Has the COVID-19 Pandemic Affected Maritime Connectivity? An Estimation for China and the Polar Silk Road Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Countries and Ports
2.2. Variables and Data
- As the pandemic is still progressing (at the time of this writing, January 2021), it is hardly possible to establish an unambiguous relationship between the spread of the disease, lockdown and containment measures, market fluctuations, economic slowdown, and trade activities. Nevertheless, many scholars, including Ding et al. [60], Baber [61], Erokhin and Gao [62], Ceylan et al. [63], and Mityakov [64], demonstrated the applicability of the number of registered COVID-19 cases in international comparisons of the economic effects of the pandemic. In earlier studies of other outbreaks (SARS, MERS, etc.), Bakalis et al. [65], Poudel et al. [66], and Bhargava et al. [67] also found that economic and trade activities could be associated with morbidity and mortality rates. The confirmed COVID-19 cases and death counts were employed by Nallon [16] to calculate the potential risk of COVID-19 spread related to individual ports. Therefore, we use the monthly number of new confirmed COVID-19 cases (X1) and the monthly number of new confirmed COVID-19 deaths (X2) to capture the pandemic’s direct effects on the degree of maritime connectivity.
- Regarding the effects of trade on maritime connectivity, we avoid using UNCTAD’s seaborne trade measure to ensure the cointegration between the variables. As reported by Liang and Liu [68], Hu et al. [69], Bertho et al. [70], and Chang et al. [56], seaborne trade directly relates to maritime connectivity, and thus it cannot be used as an independent variable in our study. Instead, the influences of trade activities on the SCI and the PSCI are reflected by the country’s monthly total exports and imports. Apart from preventing the multicollinearity problem, taking total outbound and inbound trade flows as variables allows us to check whether the role of maritime trade in the total trade turnover of a country has changed during the pandemic. Expressly, we can assume that stronger relationships between shipping connectivity indexes from one side and export and imports from the other can mean a reorientation of total trade towards the maritime sector. To differentiate between the total trade with the world and intra-PSR trade flows, we employ the parameters of total exports to the world (X3) and exports to China (X5) (for China, X5 designates exports to PSR countries) along with total imports from the world (X4) and imports from China (X6) (for China, X6 specifies imports from PSR countries).
- The pandemic has dramatically affected daily economic activities and transportation worldwide [71,72,73]. Generally, as reported by Černikovaitė and Karazijienė [74], Leach et al. [75], Egger et al. [76], and other scholars, the COVID-driven transformations of the economic environment have been reflected in the behavior patterns of businesses and consumers, i.e., supply and demand shifts in the global market. The most common approach to tracking market volatilities is to monitor prices. That is why we employed the Commodity Price Index (CPI), an average of monthly quotations at a commodity’s main marketplace. According to the UNCTAD [77], the CPI is a fixed-base Laspeyres index, where the weights are proportional to the individual commodities’ shares in total merchandise exports of a country in the base period (2014–2016). Four independent variables are included in the study to capture the categories of cargo that dominate in the Asia-Russia-Europe transit via the Northern Sea Route (NSR), the so-far primary operating transport passage in the Arctic Ocean [78]: X7–minerals, ores, and metals; X8–fuels; X9–food products; X10–agricultural raw materials and oilseeds.
Index | Variable | Unit of Measure | Definition | Source of Data |
---|---|---|---|---|
Y | Shipping Connectivity Index (SCI) or Port Shipping Connectivity Index (PSCI) | Points | A degree of a country’s (port’s) integration into global shipping networks | UNCTAD [49,79], MDS Transmodal [50] |
X1 | Number of new confirmed COVID-19 cases | Number of cases | Monthly new confirmed COVID-19 cases in a country | Johns Hopkins University of Medicine [80], Our World in Data [81] |
X2 | Number of new confirmed COVID-19 deaths | Number of deaths | Monthly new confirmed COVID-19 deaths in a country | Johns Hopkins University of Medicine [80], Our World in Data [81] |
X3 | Exports to the world | $ million | Monthly total exports from a country to the world | UNCTAD [79] |
X4 | Imports from the world | $ million | Monthly total imports to a country from the world | UNCTAD [79] |
X5 | Exports to a country | $ million | Monthly total exports from a country to China (for China–monthly total exports to PSR countries) | UNCTAD [79] |
X6 | Imports from a country | $ million | Monthly total imports to a country from China (for China–monthly total imports from PSR countries | UNCTAD [79] |
X7 | Commodity Price Index: minerals | Points | Index of monthly prices of minerals, ores, and non-precious metals exported by a country (aluminum, copper, iron ore, lead, manganese ore, nickel, phosphate rock, tin, zinc) | UNCTAD [79] |
X8 | Commodity Price Index: fuels | Points | Index of monthly prices of fuels exported by a country (coal, crude oil, natural gas, including liquefied natural gas) | UNCTAD [79] |
X9 | Commodity Price Index: food | Points | Index of monthly prices of food products exported by a country (meat and meat products, milk and dairy products, fish and seafood products, sugar, wheat) | UNCTAD [79] |
X10 | Commodity Price Index: agriculture | Points | Index of monthly prices of agricultural raw materials and oilseeds exported by a country (palm oil, soybean meal, soybean oil, soybeans, sunflower oil) | UNCTAD [79] |
2.3. Methodology Framework
3. Results
3.1. Stationarity of Data
3.2. Interactions between Variables
3.3. Robustness Test
3.4. Causality Directions
4. Discussion
4.1. Pandemic Effects
4.2. Trade Effects
4.3. Market Effects
5. Conclusions
- The number of COVID-19 cases is found to exert a more decisive influence on the maritime connectivity in South Korea, Japan, and China, which experienced the outbreak earlier compared to Nordic countries and Russia, as well as introduced stricter containment measures. The bidirectional relationship between the number of cases and the SCI allows us to assume the contribution of maritime connectivity factors to the transboundary spread of the virus.
- The number of COVID-19 deaths has a negligible impact on the maritime connectivity that can be explained by the fact that governments have been introducing restrictions based on the number of new cases rather than deaths.
- Tight links between the value of trade with the world and the SCI index are revealed across all locations included in the study in the pre-pandemic period, but in 2020, the relationships become weaker amid the influence of non-economic factors.
- The China-PSR trade patterns significantly affect the maritime connectivity in all countries except Russia, where a bulk of trade with China is carried by rail through the land border. Similar to trade with the world, the influence of trade with China on maritime connectivity has weakened in the course of the pandemic.
- While the trade-SCI linkages have become less noticeable, the reverse causality flowing from the connectivity parameters to trade value has intensified with a reduced number of ship calls at ports, quarantine requirements to vessels and crew, and other virus containment measures applied to shipping services.
- Bigger hubs have been able to rebound sooner in their PSCI scores, rising in demand for storage capacity during shipping suspension, while smaller ports continue experiencing depressing effects of restrictions to transit shipping even in the third quarter of 2020. Therefore, we can assume that in times of sudden disruptions in logistics chains, ports with scarcer connections suffer more compared to diversified hubs. However, that depends on how the market situation matches the specialization of a particular port. For instance, in most of the NSR ports, the PSCI has not been much affected due to their narrow specialization on outbound freights (minerals and fuels, for which trade has declined to a lesser degree compared to manufacture and consumer products).
