google Scholar] [CrossRef]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 747–845. [Google Scholar]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2013, 1, 94–110. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Future scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties. Int. J. Biometeorol. 2013, 57, 909–925. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Atauri, I.G.D.C.; Santos, J. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Jackson, D.I.; Lombard, P.B. Environmental and management practices affecting grape composition and wine quality—A review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Fraga, H.; A Santos, J.; Malheiro, A.C.; A Oliveira, A.; Moutinho-Pereira, J.; Jones, G.V. Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Clim. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Moriondo, M.; Jones, G.V.; Bois, B.; DiBari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [Green Version]
- Fairbanks, D.H.K.; Hughes, C.J.; Turpie, J.K. Potential impact of viticulture expansion on habitat types in the Cape Floristic Re-gion, South Africa. Biodivers. Conserv. 2004, 13, 1075–1100. [Google Scholar] [CrossRef]
- Doane, D.; MacGillivray, A. Economic Sustainability: The Business of Staying in Business. R and D Report. The Sigma Project. New Economics Foundation. 2001. Available online: https://www.dphu.org/uploads/attachements/books/books_5735_0.pdf (accessed on 24 February 2021).
- Latruffe, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of sustainability in agriculture: A review of indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar] [CrossRef]
- Bossel, H. Indicators for Sustainable Development: Theory, Method, Applications. International Institute of Sustainable Development. 1999. Available online: https://www.iisd.org/system/files/publications/balatonreport.pdf?q=sites/default/files/publications/balatonreport.pdf (accessed on 26 February 2021).
- Moseley, W.G. Fair Trade Wine: South Africa’s Post-Apartheid Vineyards and the Global Economy. Globalizations 2008, 5, 291–304. [Google Scholar] [CrossRef]
- Vinpro. VinPro Production Plan Survery 2020. Available online: https://www.wineland.co.za/vinpro-production-plan-survey-the-2019-vintage-the-wheels-have-started-turning-for-producers-in-the-south-african-wine-industry/ (accessed on 24 February 2021).
- Bureau for Food and Agricultural Policy. The South African Agricultural Baseline. Available online: https://www.bfap.co.za/wp-content/uploads/2020/04/Final-Baseline-2019.pdf (accessed on 11 August 2020).
- Produce Report. South Africa’s Table Grape Industry. Available online: https://www.producereport.com/article/south-africas-table-grape-industry (accessed on 28 November 2020).
- Schultz, H.R. Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Nemani, R.R.; White, M.A.; Cayan, D.R.; Jones, G.V.; Running, S.W.; Coughlan, J.C.; Peterson, D.L. Asymmetric warming over coastal California and its impact on the premium wine industry. Clim. Res. 2001, 19, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.M.; Wu, J.; Houston, L.L. The effects of climate change on yields and water use of major California crops. In Climate Change and California. Sacramento, CA: California Energy Commission, Public Interest Energy Research (PIER). Appendix IX, 2003. Available online: http://www.energy.ca.gov/reports/500-03-058/2003-10-31_500-03-058CF_ (accessed on 24 February 2021).