- Prices have exerted divergent influence on maritime connectivity for exporters and importers. In net importers, the SCI score has been supported by more intensive imports amid falling global prices, while net exporters have experienced a negative influence of consumption slowdown on their maritime connectivity indexes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Countries/Ports | 2015–2019, Average | 2020 | ||||
---|---|---|---|---|---|---|
January–March | April–June | July–September | January–March | April–June | July–September | |
China | 144.25600 | 146.40976 | 147.93279 | 158.37064 | 156.22624 | 160.29146 |
China: Dalian | 60.93514 | 61.86997 | 61.57053 | 62.50721 | 62.87025 | 62.95251 |
China: Lianyungang | 33.31145 | 35.07333 | 34.77936 | 41.43848 | 46.19355 | 41.28514 |
China: Qingdao | 86.18790 | 87.76649 | 90.39664 | 97.98079 | 95.50218 | 96.02562 |
China: Qinhuangdao | 6.99576 | 7.58951 | 8.90611 | 8.11250 | 8.11250 | 8.11250 |
China: Rizhao | 11.56061 | 11.86857 | 12.41058 | 14.76849 | 14.66254 | 13.20044 |
China: Shanghai | 127.02952 | 129.25465 | 130.75849 | 136.85170 | 134.51027 | 138.91384 |
China: Weihai | 2.41896 | 2.43323 | 2.05983 | 2.00949 | 2.00949 | 2.00949 |
China: Yantai | 14.92416 | 14.10571 | 13.91985 | 13.04158 | 13.04158 | 12.51689 |
Denmark | 45.09137 | 45.06750 | 45.65967 | 46.58867 | 46.23473 | 46.33711 |
Denmark: Aarhus | 42.61198 | 42.66091 | 43.46878 | 44.91011 | 44.92916 | 44.83680 |
Denmark: Copenhagen | 5.19696 | 4.73303 | 4.56877 | 4.33206 | 4.52781 | 4.72332 |
Denmark, Greenland: Nuuk | 2.00112 | 2.00106 | 2.01526 | 2.02933 | 2.02933 | 5.08021 |
Iceland | 5.31360 | 5.29465 | 5.31737 | 6.13933 | 6.01947 | 6.96187 |
Iceland: Reydharfjordur | 3.79390 | 3.66378 | 3.91174 | 3.82918 | 4.62143 | 4.62143 |
Iceland: Reykjavik | 5.20064 | 5.21542 | 5.17170 | 5.80252 | 5.53034 | 6.47786 |
Japan | 75.34626 | 72.88415 | 71.77790 | 78.78389 | 88.64641 | 88.70137 |
Japan: Akita | 3.34431 | 3.32231 | 3.67081 | 3.81099 | 4.02925 | 4.46471 |
Japan: Hakata | 19.33510 | 19.04703 | 19.40562 | 18.41141 | 17.49040 | 17.45937 |
Japan: Kitakyushu | 3.60891 | 3.94439 | 3.84279 | 7.40050 | 5.79934 | 3.64653 |
Japan: Niigata | 5.75781 | 5.66677 | 5.77444 | 5.79424 | 5.60332 | 5.61266 |
Norway | 9.71469 | 9.86324 | 10.22606 | 10.63827 | 9.63687 | 10.16871 |
Norway: Bergen | 5.04260 | 5.16227 | 5.21057 | 5.87044 | 4.87413 | 5.05370 |
Norway: Hammerfest | 1.57109 | 1.57109 | 1.57109 | 1.51746 | 1.17813 | 1.17813 |
Norway: Stavanger | 2.32561 | 2.31488 | 2.29814 | 2.55296 | 2.55296 | 3.07447 |
Norway: Tromso | 1.96436 | 1.96436 | 1.96436 | 1.91074 | 1.17813 | 1.17813 |
Norway: Trondheim | 1.75531 | 1.79821 | 1.79821 | 1.17973 | 1.17813 | 2.06056 |
Russia | 46.07389 | 43.19898 | 42.36271 | 35.98139 | 33.90037 | 33.46525 |
Russia: Anadyr | 0.96594 | 0.96594 | 0.96633 | 0.73057 | 0.73056 | 0.73054 |
Russia: Arkhangelsk | 0.56784 | 0.55588 | 0.55588 | 0.55586 | 0.55583 | 0.55580 |
Russia: Dudinka | 1.63985 | 1.63982 | 1.63979 | 1.63980 | 1.63982 | 1.62975 |
Russia: Murmansk | 3.17882 | 3.18298 | 3.17740 | 3.16982 | 3.17005 | 3.17249 |
Russia: Petropavlovsk | 2.13561 | 2.14458 | 2.07056 | 1.78557 | 1.78504 | 1.78592 |
Russia: Pevek | 1.13678 | 1.13679 | 1.13672 | 1.13668 | 1.13670 | 1.13674 |
Russia: Sabetta | 0.49093 | 0.50922 | 0.50593 | 0.51891 | 0.50478 | 0.51293 |
Russia: Vladivostok | 16.14067 | 14.07223 | 14.00720 | 13.93689 | 13.45200 | 13.78345 |
South Korea | 98.44056 | 99.90325 | 101.46473 | 108.39640 | 106.95343 | 107.55277 |
South Korea: Gwangyang | 60.50077 | 60.79394 | 61.83644 | 66.80079 | 65.30716 | 60.35533 |
South Korea: Pusan | 108.68804 | 110.22309 | 111.70417 | 118.73122 | 116.39475 | 117.09869 |
South Korea: Ulsan | 18.87085 | 18.95059 | 19.09108 | 23.73320 | 20.69843 | 19.27688 |
Sweden | 46.62914 | 46.01937 | 47.93833 | 48.59986 | 47.64887 | 48.41985 |
Sweden: Gothenburg | 41.34901 | 40.80150 | 42.72292 | 42.28518 | 42.34241 | 41.79951 |
Sweden: Halmstad | 2.93740 | 3.58594 | 3.27535 | 3.16433 | 1.99846 | 2.72541 |
Appendix B
Country | Parameter | Y | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 |
---|---|---|---|---|---|---|---|---|---|---|
China | ADF level | −1.46 ** | −4.18 ** | −2.43 *** | −0.28 ** | −1.36 * | −2.40 ** | −3.12 *** | −0.97 * | −2.57 *** |
ADF first difference | −3.17 ** | −2.64 *** | −3.29 ** | −1.27 * | −3.18 | −1.97 *** | −1.80 ** | −1.23 * | −3.60 ** | |
PP level | −4.20 * | −3.80 ** | −2.15 *** | −0.94 ** | −1.15 * | −2.86 ** | −4.23 *** | −1.74 | −2.08 *** | |
PP first difference | −3.88 ** | −2.95 *** | −3.50 ** | −2.23 * | −2.94 | −1.05 *** | −2.95 ** | −0.60 ** | −3.15 ** | |
Denmark | ADF level | −2.47 | −3.43 * | −1.26 * | −1.48 *** | −0.62 ** | −3.48 *** | −0.19 * | −2.15 * | −2.42 * |
ADF first difference | −1.63 * | −2.19 ** | −0.80 ** | −2.03 ** | −1.23 * | −4.62 *** | −1.28 | −1.96 * | −1.69 ** | |
PP level | −1.94 ** | −3.51 ** | −1.38 * | −1.93 *** | −0.80 ** | −3.23 ** | −0.56 * | −0.48 ** | −2.81 * | |
PP first difference | −1.05 * | −2.58 * | −0.57 ** | −2.66 ** | −1.75 * | −4.19 *** | −1.44 | −1.57 * | −1.85 ** | |
Iceland | ADF level | −0.56 *** | −1.33 ** | −2.00 *** | −0.49 *** | −0.55 *** | −2.48 *** | −0.75 * | −0.73 * | −1.33 |
ADF first difference | −1.18 ** | −0.87 *** | −1.69 ** | −1.11 ** | −2.17 * | −3.70 *** | −2.52 | −0.95 * | −2.02 * | |
PP level | −0.97 *** | −2.46 ** | −2.93 *** | −0.85 *** | −1.36 ** | −2.57 ** | −0.48 * | −0.22 * | −1.94 | |
PP first difference | −1.42 ** | −1.39 ** | −1.02 ** | −2.34 ** | −2.19 * | −4.64 ** | −1.76 | −1.08 | −0.76 ** | |
Japan | ADF level | −2.14 * | −4.40 ** | −3.42 ** | −2.30 *** | −3.03 ** | −0.86 * | −0.41 ** | −2.16 ** | −0.30 |
ADF first difference | −2.71 ** | −3.81 *** | −2.91 *** | −4.18 ** | −2.48 * | −1.43 ** | −1.03 * | −1.94 * | −1.00 * | |
PP level | −1.85 ** | −4.28 ** | −1.48 ** | −2.45 *** | −2.22 ** | −0.90 * | −0.69 ** | −2.37 ** | −0.95 | |
PP first difference | −2.06 ** | −2.65 *** | −2.05 *** | −3.13 ** | −1.40 * | −2.16 | −2.17 | −0.66 *** | −1.38 * | |
Norway | ADF level | −0.97 | −1.94 * | −0.73 ** | −1.76 ** | −1.14 | −3.25 *** | −4.90 *** | −2.05 *** | −2.73 ** |
ADF first difference | −1.23 | −3.12 ** | −1.34 * | −2.39 *** | −2.37 * | −2.98 ** | −2.38 ** | −4.78 *** | −1.49 *** | |
PP level | −1.01 * | −2.83 * | −0.49 *** | −1.97 ** | −1.28 * | −4.42 *** | −3.45 *** | −2.64 *** | −2.04 ** | |
PP first difference | −1.30 * | −1.47 ** | −1.05 * | −3.00 *** | −1.63 ** | −3.11 ** | −2.06 ** | −3.19 *** | −1.12 *** | |
Russia | ADF level | −3.58 ** | −2.20 *** | −3.10 *** | −4.01 * | −2.35 * | −4.66 *** | −4.77 *** | −2.57 ** | −3.46 ** |
ADF first difference | −2.74 ** | −1.95 ** | −2.53 ** | −3.22 ** | −1.46 ** | −3.85 *** | −3.83 *** | −3.33 * | −2.98 ** | |
PP level | −3.99 ** | −2.41 *** | −4.24 *** | −4.29 * | −2.97 * | −3.79 *** | −4.50 *** | −2.41 ** | −2.35 ** | |
PP first difference | −1.16 * | −1.53 ** | −2.17 ** | −3.06 ** | −1.09 ** | −4.52 ** | −4.91 *** | −2.84 *** | −3.81 *** | |
South Korea | ADF level | −2.86 *** | −4.46 * | −2.03 * | −1.21 *** | −3.14 * | −0.78 * | −1.25 * | −4.12 * | −1.06 *** |
ADF first difference | −3.42 *** | −3.82 * | −1.75 ** | −2.35 ** | −2.22 ** | −0.97 ** | −2.42 ** | −3.90 * | −2.93 ** | |
PP level | −3.11 ** | −2.17 | −2.84 * | −1.94 *** | −3.85 * | −1.49 | −1.38 * | −3.65 ** | −1.17 *** | |
PP first difference | −2.95 *** | −3.04 | −1.15 ** | −2.70 ** | −2.37 ** | −1.05 | −0.57 *** | −4.08 * | −2.36 ** | |
Sweden | ADF level | −0.87 *** | −2.43 ** | −0.99 ** | −1.27 | −1.79 *** | −2.30 ** | −1.12 ** | −1.40 *** | −1.68 * |
ADF first difference | −1.59 *** | −1.95 ** | −2.53 * | −3.15 | −0.96 ** | −3.21 ** | −2.09 * | −0.73 *** | −2.00 ** | |
PP level | −1.28 ** | −1.37 *** | −1.74 ** | −0.44 * | −1.45 *** | −2.58 * | −1.50 ** | −1.99 ** | −1.55 * | |
PP first difference | −0.94 ** | −2.18 *** | −2.06 * | −2.96 | −2.13 ** | −3.42 | −2.86 * | −1.54 ** | −2.42 ** |
Country | Parameter | Y | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
China | ADF level | −1.20 ** | −1.54 *** | −1.05 *** | −3.14 ** | −2.95 ** | −0.47 ** | −1.55 * | −2.14 ** | −3.43 ** | −1.12 ** | −2.93 *** |
ADF first difference | −2.78 * | −1.09 ** | −1.36 ** | −3.03 *** | −2.03 ** | −1.51 * | −4.20 | −2.01 *** | −2.74 *** | −1.48 * | −3.00 ** | |
PP level | −3.35 * | −2.42 ** | −2.28 *** | −2.50 *** | −1.90 *** | −1.90 ** | −1.26 * | −1.70 *** | −3.05 ** | −1.07 | −2.21 *** | |
PP first difference | −2.36 ** | −1.76 ** | −1.25 ** | −3.27 ** | −2.86 ** | −2.02 * | −2.81 | −1.97 ** | −3.19 ** | −0.83 ** | −3.44 ** | |
Denmark | ADF level | −2.12 | −0.98 * | −1.37 * | −2.98 ** | −1.12 * | −1.37 *** | −0.78 ** | −3.18 *** | −0.88 * | −2.36 * | −2.58 * |
ADF first difference | −1.28 * | −1.41 * | −1.29 | −1.43 ** | −0.73 ** | −2.34 ** | −1.05 * | −4.04 ** | −1.51 | −1.45 * | −1.92 ** | |
PP level | −1.51 ** | −0.72 * | −1.94 * | −2.04 ** | −1.84 * | −1.85 *** | −0.92 ** | −3.22 ** | −0.62 * | −0.55 *** | −2.04 * | |
PP first difference | −1.23 * | −1.15 | −0.38 ** | −3.19 * | −0.91 ** | −2.04 ** | −1.64 * | −4.85 ** | −1.75 | −1.76 * | −1.71 ** | |
Iceland | ADF level | −1.17 ** | −0.57 | −1.44 * | −1.95 ** | −1.66 ** | −0.99 *** | −0.88 *** | −2.13 *** | −0.93 * | −0.94 * | −1.03 |
ADF first difference | −1.32 ** | −2.28 | −0.80 ** | −1.01 ** | −1.09 ** | −1.26 ** | −2.53 * | −3.54 *** | −2.71 * | −0.82 * | −2.35 * | |
PP level | −1.58 ** | −0.46 * | −0.95 | −2.30 ** | −2.17 *** | −1.80 ** | −1.70 ** | −2.02 ** | −0.80 * | −0.35 * | −1.74 | |
PP first difference | −1.67 ** | −1.30 | −0.46 * | −1.26 ** | −1.40 ** | −2.25 ** | −2.01 * | −4.36 ** | −1.44 | −1.14 * | −0.65 ** | |
Japan | ADF level | −2.40 ** | −2.43 ** | −1.82 ** | −3.72 ** | −3.19 ** | −2.00 *** | −3.34 ** | −1.18 * | −0.39 ** | −2.42 ** | −0.86 |