- Lobell, D.; Field, C.; Cahill, K.; Bonfils, C. California Perennial Crop Yields: Model Projections with Climate and Crop Uncer-tainties; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2006. [Google Scholar]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashenfelter, O.; Storchmann, K. Climate Change and Wine: A Review of the Economic Implications. J. Wine Econ. 2016, 11, 105–138. [Google Scholar] [CrossRef]
- Robinson, J. The Oxford Companion to Wine; Oxford University Press (OUP): Oxford, UK, 2006. [Google Scholar]
- Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Alston, J.M.; Fuller, K.B.; Lapsley, J.T.; Soleas, G.J. Too Much of a Good Thing? Causes and Consequences of Increases in Sugar Content of California Wine Grapes. J. Wine Econ. 2011, 6, 135–159. [Google Scholar] [CrossRef] [Green Version]
- Ashenfelter, O.; Ashmore, D.; LaLonde, R. Bordeaux Wine Vintage Quality and the Weather. Chance 1995, 8, 7–14. [Google Scholar] [CrossRef]
- Jones, G.V.; Storchmann, K.-H. Wine market prices and investment under uncertainty: An econometric model for Bordeaux Crus Classes. Agric. Econ. 2001, 26, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Chevet, J.-M.; Lecocq, S.; Visser, M. Climate, Grapevine Phenology, Wine Production, and Prices: Pauillac (1800–2009). Am. Econ. Rev. 2011, 101, 142–146. [Google Scholar] [CrossRef]
- Wood, D.; Anderson, K. What Determines the Future Value of an Icon Wine? New Evidence from Australia. J. Wine Econ. 2006, 1, 141–161. [Google Scholar] [CrossRef] [Green Version]
- Haeger, J.W.; Storchmann, K. Prices of American Pinot Noir wines: Climate, craftsmanship, critics. Agric. Econ. 2006, 35, 67–78. [Google Scholar] [CrossRef]
- Ene, S.A.; Teodosiu, C.; Robu, B.; Volf, I. Water footprint assessment in the winemaking industry: A case study for a Romanian medium size production plant. J. Clean. Prod. 2013, 43, 122–135. [Google Scholar] [CrossRef]
- Russell, A.; Battaglene, T. Trends in Environmental Assurance in Key Australian Wine Export Markets. Winemakers’ Federation of Australia Report, March 2007. Available online: https://www.wineaustralia.com/getmedia/f049fce6-cb33-4c56-bffd-2285c23e1977/WFA-0901 (accessed on 24 February 2021).
- Jarmain, C. Water footprint as an indicator of sustainable table and wine grape production. Report to the Water Research Com-mission (WRC), 2020. Western Cape, South Africa. Available online: http://wrc.org.za/?mdocs-file=60514 (accessed on 24 February 2021).
- Sheridan, C.; Bauer, F.; Burton, S.; Lorenzen, L. A critical process analysis of wine production to improve cost, quality and environmental performance. Water Sci. Technol. 2005, 51, 39–46. [Google Scholar] [CrossRef]
- Mosse, K.P.M.; Patti, A.F.; Christen, E.W.; Cavagnaro, T.R. Review: Winery wastewater quality and treatment options in Australia. Aust. J. Grape Wine Res. 2011, 17, 111–122. [Google Scholar] [CrossRef]
- Barber, N.; Taylor, D.C.; Deale, C.S. Wine Tourism, Environmental Concerns, and Purchase Intention. J. Travel Tour. Mark. 2010, 27, 146–165. [Google Scholar] [CrossRef]
- Musee, N.; Lorenzen, L.; Aldrich, C. Cellar waste minimization in the wine industry: A systems approach. J. Clean. Prod. 2007, 15, 417–431. [Google Scholar] [CrossRef]
- Chaves, M.; Santos, T.; Souza, C.; Ortuño, M.; Rodrigues, M.; Lopes, C.; Maroco, J.; Pereira, J. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Taylor, B. Encouraging industry to assess and implement cleaner production measures. J. Clean. Prod. 2006, 14, 601–609. [Google Scholar] [CrossRef]
- Hughey, K.F.; Tait, S.V.; O’Connell, M.J. Qualitative evaluation of three ‘environmental management systems’ in the New Zealand wine industry. J. Clean. Prod. 2005, 13, 1175–1187. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.; Barral, M.; Cruz, J.; Moldes, A. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Knowles, L.; Hill, R. Environmental initiatives in South African wineries: A comparison between small and large wineries. Eco-Manag. Audit. 2001, 8, 210–228. [Google Scholar] [CrossRef] [Green Version]
- Silverman, M.; Marshall, R.S.; Cordano, M. The greening of the California wine industry: Implications for regulators and industry associations. J. Wine Res. 2005, 16, 151–169. [Google Scholar] [CrossRef]