ADF first difference | −2.05 ** | −3.58 ** | −2.13 * | −3.29 *** | −2.22 *** | −4.44 ** | −2.27 * | −1.27 ** | −1.27 * | −1.83 * | −1.12 * | |
PP level | −1.62 ** | −2.94 *** | −1.50 ** | −2.14 *** | −1.00 ** | −2.51 *** | −2.18 ** | −1.22 * | −0.95 ** | −2.04 ** | −0.90 | |
PP first difference | −1.98 ** | −1.56 *** | −2.74 * | −3.00 ** | −1.49 *** | −3.01 ** | −2.00 * | −2.39 | −1.91 * | −0.97 *** | −1.27 * | |
Norway | ADF level | −0.85 | −1.16 * | −0.66 ** | −2.23 * | −0.86 ** | −1.86 ** | −1.55 | −3.00 *** | −4.82 *** | −1.16 *** | −2.58 ** |
ADF first difference | −1.51 | −2.05 | −1.37 * | −2.95 ** | −1.28 * | −2.27 *** | −2.36 * | −2.54 ** | −2.83 ** | −4.72 ** | −2.17 ** | |
PP level | −1.23 * | −1.77 * | −1.01 ** | −2.41 * | −0.74 *** | −1.73 ** | −1.39 * | −3.08 *** | −3.27 ** | −3.30 *** | −1.84 ** | |
PP first difference | −1.47 * | −2.22 | −2.00 | −1.09 ** | −1.37 * | −2.92 *** | −1.05 ** | −2.47 ** | −2.65 ** | −3.64 *** | −1.75 *** | |
Russia | ADF level | −2.99 ** | −2.58 ** | −2.45 ** | −2.43 ** | −2.83 *** | −4.19 * | −2.74 * | −4.25 *** | −4.18 *** | −2.09 ** | −3.03 ** |
ADF first difference | −2.70 ** | −3.14 ** | −3.58 ** | −1.55 ** | −2.06 ** | −3.40 ** | −1.16 ** | −3.13 *** | −3.04 *** | −3.48 * | −2.64 ** | |
PP level | −3.58 ** | −2.35 * | −2.10 * | −1.86 *** | −3.90 *** | −4.04 * | −2.38 * | −3.29 ** | −4.29 *** | −2.26 ** | −2.22 ** | |
PP first difference | −1.03 * | −2.73 ** | −3.34 ** | −2.01 ** | −2.44 ** | −3.29 ** | −1.25 ** | −4.21 ** | −4.37 *** | −2.55 *** | −3.75 *** | |
South Korea | ADF level | −2.75 *** | −4.40 ** | −4.22 ** | −4.17 * | −1.92 * | −1.58 *** | −2.59 ** | −0.80 * | −1.46 * | −4.00 * | −1.39 *** |
ADF first difference | −3.14 *** | −3.27 *** | −4.71 ** | −3.33 * | −2.85 ** | −2.25 ** | −2.30 ** | −0.75 ** | −1.95 ** | −3.59 * | −2.18 ** | |
PP level | −2.89 ** | −2.05 *** | −3.18 *** | −2.80 | −2.25 * | −1.71 *** | −3.67 * | −1.06 | −1.57 ** | −3.47 ** | −1.42 *** | |
PP first difference | −2.43 ** | −3.49 ** | −3.62 ** | −2.74 * | −1.04 ** | −2.53 ** | −2.41 ** | −1.77 | −0.86 *** | −4.23 * | −2.30 ** | |
Sweden | ADF level | −1.32 ** | −1.98 | −2.04 * | −2.05 ** | −0.62 ** | −1.34 | −1.66 *** | −1.43 ** | −1.00 ** | −1.74 *** | −1.51 * |
ADF first difference | −1.13 *** | −0.46 * | −1.28 * | −1.48 ** | −2.37 * | −3.00 * | −1.23 ** | −2.59 ** | −1.34 * | −0.88 *** | −1.45 *** | |
PP level | −1.40 ** | −1.13 | −0.55 ** | −1.51 *** | −1.50 ** | −0.59 * | −1.50 *** | −1.40 ** | −1.82 ** | −1.51 ** | −1.68 * | |
PP first difference | −1.25 ** | −0.80 * | −1.11 * | −2.16 *** | −1.33 * | −2.85 | −2.28 ** | −2.88 | −2.40 * | −1.65 ** | −2.11 ** |
Appendix C
Port | Parameter | ∆X3 | ∆X4 | ∆X5 | ∆X6 | ∆X7 | ∆X8 | ∆X9 | ∆X10 | ECM |
---|---|---|---|---|---|---|---|---|---|---|
China: Dalian | Coefficient | 0.0994 | 0.2093 | 0.2187 | 0.2045 | 0.0594 | −0.1238 | −0.0457 | −0.1309 | 0.1566 |
t-stat | 1.0298 | −3.1550 | −1.4885 | −2.0882 | 4.6982 | −2.0997 | 1.4409 | 2.1170 | 2.0297 | |
Prob | 0.0827 *** | 0.4146 *** | 0.7209 ** | 0.5009 ** | 0.1597 * | 0.5505 ** | 0.1287 *** | 0.4691 *** | 0.1502 ** | |
China: Lianyungang | Coefficient | 0.1725 | 0.2007 | 0.1044 | 0.1236 | 0.1809 | −0.0562 | 0.0662 | −0.0987 | 0.1419 |
t-stat | −2.6009 | 3.4482 | −2.0841 | −2.9503 | −3.8751 | 1.7793 | 2.4091 | −3.6092 | −2.5446 | |
Prob | 0.1388 ** | 0.3091 ** | 0.0529 * | 0.0987 * | 0.3350 * | 0.6720 * | 0.6348 ** | 0.0505 ** | 0.4091 * | |
China: Qingdao | Coefficient | 0.2476 | 0.2453 | 0.3112 | 0.3598 | 0.0983 | −0.0186 | −0.3007 | −0.1559 | −0.3008 |
t-stat | 1.5098 | 2.4458 | −4.2678 | −1.9942 | 2.0759 | 1.5631 | 3.6298 | −1.5774 | 1.7832 | |
Prob | 0.4033 ** | 0.7346 ** | 0.0039 *** | 0.9387 *** | 0.3391 * | 0.8599 ** | 0.1127 *** | 0.2386 *** | 0.2557 ** | |
China: Qinhuangdao | Coefficient | 0.2092 | 0.1900 | 0.1251 | 0.1409 | 0.0985 | 0.0134 | 0.0263 | −0.0112 | 0.0103 |
t-stat | 2.6071 | 3.1462 | 1.0093 | 2.0000 | −2.5983 | 1.6673 | 2.6995 | 5.0064 | 3.6084 | |
Prob | 0.2395 ** | 0.5884 ** | 0.0076 * | 0.7503 * | 0.4774 * | 0.5887 * | 0.2409 ** | 0.3081 ** | 0.1536 * | |
China: Rizhao | Coefficient | 0.3993 | 0.3588 | 0.1092 | 0.1725 | 0.0070 | 0.1490 | 0.0135 | 0.0146 | 0.1597 |
t-stat | 4.0075 | 2.4902 | −2.5557 | −1.4647 | 3.5371 | −2.5556 | −2.6734 | 2.7795 | 1.2285 | |
Prob | 0.5982 ** | 0.5395 ** | 0.4998 * | 0.9098 * | 0.5893 * | 0.6729 * | 0.8995 * | 0.9806 ** | 0.2456 * | |
China: Shanghai | Coefficient | 0.7300 | 0.7936 | 0.5781 | 0.6045 | 0.1400 | 0.2304 | 0.2289 | −0.2037 | −0.1877 |
t-stat | 5.1486 | −1.2980 | 1.0008 | 2.6551 | −3.7735 | 2.6780 | −1.3485 | 2.1285 | −3.5832 | |
Prob | 0.4995 *** | 0.0075 *** | 0.4790 *** | 0.8840 *** | 0.3809 ** | 0.7713 ** | 0.6737 *** | 0.7900 *** | 0.1709 *** | |
China: Weihai | Coefficient | 0.3215 | 0.4098 | 0.1452 | 0.1793 | 0.0673 | 0.1694 | 0.1891 | 0.0476 | 0.1558 |
t-stat | 4.6617 | 1.8403 | −4.7937 | −2.0041 | 3.7098 | 2.4843 | 2.1594 | −1.5285 | 3.3790 | |
Prob | 0.4592 ** | 0.3704 ** | 0.1364 ** | 0.2055 ** | 0.7149 * | 0.7091 * | 0.0005 ** | 0.9287 ** | 0.4421 * | |
China: Yantai | Coefficient | 0.2498 | 0.2591 | 0.1990 | 0.2286 | 0.1303 | 0.2002 | 0.0309 | −0.1098 | 0.0547 |
t-stat | 3.6895 | −2.8390 | 2.5558 | 1.8930 | −2.5681 | 3.4673 | 2.1587 | −1.5556 | 2.0965 | |
Prob | 0.0982 *** | 0.3498 *** | 0.4091 ** | 0.0089 ** | 0.3899 ** | 0.5508 ** | 0.3985 ** | 0.2018 ** | 0.2490 ** | |
Denmark: Aarhus | Coefficient | 0.1506 | 0.1183 | 0.0552 | 0.0344 | 0.0710 | −0.0305 | 0.1335 | 0.0784 | −0.1257 |
t-stat | 3.1377 | 2.2407 | 1.1147 | −2.0728 | 1.2745 | −3.4122 | 1.1784 | 2.1995 | 1.1346 | |
Prob | 0.0793 *** | 0.9874 *** | 0.0005 * | 0.1482 * | 0.2993 * | 0.4355 * | 0.3985 ** | 0.3993 * | 0.2066 * | |
Denmark: Copenhagen | Coefficient | 0.1285 | 0.1596 | 0.0134 | 0.0637 | 0.0226 | 0.0490 | 0.0621 | 0.1006 | −0.0557 |
t-stat | −1.2759 | 2.8837 | −2.2861 | −4.0053 | 2.6298 | 4.8794 | 3.1784 | −1.5975 | −1.0086 | |
Prob | 0.4102 *** | 0.5884 *** | 0.6390 * | 0.0394 * | 0.5094 * | 0.2609 * | 0.7985 * | 0.8585 * | 0.7723 * | |
Denmark, Greenland: Nuuk | Coefficient | 0.7512 | 0.7056 | 0.1258 | 0.0115 | 0.5035 | −0.1223 | −0.0556 | −0.0144 | 0.1609 |
t-stat | 3.5008 | 4.2224 | −1.0677 | 2.3379 | −1.7772 | 2.4000 | −1.4700 | −1.1863 | 2.2866 | |
Prob | 0.5954 *** | 0.3983 *** | 0.2851 * | 0.2807 * | 0.3683 ** | 0.3875 * | 0.3653 * | 0.0005 * | 0.4124 * | |
Iceland: Reydharfjordur | Coefficient | 0.4872 | 0.4085 | 0.2338 | 0.2561 | 0.5506 | −0.0206 | 0.0725 | 0.0236 | 0.0446 |
t-stat | 3.1676 | 2.1674 | −1.0365 | 2.5974 | −1.4287 | 2.0565 | 2.1277 | 1.6905 | 1.3378 | |
Prob | 0.2805 *** | 0.0875 *** | 0.2870 * | 0.3885 * | 0.1209 *** | 0.1274 * | 0.1443 * | 0.2553 * | 0.2785 ** | |
Iceland: Reykjavik | Coefficient | 0.6609 | 0.6077 | 0.4924 | 0.2567 | 0.1558 | −0.0258 | 0.1408 | 0.0784 | 0.1309 |
t-stat | 1.8642 | −2.4365 | −2.7385 | 2.3798 | −2.4097 | 1.4596 | 2.2895 | −2.0055 | 2.0554 | |
Prob | 0.4900 *** | 0.5836 *** | 0.2294 ** | 0.5275 ** | 0.0050 ** | 0.4927 * | 0.2093 ** | 0.7053 ** | 0.2378 ** | |
Japan: Akita | Coefficient | 0.5064 | 0.6235 | 0.2346 | 0.1999 | 0.1667 | 0.0238 | −0.0606 | −0.0437 | −0.1345 |
t-stat | 2.0832 | 1.8509 | −3.1459 | −2.4875 | 2.2245 | −1.2977 | 2.5498 | 1.3865 | −1.6299 | |
Prob | 0.0385 ** | 0.1274 ** | 0.3240 ** | 0.5083 ** | 0.0000 * | 0.2769 * | 0.0627 * | 0.2790 * | 0.4904 ** | |
Japan: Hakata | Coefficient | 0.4226 | 0.4800 | 0.1665 | 0.2664 | 0.3239 | 0.0304 | 0.0524 | 0.0654 | 0.1297 |
t-stat | 1.3094 | 2.5821 | 1.9974 | 2.5093 | 1.6008 | 4.6831 | 2.5563 | −2.6003 | 1.5556 | |
Prob | 0.1317 ** | 0.2650 ** | 0.6339 ** | 0.3837 ** | 0.0236 * | 0.5583 * | 0.2741 * | 0.5995 * | 0.2804 ** | |
Japan: Kitakyushu | Coefficient | 0.3735 | 0.4407 | 0.1509 | 0.1880 | 0.2013 | 0.1579 | 0.0337 | 0.0597 | −0.2579 |
t-stat | 1.6220 | 2.6883 | −2.0096 | −2.4985 | 4.1794 | −1.6282 | 2.0084 | 1.4083 | 2.5458 | |
Prob | 0.4087 ** | 0.0005 ** | 0.5584 ** | 0.3077 ** | 0.6231 ** | 0.4595 * | 0.2863 * | 0.2129 * | 0.4267 * | |
Japan: Niigata | Coefficient | 0.2336 | 0.2551 | 0.2335 | 0.3134 | 0.0349 | 0.1543 | −0.1245 | −0.0450 | 0.0605 |
t-stat | −2.5543 | −2.9835 | 3.9598 | 2.0075 | 1.8444 | 2.1886 | 1.3062 | 3.1582 | 1.3490 | |
Prob | 0.0985 *** | 0.2987 *** | 0.7401 *** | 0.4982 *** | 0.3986 *** | 0.2583 * | 0.2750 ** | 0.2086 ** | 0.4558 ** | |
Norway: Bergen | Coefficient | 0.2308 | 0.1347 | 0.2134 | 0.2086 | 0.1674 | 0.2996 | 0.1124 | 0.2057 | 0.4007 |
t-stat | 2.1894 | −1.9845 | −2.6755 | −1.1455 | −2.6281 | 1.3285 | −1.8655 | −2.3348 | −3.3285 | |
Prob | 0.1307 ** | 0.4808 ** | 0.5897 * | 0.8743 * | 0.3309 ** | 0.5281 ** | 0.2349 ** | 0.0293 ** | 0.5380 ** | |
Norway: Hammerfest | Coefficient | 0.0565 | 0.0655 | 0.0775 | 0.0776 | 0.2496 | 0.2457 | 0.0985 | 0.3615 | 0.2236 |
t-stat | 2.0296 | 3.2941 | −3.1709 | −2.3589 | 2.5414 | −2.3987 | −2.1294 | 3.0006 | −2.1137 | |
Prob | 0.5991 ** | 0.9836 ** | 0.4386 * | 0.3034 * | 0.6083 * | 0.4446 ** | 0.0013 ** | 0.1257 ** | 0.2768 * | |
Norway: Stavanger | Coefficient | 0.2783 | 0.2997 | 0.0688 | 0.0676 | 0.2379 | 0.2008 | 0.3872 | 0.2027 | 0.3566 |
t-stat | 5.0046 | 2.0953 | 4.1763 | 1.5583 | −2.5245 | 1.5125 | 2.3409 | 1.1498 | 1.7495 | |
Prob | 0.2098 *** | 0.4827 *** | 0.5266 ** | 0.4127 ** | 0.0488 ** | 0.2309 ** | 0.3874 ** | 0.1874 ** | 0.5574 ** | |
Norway: Tromso | Coefficient | 0.2449 | 0.2690 | 0.1295 | 0.0985 | 0.1794 | 0.0738 | 0.0228 | 0.0500 | 0.2323 |
t-stat | 2.6928 | −4.9007 | 1.5693 | 2.2187 | 1.8609 | −1.7995 | 3.1264 | 1.2046 | −2.8476 | |
Prob | 0.3582 *** | 0.0006 *** | 0.3475 * | 0.3126 * | 0.3453 ** | 0.6297 * | 0.0996 * | 0.4529 * | 0.2001 ** | |
Norway: Trondheim | Coefficient | 0.1308 | 0.2564 | 0.3290 | 0.2997 | 0.0775 | 0.1555 | 0.4003 | 0.1654 | 0.3829 |
t-stat | −1.9387 | 1.5981 | 2.1138 | 1.3854 | −2.5498 | 3.6694 | 2.6595 | −3.5521 | 2.5444 | |