- Forbes, S.L.; Cohen, D.A.; Cullen, R.; Wratten, S.D.; Fountain, J. Consumer attitudes regarding environmentally sustainable wine: An exploratory study of the New Zealand marketplace. J. Clean. Prod. 2009, 17, 1195–1199. [Google Scholar] [CrossRef] [Green Version]
- Costley, D. CCA timber posts a ‘toxic’ issue for industry. The Aust. New Zealand Grapegrower. Aust. N. Zealand Grapegrow. Winemak. 2011, 564, 33–36. [Google Scholar]
- Forbes, S.L.; Cullen, R.; Cohen, D.A.; Wratten, S.D.; Fountain, J. Food and Wine Production Practices: An Analysis of Consumer Views. J. Wine Res. 2011, 22, 79–86. [Google Scholar] [CrossRef]
- Broome, J.C.; Warner, K.D. Agro-environmental partnerships facilitate sus-tainable wine-grape production and assessment. Calif. Agr. 2008, 62, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Novara, A.; Gristina, L.; Saladino, S.; Santoro, A.; Cerdà, A. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Tillage Res. 2011, 117, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, M.; Rodrigo-Comino, J.; Seeger, M.; Ries, J. Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-Mosel Valley, Germany). Cuadernos de Investigación Geográfica 2017, 43, 119–140. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Leclercq, L.; Gilliot, J.; Chaignon, B. Retrospective 70 y-spatial analysis of repeated vine mortality patterns using ancient aerial time series, Pléiades images and multi-source spatial and field data. Int. J. Appl. Earth Obs. Geoinform. 2017, 58, 234–248. [Google Scholar] [CrossRef]
- López-Vicente, M.; Calvo-Seas, E.; Álvarez, S.; Cerdà, A. Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard. Land 2020, 9, 230. [Google Scholar] [CrossRef]
- Guadie, M.; Molla, E.; Mekonnen, M.; Cerdà, A. Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia. Land 2020, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Terol, E.; Mora, G.; Giménez-Morera, A.; Cerdà, A. Vicia sativa Roth. Can Reduce Soil and Water Losses in Recently Planted Vineyards (Vitis vinifera L.). Earth Syst. Environ. 2020, 4, 827–842. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Verheijen, F.; Jones, R.; Rickson, R.; Smith, C. Tolerable versus actual soil erosion rates in Europe. Earth-Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Barrena-González, J.; Pulido-Fernández, M.; Cerdá, A. Estimating Non-Sustainable Soil Erosion Rates in the Tierra de Barros Vineyards (Extremadura, Spain) Using an ISUM Update. Appl. Sci. 2019, 9, 3317. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Morera, A.; Fernández-Raga, M.; Pulido, M.; Di Prima, S.; et al. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Mol, G.; Keesstra, S. Soil science in a changing world. Curr. Opin. Environ. Sustain. 2012, 4, 473–477. [Google Scholar] [CrossRef]
- Porter, J.; Parry, M.; Carter, T. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 1991, 57, 221–240. [Google Scholar] [CrossRef]
- Estay, S.A.; Lima, M.; Labra, F.A. Predicting insect pest status under climate change scenarios: Combining experimental data and population dynamics modelling. J. Appl. Èntomol. 2009, 133, 491–499. [Google Scholar] [CrossRef]
- Olesen, J.; Trnka, M.; Kersebaum, K.; Skjelvåg, A.; Seguin, B.; Peltonensainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Pavan, F.; Zandigiacomo, P.; Dalla Montà, L. Influence of the grape-growing area on the phenology of Lobesia botrana second generation. Bull. Insectol. 2006, 59, 105–109. [Google Scholar]
- Martín-Vertedor, M.; Ferrero-García, J.J.; Torres-Vila, L.M. Global warming affects phenology and voltinism ofLobesia botranain Spain. Agric. For. Èntomol. 2010, 12, 169–176. [Google Scholar] [CrossRef]
- Langille, A.B.; Arteca, E.M.; Newman, J.A. The impacts of climate change on the abundance and distribution of the Spotted Wing Drosophila (Drosophila suzukii) in the United States and Canada. PeerJ 2017, 5, e3192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reineke, A.; Thiéry, D. Grapevine insect pests and their natural enemies in the age of global warming. J. Pest Sci. 2016, 89, 313–328. [Google Scholar] [CrossRef]
- Monceau, K.; Bonnard, O.; Thiéry, D. Vespa velutina: A new invasive predator of honeybees in Europe. J. Pest Sci. 2014, 87, 1–16. [Google Scholar] [CrossRef]
- Yamamura, K.; Yokozawa, M. Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus(Fallen)(Hemiptera: Delphacidae), under global warming. Appl. Èntomol. Zoöl. 2002, 37, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Laštůvka, Z. Climate change and its possible influence on the occurrence and importance of insect pests. Plant Prot. Sci. 2010, 45, S53–S62. [Google Scholar] [CrossRef] [Green Version]
- Caffarra, A.; Rinaldi, M.; Eccel, E.; Rossi, V.; Pertot, I. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ. 2012, 148, 89–101. [Google Scholar] [CrossRef]
- Garrett, K.; Nita, M.; De Wolf, E.; Esker, P.; Gomez-Montano, L.; Sparks, A. Plant Pathogens as Indicators of Climate Change. In Climate Change; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 325–338. [Google Scholar]
- Robinet, C.; Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zoöl. 2010, 5, 132–142. [Google Scholar] [CrossRef]
- Fadeyi, O.; Maresova, P. Stakeholders’ Perception of Climate Actions in Some Developing Economies. Climate 2020, 8, 66. [Google Scholar] [CrossRef]
- Barber, N.N.; Taylor, C.; Strick, S. Wine consumers’ environmental knowledge and attitudes: Influence on willingness to purchase. Int. J. Wine Res. 2009, 1, 59. [Google Scholar] [CrossRef] [Green Version]
- Ollat, N.; Touzard, J.-M.; Van Leeuwen, C. Climate Change Impacts and Adaptations: New Challenges for the Wine Industry. J. Wine Econ. 2016, 11, 139–149. [Google Scholar] [CrossRef]
- Cowling, R.M. Fire and its role in coexistence and speciation in Gondwana shrublands. S. Afr. J. Sci. 1987, 83, 106–112. [Google Scholar]
- Van Wilgen, B.W.; Scott, D.F. Managing fires on the Cape Peninsula: Dealing with the inevitable. J. Mediterr. Ecol. 2001, 2, 197–208. [Google Scholar]
- Scott, D.F.; Versfeld, D.B.; Lesch, W. Erosion and sediment yield in relation to afforestation and fire in the mountains of the Western Cape, province, South Africa. S. Afr. Geogr. J. 1998, 80, 52–59. [Google Scholar] [CrossRef]
- Roehrdanz, P.R.; Hannah, L. Climate Change, California Wine, and Wildlife Habitat. J. Wine Econ. 2014, 11, 69–87. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Ponte, S.; Ewert, J. South African Wine–An Industry in Ferment. Tralac Working Paper No. 8. 2007. Available online: www.tralac.org (accessed on 21 August 2020).
- McEwan, C.; Bek, D. Placing Ethical Trade in Context: Wieta and the South African wine industry. Third World Q. 2009, 30, 723–742. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Cholette, S.; Castaldi, R.M. An Analysis of Globalization Forces in the Wine Industry. J. Glob. Mark. 2008, 21, 33–47. [Google Scholar] [CrossRef]
- Kemper, J.; Cowling, R.M.; Richardson, D.M. Fragmentation of South African renosterveld shrublands: Effects on plant community structure and conservation implications. Biol. Conserv. 1999, 90, 103–111. [Google Scholar] [CrossRef]
- Reyers, B.; Fairbanks, D.H.K.; Van Jaarsveld, A.S.; Thompson, M. Priority areas for the conservation of South African vegetation: A coarse-filter approach. Divers. Distrib. 2001, 7, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Kruger, S.; du Toit, A.; Ponte, S. De-Racialising Exploitation: ‘Black Economic Empowerment’ in the South African Wine Sector. J. Agra. Chang. 2008, 8, 6–32. [Google Scholar]
- Wegerif, M.; Russell, B.; Grundling, I. Still searching for security: The reality of farm dweller evictions in South Africa. Nkuzi Development Association and Social Surveys, Polokwane. J. Agra Chang. 2007, 7, 124–128. [Google Scholar]
- Eriksson, Å. Farm worker identities contested and reimagined: Gender, race/ethnicity and nationality in the post-strike moment. Anthr. South. Afr. 2017, 40, 248–260. [Google Scholar] [CrossRef]
- Devereux, S. Violations of farm workers’ labour rights in post-apartheid South Africa. Dev. S. Afr. 2019, 37, 382–404. [Google Scholar] [CrossRef]
- Sparrow, G.N.; Ortmann, G.F.; Lyne, M.C.; Darroch, M.A. Determinants of the demand for regular farm labour in South Africa, 1960–2002. Agrekon 2008, 47, 52–75. [Google Scholar] [CrossRef] [Green Version]
- Bhorat, H.; Kanbur, R.; Stanwix, B. Estimating the Impact of Minimum Wages on Employment, Wages and Non-Wage Benefits: The Case of Agriculture in South Africa. SSRN Electron. J. 2012. [Google Scholar] [CrossRef] [Green Version]