Prob | 0.2006 *** | 0.4800 *** | 0.3685 ** | 0.1237 ** | 0.2846 ** | 0.3712 ** | 0.0054 ** | 0.4670 ** | 0.0657 *** | |
Russia: Anadyr | Coefficient | 0.0745 | 0.0011 | 0.0054 | 0.0060 | 0.0664 | −0.0074 | −0.0011 | 0.0014 | −0.0565 |
t-stat | −1.0043 | −2.8749 | −1.4976 | −2.2381 | 1.7539 | −2.0386 | 2.1554 | 3.4299 | 2.0657 | |
Prob | 0.0428 * | 0.6066 * | 0.3453 * | 0.5199 * | 0.5665 ** | 0.2525 * | 0.6877 * | 0.5434 * | 0.6225 * | |
Russia: Arkhangelsk | Coefficient | 0.0314 | 0.0258 | 0.0069 | 0.0234 | 0.1221 | −0.0066 | 0.2023 | 0.1285 | 0.0778 |
t-stat | −2.5638 | −2.3987 | −2.9744 | 3.0445 | 2.8867 | 2.3854 | −1.6684 | −2.3254 | 2.0444 | |
Prob | 0.5174 ** | 0.2216 ** | 0.0032 * | 0.6256 * | 0.4543 * | 0.2850 * | 0.0675 * | 0.6193 * | 0.3095 ** | |
Russia: Dudinka | Coefficient | 0.0067 | 0.0011 | 0.0050 | 0.0013 | 0.1138 | 0.0157 | 0.0098 | 0.0069 | 0.0352 |
t-stat | −3.1286 | 1.6598 | −2.4873 | −2.4736 | −1.4455 | 2.5180 | 1.5784 | 2.0575 | −1.5476 | |
Prob | 0.0000 * | 0.4144 * | 0.3864 * | 0.5179 * | 0.0098 ** | 0.1442 * | 0.3591 * | 0.3443 * | 0.6564 * | |
Russia: Murmansk | Coefficient | 0.1056 | 0.1316 | 0.0423 | 0.0122 | 0.1553 | 0.0205 | 0.1843 | 0.2114 | 0.2573 |
t-stat | −2.5239 | −1.5830 | −1.6495 | 2.1540 | −2.2376 | −1.1222 | 2.1487 | −2.4986 | −2.0554 | |
Prob | 0.6928 *** | 0.7455 *** | 0.2442 * | 0.0085 * | 0.4232 ** | 0.0000 ** | 0.6650 ** | 0.3000 ** | 0.1672 *** | |
Russia: Petropavlovsk | Coefficient | 0.1392 | 0.1609 | 0.0219 | 0.0124 | 0.0664 | 0.0597 | 0.0045 | 0.0067 | 0.2012 |
t-stat | −4.5667 | −2.1423 | 1.1113 | 2.5548 | −1.7459 | 2.6566 | 2.0027 | −2.5068 | 3.1478 | |
Prob | 0.6400 * | 0.6998 * | 0.1854 * | 0.6512 * | 0.0051 ** | 0.2875 * | 0.1556 * | 0.4366 * | 0.5465 ** | |
Russia: Pevek | Coefficient | 0.1614 | 0.0087 | 0.0107 | 0.0053 | 0.0234 | 0.0124 | 0.0064 | 0.0078 | 0.1504 |
t-stat | 1.7958 | 1.3422 | 2.9876 | 1.4998 | −3.1343 | 2.6579 | −3.5538 | −1.4657 | −1.3227 | |
Prob | 0.4123 * | 0.5673 * | 0.2333 * | 0.0413 * | 0.2265 ** | 0.4386 * | 0.2656 * | 0.5388 * | 0.5980 * | |
Russia: Sabetta | Coefficient | 0.0501 | 0.0015 | 0.1254 | 0.0015 | 0.0076 | 0.2235 | 0.0012 | 0.0043 | 0.3670 |
t-stat | 2.3472 | −2.3762 | 1.2775 | 2.5234 | 2.1121 | −4.2534 | −2.7754 | −3.0987 | 1.1231 | |
Prob | 0.4653 ** | 0.6909 * | 0.5634 ** | 0.6498 * | 0.5398 * | 0.5767 ** | 0.4486 * | 0.6055 * | 0.3875 ** | |
Russia: Vladivostok | Coefficient | 0.0638 | 0.2155 | 0.1552 | 0.2237 | 0.0423 | 0.0996 | 0.2667 | 0.2442 | 0.5234 |
t-stat | 4.7754 | 2.0007 | −2.6578 | 3.3456 | −2.1364 | −2.3687 | 1.2355 | 1.0936 | 2.0669 | |
Prob | 0.1906 *** | 0.3908 ** | 0.5234 *** | 0.3002 *** | 0.3172 * | 0.4522 ** | 0.2136 *** | 0.2573 *** | 0.4987 *** | |
South Korea: Gwangyang | Coefficient | 0.4287 | 0.4065 | 0.3286 | 0.3314 | −0.0965 | −0.0940 | −0.0025 | −0.0074 | 0.4906 |
t-stat | 2.5005 | 1.1749 | −2.0517 | −1.5000 | 3.9187 | −2.6053 | 1.8247 | −2.6819 | 2.4022 | |
Prob | 0.9276 *** | 0.7378 ** | 0.4005 *** | 0.6249 *** | 0.0005 * | 0.1547 * | 0.1496 * | 0.2760 ** | 0.3795 ** | |
South Korea: Pusan | Coefficient | 0.8340 | 0.8150 | 0.7349 | 0.6538 | −0.1396 | −0.1548 | −0.0102 | −0.0351 | 0.7007 |
t-stat | −1.8733 | −2.1244 | −1.4380 | −2.5356 | 1.1487 | 2.5952 | −3.4783 | −1.4958 | −3.6541 | |
Prob | 0.7612 *** | 0.6626 *** | 0.0095 *** | 0.0298 *** | 0.7395 ** | 0.3813 ** | 0.5849 ** | 0.0006 ** | 0.5328 *** | |
South Korea: Ulsan | Coefficient | 0.6195 | 0.5892 | 0.5052 | 0.4872 | 0.0056 | −0.0865 | −0.0912 | −0.0873 | 0.5045 |
t-stat | 4.0557 | 3.1505 | −1.9347 | −2.5360 | −3.9841 | −3.1260 | −2.0375 | −4.5941 | −1.3968 | |
Prob | 0.3941 *** | 0.7984 *** | 0.0498 *** | 0.8375 *** | 0.1203 * | 0.4891 * | 0.2096 * | 0.7500 ** | 0.4093 ** | |
Sweden: Gothenburg | Coefficient | 0.6827 | 0.7023 | 0.1854 | 0.1733 | 0.1660 | −0.0097 | 0.0150 | 0.0964 | −0.3264 |
t-stat | −2.1793 | −1.0065 | −2.0057 | −3.4281 | 2.5377 | −1.3761 | 2.5891 | −1.3681 | −2.7813 | |
Prob | 0.5482 *** | 0.6398 *** | 0.2941 ** | 0.0054 ** | 0.2198 ** | 0.3405 * | 0.0614 * | 0.2592 * | 0.8867 *** | |
Sweden: Halmstad | Coefficient | 0.3864 | 0.4290 | 0.1519 | 0.1625 | 0.0634 | −0.0143 | 0.0523 | 0.0775 | 0.0810 |
t-stat | −1.0709 | −3.5836 | −3.4015 | −1.3096 | 3.8765 | 2.0567 | 3.4175 | 1.8131 | −1.3986 | |
Prob | 0.5298 *** | 0.4211 *** | 0.2366 ** | 0.4231 ** | 0.3891 ** | 0.1831 * | 0.0022 * | 0.4973 * | 0.5715 ** |
Port | Parameter | ∆X1 | ∆X2 | ∆X3 | ∆X4 | ∆X5 | ∆X6 | ∆X7 | ∆X8 | ∆X9 | ∆X10 | ECM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
China: Dalian | Coefficient | −0.0108 | −0.0182 | 0.1113 | 0.1290 | 0.1528 | 0.1670 | 0.0342 | −0.1061 | −0.0100 | −0.1544 | 0.1305 |
t-stat | 2.0817 | 3.1175 | 2.1865 | −4.4598 | 2.0483 | −3.2391 | 2.5378 | 1.3728 | 2.3597 | 3.0580 | 2.5988 | |
Prob | 0.1982 ** | 0.0255 ** | 0.3034 ** | 0.3600 ** | 0.3015 * | 0.0045 ** | 0.3066 * | 0.3762 ** | 0.0198 *** | 0.1853 *** | 0.1264 ** | |
China: Lianyungang | Coefficient | −0.0271 | −0.0390 | 0.0298 | 0.0357 | 0.0466 | 0.0322 | 0.1485 | −0.0394 | 0.0514 | −0.1098 | 0.1692 |
t-stat | −3.4918 | −2.8776 | 3.1765 | 2.6873 | −1.7671 | −2.5094 | −2.0039 | 4.6380 | 2.5010 | −1.4511 | −3.9830 | |
Prob | 0.3870 ** | 0.2871 ** | 0.0387 * | 0.0294 * | 0.0529 * | 0.1298 * | 0.2450 * | 0.0045 * | 0.4902 ** | 0.0387 ** | 0.2506 * | |
China: Qingdao | Coefficient | 0.0189 | 0.0040 | 0.1011 | 0.1245 | 0.2067 | 0.2217 | 0.0551 | −0.0041 | −0.2697 | −0.1673 | −0.3567 |
t-stat | 2.9876 | 2.0586 | 3.0284 | 3.1257 | −2.5083 | −3.0083 | 4.6348 | 3.5026 | 2.5553 | 3.0856 | 2.0854 | |
Prob | 0.0281 * | 0.2877 * | 0.2975 * | 0.1654 * | 0.0005 ** | 0.0491 ** | 0.0000 * | 0.4817 ** | 0.0976 *** | 0.1299 *** | 0.2078 ** | |
China: Qinhuangdao | Coefficient | −0.0677 | −0.0562 | 0.1876 | 0.1522 | 0.0742 | 0.0504 | 0.0723 | 0.0038 | 0.0144 | −0.0030 | 0.0035 |
t-stat | −2.4980 | −3.5991 | 1.9550 | 3.0973 | 4.3311 | 3.6566 | −2.4475 | 1.5411 | 3.5095 | 4.7109 | 2.6419 | |
Prob | 0.0485 * | 0.0593 * | 0.1183 ** | 0.3070 ** | 0.0760 * | 0.0872 * | 0.2559 * | 0.3904 * | 0.1567 ** | 0.2054 ** | 0.0754 * | |
China: Rizhao | Coefficient | −0.1096 | −0.0987 | 0.1542 | 0.1276 | 0.0493 | 0.0910 | 0.0046 | 0.1053 | 0.0059 | 0.0102 | 0.1200 |
t-stat | −4.8561 | −3.4982 | 2.7091 | 3.0188 | 2.0452 | 2.6413 | 1.9550 | −3.5085 | −2.4832 | 1.6598 | 3.1675 | |
Prob | 0.5875 ** | 0.1824 ** | 0.2587 ** | 0.4900 ** | 0.0500 * | 0.1287 * | 0.1677 * | 0.0044 * | 0.6910 * | 0.0371 ** | 0.0444 * | |
China: Shanghai | Coefficient | 0.1203 | 0.1186 | 0.3876 | 0.3497 | 0.2988 | 0.2462 | 0.1011 | 0.1876 | 0.1954 | −0.2459 | −0.2037 |
t-stat | 2.8762 | 2.0590 | 4.6003 | 3.6065 | 1.5974 | 1.8005 | −4.7492 | 5.3009 | 3.0766 | 2.0076 | −4.1002 | |
Prob | 0.3094 * | 0.5871 * | 0.3760 *** | 0.4012 *** | 0.2867 *** | 0.3041 *** | 0.0083 ** | 0.0487 ** | 0.2598 *** | 0.0834 *** | 0.1885 *** | |
China: Weihai | Coefficient | −0.0087 | −0.0124 | 0.1165 | 0.1411 | 0.0313 | 0.0456 | 0.0544 | 0.1250 | 0.1608 | 0.0325 | 0.1341 |
t-stat | −1.3905 | −2.4870 | 3.9841 | 3.0676 | −4.0606 | −3.3407 | 2.6715 | 3.5734 | 1.0075 | −3.4472 | 2.1765 | |
Prob | 0.0094 ** | 0.0288 ** | 0.3690 ** | 0.4059 ** | 0.0512 ** | 0.2888 ** | 0.0817 * | 0.2986 * | 0.1842 ** | 0.0000 ** | 0.9874 * | |
China: Yantai | Coefficient | −0.0582 | −0.0444 | 0.1033 | 0.0962 | 0.1003 | 0.1516 | 0.1249 | 0.1378 | 0.0411 | −0.1126 | 0.0368 |
t-stat | 3.8654 | 2.5109 | 4.0845 | 3.7764 | 2.5764 | 3.0693 | −2.7308 | 4.1540 | 3.0697 | −1.6093 | 2.1677 | |
Prob | 0.3751 ** | 0.4225 ** | 0.2870 ** | 0.0061 ** | 0.3986 ** | 0.2100 ** | 0.0031 ** | 0.3991 ** | 0.2134 ** | 0.0421 ** | 0.1295 ** | |
Denmark: Aarhus | Coefficient | −0.0125 | −0.0056 | 0.3286 | 0.3064 | 0.0275 | 0.0186 | 0.0518 | −0.0186 | 0.1046 | 0.0587 | −0.1079 |
t-stat | −4.3890 | −3.8271 | 5.0400 | 3.1286 | 1.3884 | −2.6931 | 1.4553 | −2.5583 | 3.0035 | 3.0683 | 2.5872 | |
Prob | 0.2362 * | 0.3053 * | 0.5156 ** | 0.2791 ** | 0.2380 * | 0.3815 * | 0.1609 * | 0.3990 * | 0.2377 ** | 0.2609 * | 0.1884 * | |
Denmark: Copenhagen | Coefficient | −0.1274 | −0.1040 | 0.2467 | 0.2075 | 0.0052 | 0.0457 | 0.0071 | 0.0155 | 0.0391 | 0.0846 | −0.0385 |
t-stat | 2.0071 | 4.8638 | −1.1865 | 2.9666 | −3.1409 | −4.9062 | 2.3645 | 1.6984 | 2.5986 | −2.6122 | −1.4096 | |
Prob | 0.0385 ** | 0.1787 ** | 0.4003 ** | 0.3781 ** | 0.8726 * | 0.0498 * | 0.3096 * | 0.0682 * | 0.3352 * | 0.4823 * | 0.3193 * | |
Denmark, Greenland: Nuuk | Coefficient | 0.0383 | 0.0446 | 0.7199 | 0.6483 | 0.0954 | 0.0073 | 0.4338 | −0.0870 | −0.0275 | −0.0081 | 0.1487 |
t-stat | −1.4984 | −2.0095 | 4.2311 | 3.9750 | 2.8600 | 3.9846 | −2.6094 | 3.5941 | −1.5900 | −3.1977 | 4.1550 | |
Prob | 0.8780 * | 0.3967 * | 0.7820 *** | 0.5301 *** | 0.0016 * | 0.6019 * | 0.4487 ** | 0.1110 * | 0.4692 * | 0.5239 * | 0.3819 * | |
Iceland: Reydharfjordur | Coefficient | 0.0298 | 0.0202 | 0.5083 | 0.3716 | 0.2609 | 0.2317 | 0.5790 | −0.0142 | 0.0613 | 0.0103 | 0.0204 |
t-stat | −2.9334 | −2.0651 | 4.5800 | 3.0825 | −2.4485 | 4.0883 | −2.0554 | 1.4496 | 2.8088 | 1.3585 | 2.5985 | |
Prob | 0.5912 * | 0.3894 * | 0.3109 *** | 0.2904 *** | 0.5886 * | 0.2076 * | 0.1195 *** | 0.0065 * | 0.0301 * | 0.2780 * | 0.1920 ** | |
Iceland: Reykjavik | Coefficient | −0.0155 | −0.0097 | 0.6214 | 0.5575 | 0.3173 | 0.2800 | 0.1677 | −0.0097 | 0.1005 | 0.0497 | 0.1106 |
t-stat | −3.5506 | 4.6090 | 3.1798 | −2.4900 | −1.6960 | 1.9964 | −3.1385 | 2.2853 | 3.8974 | −2.6982 | 3.6899 | |
Prob | 0.1483 * | 0.3698 * | 0.7926 *** | 0.0187 *** | 0.1678 ** | 0.4209 ** | 0.2509 ** | 0.3880 * | 0.1296 ** | 0.3485 ** | 0.3871 ** | |
Japan: Akita | Coefficient | −0.1047 | −0.0964 | 0.5388 | 0.6011 | 0.1855 | 0.2076 | 0.1240 | 0.0047 | −0.0371 | −0.0222 | −0.1102 |
t-stat | −2.0739 | −1.3009 | 2.4150 | 3.0653 | −2.3920 | −3.5391 | 4.7921 | −2.1494 | 1.1986 | 2.1043 | −2.7198 | |