- Ranchhod, V.; Bassier, I. Estimating the Wage and Employment Effects of a Large Increase in South Africa’s Agricultural Minimum Wage; REDI3x3 Working Paper; University of Cape Town: Cape Town, Sounth Africa, 2017. [Google Scholar]
- Brandt, F.; Ncapayi, F. The meaning of compliance with land and labour legislation: Understanding justice through farm workers’ experiences in the Eastern Cape. Anthr. South. Afr. 2016, 39, 215–231. [Google Scholar] [CrossRef]
- Addison, L. Delegated Despotism: Frontiers of Agrarian Labour on a South African Border Farm. J. Agrar. Chang. 2014, 14, 286–304. [Google Scholar] [CrossRef]
- Lemke, S.; Jansen van Rensburg, F. Remaining at the margins: Case study of farmworkers in the North West Province, South Africa. Dev. South. Afr. 2014, 31, 843–858. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Ferrer, S. Farm Workers’ Living and Working Conditions in South Africa: Key Trends, Emergent Issues, and Underlying and Structural Problems; International Labour Organisation: Pretoria, South Africa, 2015. [Google Scholar]
- Pomarici, E.; Seccia, A. Economic and Social Impacts of Climate Change on Wine Production. Ref. Modul. Food Sci. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Lereboullet, A.-L.; Bardsley, D.K.; Beltrando, G. Assessing vulnerability and framing adaptive options of two Mediterranean wine growing regions facing climate change: Roussillon (France) and McLaren Vale (Australia). EchoGéo 2013, 23, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lereboullet, A.-L.; Beltrando, G.; Bardsley, D.K.; Rouvellac, E. The viticultural system and climate change: Coping with long-term trends in temperature and rainfall in Roussillon, France. Reg. Environ. Chang. 2013, 14, 1951–1966. [Google Scholar] [CrossRef]
- Hadarits, M.; Smit, B.; Diaz, H. Adaptation in Viticulture: A Case Study of Producers in the Maule Region of Chile. J. Wine Res. 2010, 21, 167–178. [Google Scholar] [CrossRef]
- Stoll, M.; Bischoff-Schaefer, M.; Lafontaine, M.; Tittmann, S.; Henschke, J. Impact of various leaf area modifications on berry maturation in Vitis vinifera L. ’Riesling’. Acta Hortic. 2013, 978, 293–299. [Google Scholar] [CrossRef]
- Bedrech, S.A.; Farag, S.G. Usage of some sunscreens to protect the Thompson Seedless and Crimson Seedless grapevines growing in hot. Nat. Sci. 2015, 13, 35–41. [Google Scholar] [CrossRef]
- Basile, B.; Caccavello, G.; Giaccone, M.; Forlani, M. Effects of Early Shading and Defoliation on Bunch Compactness, Yield Components, and Berry Composition of Aglianico Grapevines under Warm Climate Conditions. Am. J. Enol. Vitic. 2015, 66, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.I.; Silvestre, J.; Conceição, N.; Malheiro, A.C. Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques. Irrig. Sci. 2012, 30, 433–447. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; DiBari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Petheram, L.; Zander, K.; Campbell, B.; High, C.; Stacey, N. ‘Strange changes’: Indigenous perspectives of climate change and adaptation in NE Arnhem Land (Australia). Glob. Environ. Chang. 2010, 20, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Eakin, H.C.; Patt, A. Are adaptation studies effective, and what can enhance their practical impact? Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; MacLean, I.M.D. Climate change impacts and adaptive strategies: Lessons from the grapevine. Glob. Chang. Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, C.; Schultz, H.R.; De Cortazar-Atauri, I.G.; Duchêne, E.; Ollat, N.; Pieri, P.; Bois, B.; Goutouly, J.-P.; Quénol, H.; Touzard, J.-M.; et al. Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc. Natl. Acad. Sci. USA 2013, 110, E3051–E3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gransden, M. Alternative Varieties for the Australian Wine Industry Varieties to Help Australian Wine Grape Producers in a Changing Environment and Market. Varieties to Help Australian Wine Grape Producers in a Changing Environment and Market. Nuffield Australian Farming Scholars Report. 2019, Project No.1822. Available online: https://www.nuffieldscholar.org/sites/default/files/reports/2018_AU_Martin-Gransden_Alternative-Varieties-For-The-Australian-Wine-Industry.pdf (accessed on 24 February 2021).
- Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Sci. Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keesstra, S.; Cerdà, A. Soil Erosion as an Environmental Concern in Vineyards. The Case Study of Celler del Roure, Eastern Spain, by Means of Rainfall Simulation Experiments. Beverages 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Barrena-González, J.; Rodrigo-Comino, J.R.; Gyasi-Agyei, Y.; FernánPulidezo, M.P.; Cerdà, A. Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates. Land 2020, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- McEwan, C.; David, B. The political economy of alternative trade: Social and environmental certification in the South African wine industry. J. Rural. Stud. 2009, 25, 255–266. [Google Scholar] [CrossRef] [Green Version]
Region | Export Market |
---|---|
European Union | 31,400,602 |
United Kingdom | 15,793,685 |
Canada | 4,221,802 |
Far East | 2,951, 997 |
Middle East | 2,902,807 |
South East Asia | 2,877,238 |
Russian Federation | 1,193,984 |
Africa | 877,039 |
United States | 488,003 |
Indian Ocean Islands | 275,262 |
Other | 190,457 |
Environmental Indicators | Environmental Concerns |
---|---|
Water use | Inordinate water use coupled with inaccurate and/or absent data on water use |
Organic and inorganic waste | Lack of data on waste generated coupled with limited and/or absent recycling programs |
Synthetic chemicals use | Excessive use of synthetic chemicals with absent data on chemical use |
Energy use and greenhouse gas emissions | Energy use in addition to CO2 generated is an often-ignored environmental concern. |
Ecosystem impacts | Soil erosion, destruction of local habitats, loss of biodiversity associated with vineyard monocultures, local pollution and contamination, and competition for water resources with other aspects of agricultural production |
Social Indicator | Province | Workers | ||
---|---|---|---|---|
Western Cape | Northern Cape | Permanent | Seasonal | |
Did not sign a contract | 29.4% | 54.2% | 23.9% | 52.4% |
Received a copy of their contract | 16.2% | 60% | 37.2% | 17.5% |
Paid minimum wage | 62.4% | 59.6% | 73.2% | 51.6% |
No access to facilities | 57.2% | 71.1% | 52.2% | 72% |
Compensation for injury incurred at work | 61.5% | 60% | 64.4% | 61.2% |
Injury incurred at work reported to the labor department | 55.2% | 37.1% | 64.4% | 36.7% |
No protective clothing at work | 52.7% | 74.3% | 54.5 | 73.3% |
Exposed to pesticides | 45.3% | 95.8% | 63.5% | 69% |
Trade union membership | 13.6% | 9.9% | 13.8% | 9.5% |
Farm owner does not allow union reps on farms | 64.7% | 86.6% | 68.6% | 76.8% |
Farm owner prohibits attending union meetings | 49.3% | 63.4% | 47.8% | 60.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbejewoh, O.; Keesstra, S.; Blancquaert, E. The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective. Sustainability 2021, 13, 2910. https://doi.org/10.3390/su13052910
Gbejewoh O, Keesstra S, Blancquaert E. The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective. Sustainability. 2021; 13(5):2910. https://doi.org/10.3390/su13052910
Chicago/Turabian StyleGbejewoh, Omamuyovwi, Saskia Keesstra, and Erna Blancquaert. 2021. "The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective" Sustainability 13, no. 5: 2910. https://doi.org/10.3390/su13052910
APA StyleGbejewoh, O., Keesstra, S., & Blancquaert, E. (2021). The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective. Sustainability, 13(5), 2910. https://doi.org/10.3390/su13052910