Prob | 0.3017 ** | 0.4755 ** | 0.5237 ** | 0.0517 ** | 0.1904 ** | 0.4864 ** | 0.3417 * | 0.1000 * | 0.0412 * | 0.1498 * | 0.5931 ** | |
Japan: Hakata | Coefficient | −0.0341 | −0.0865 | 0.4021 | 0.3500 | 0.1472 | 0.1558 | 0.3572 | 0.0155 | 0.0394 | 0.0417 | 0.1034 |
t-stat | 4.2880 | 3.6901 | 1.9733 | 2.8499 | 3.0593 | 2.6312 | 1.5996 | 2.9709 | 1.4980 | −1.4020 | 1.8765 | |
Prob | 0.4494 ** | 0.0007 ** | 0.0598 ** | 0.1784 ** | 0.5700 ** | 0.2909 ** | 0.0038 * | 0.4882 * | 0.2653 * | 0.4883 * | 0.0029 ** | |
Japan: Kitakyushu | Coefficient | −0.2082 | −0.2136 | 0.3424 | 0.4065 | 0.1975 | 0.1607 | 0.2005 | 0.1003 | 0.0167 | 0.0269 | −0.2690 |
t-stat | 3.5685 | −2.0071 | 1.5076 | 4.7702 | −1.4767 | −2.0041 | 3.5877 | −1.5987 | 3.2992 | 2.8840 | 3.3851 | |
Prob | 0.1376 ** | 0.2500 ** | 0.8927 ** | 0.8534 ** | 0.3092 ** | 0.2868 ** | 0.4982 ** | 0.0781 * | 0.1558 * | 0.2641 * | 0.5980 * | |
Japan: Niigata | Coefficient | 0.1595 | 0.1243 | 0.1980 | 0.2371 | 0.2206 | 0.2547 | 0.0523 | 0.1204 | −0.0861 | −0.0293 | 0.0416 |
t-stat | 4.1284 | 2.0009 | −1.2956 | −2.0046 | 4.1475 | 1.5083 | 2.9084 | 4.0880 | 3.1822 | 4.1000 | 2.1950 | |
Prob | 0.3002 ** | 0.2764 ** | 0.0045 *** | 0.0498 *** | 0.0016 *** | 0.1696 *** | 0.5081 *** | 0.3905 * | 0.0015 ** | 0.1729 ** | 0.2407 ** | |
Norway: Bergen | Coefficient | −0.0103 | −0.0225 | 0.1286 | 0.1085 | 0.1690 | 0.1773 | 0.1503 | 0.2566 | 0.1408 | 0.1774 | 0.3718 |
t-stat | −4.1852 | −3.0741 | 2.0954 | 3.1264 | −1.5821 | −2.2045 | −1.5938 | 2.0548 | −1.3056 | −2.0063 | −2.2595 | |
Prob | 0.1084 ** | 0.4827 ** | 0.1008 ** | 0.3851 ** | 0.4593 * | 0.3841 * | 0.2855 ** | 0.7109 ** | 0.1297 ** | 0.5028 ** | 0.2091 ** | |
Norway: Hammerfest | Coefficient | −0.0287 | −0.0113 | 0.0392 | 0.0506 | 0.0452 | 0.0587 | 0.2014 | 0.2065 | 0.0495 | 0.3125 | 0.2046 |
t-stat | −3.7918 | −1.0584 | 2.9805 | 3.8562 | −4.0127 | −2.1084 | 1.5039 | −1.5003 | −3.0882 | 1.4995 | −3.0067 | |
Prob | 0.3866 ** | 0.2095 ** | 0.6733 * | 0.3500 * | 0.2986 * | 0.3762 * | 0.5877 * | 0.4201 ** | 0.0000 ** | 0.0982 ** | 0.0038 * | |
Norway: Stavanger | Coefficient | 0.0110 | 0.0273 | 0.2409 | 0.2307 | 0.0175 | 0.0385 | 0.1805 | 0.1699 | 0.3019 | 0.2543 | 0.3102 |
t-stat | 2.1084 | 1.9820 | 4.9864 | 1.3986 | 3.0386 | 2.4761 | −1.4082 | 2.4056 | 4.2066 | 3.0051 | 2.9047 | |
Prob | 0.3872 * | 0.2574 * | 0.5001 ** | 0.3403 ** | 0.4501 ** | 0.5720 ** | 0.0060 ** | 0.1785 ** | 0.3874 ** | 0.5052 ** | 0.3855 ** | |
Norway: Tromso | Coefficient | −0.0490 | −0.0502 | 0.2288 | 0.1954 | 0.0787 | 0.0644 | 0.1513 | 0.0284 | 0.0135 | 0.0498 | 0.1984 |
t-stat | 1.8723 | 3.0001 | 2.6505 | 3.0843 | 2.0004 | 4.3965 | 3.8601 | −2.6097 | 1.0741 | 3.1110 | −2.4091 | |
Prob | 0.0986 ** | 0.4985 ** | 0.0041 ** | 0.2671 ** | 0.3096 * | 0.4861 * | 0.2312 ** | 0.3550 * | 0.2864 * | 0.3509 * | 0.4986 ** | |
Norway: Trondheim | Coefficient | 0.0564 | 0.0632 | 0.1152 | 0.1605 | 0.2851 | 0.2550 | 0.0397 | 0.1296 | 0.3750 | 0.2076 | 0.4097 |
t-stat | 3.2951 | 2.4077 | 3.4096 | 2.2472 | 3.0448 | 2.1977 | −1.5085 | 4.5402 | 1.8563 | −2.0985 | 3.0950 | |
Prob | 0.0007 ** | 0.0134 ** | 0.2509 *** | 0.4854 *** | 0.2099 ** | 0.3296 ** | 0.4994 ** | 0.3347 ** | 0.5097 ** | 0.1209 ** | 0.0036 *** | |
Russia: Anadyr | Coefficient | 0.0015 | 0.0019 | 0.0553 | 0.0002 | 0.0038 | 0.0005 | 0.0408 | −0.0003 | −0.0002 | 0.0005 | −0.0481 |
t-stat | 3.1408 | 2.4801 | −2.1984 | −1.8508 | −2.0045 | −1.0672 | 3.7055 | −4.1834 | 3.8591 | 2.5281 | 1.0833 | |
Prob | 0.2981 * | 0.0975 * | 0.3061 * | 0.4009 * | 0.3072 * | 0.6820 * | 0.3097 ** | 0.2751 * | 0.6953 * | 0.6509 * | 0.5802 * | |
Russia: Arkhangelsk | Coefficient | −0.0196 | −0.0207 | 0.0187 | 0.0206 | 0.0054 | 0.0098 | 0.0829 | −0.0040 | 0.1497 | 0.1025 | 0.0496 |
t-stat | 2.0507 | 3.8502 | −1.3955 | −2.0412 | −4.9287 | 5.0945 | 2.7756 | 3.9852 | −1.5054 | −2.0064 | 3.1247 | |
Prob | 0.0829 ** | 0.3813 ** | 0.4409 ** | 0.0389 ** | 0.5845 * | 0.5699 * | 0.7281 * | 0.8555 * | 0.0582 * | 0.7177 * | 0.2986 ** | |
Russia: Dudinka | Coefficient | 0.0062 | 0.0108 | 0.0052 | 0.0005 | 0.0059 | 0.0002 | 0.0665 | 0.0104 | 0.0051 | 0.0040 | 0.0182 |
t-stat | −1.4078 | −2.5095 | 4.0581 | 2.9770 | 3.9006 | −4.5281 | −1.9664 | 3.8911 | 2.6096 | 4.9873 | −1.9503 | |
Prob | 0.3769 * | 0.4401 * | 0.7200 * | 0.3086 * | 0.4071 * | 0.5069 * | 0.0052 ** | 0.0837 * | 0.2223 * | 0.5019 * | 0.0849 * | |
Russia: Murmansk | Coefficient | −0.0295 | −0.0180 | 0.1149 | 0.1509 | 0.0297 | 0.0104 | 0.1147 | 0.0124 | 0.1614 | 0.1808 | 0.2580 |
t-stat | 4.5096 | 2.5985 | −1.4085 | −3.0955 | −1.0583 | 2.0588 | 1.0095 | 2.0985 | 3.0009 | −2.4621 | −4.9076 | |
Prob | 0.4507 ** | 0.3811 ** | 0.3222 *** | 0.4086 *** | 0.5929 * | 0.0061 * | 0.3376 ** | 0.5902 * | 0.6871 ** | 0.2984 ** | 0.0791 *** | |
Russia: Petropavlovsk | Coefficient | 0.0663 | 0.0504 | 0.1146 | 0.1532 | 0.0135 | 0.0067 | 0.0508 | 0.0396 | 0.0023 | 0.0040 | 0.1573 |
t-stat | 2.0000 | 2.3856 | −3.5041 | −2.0698 | 1.0532 | 4.9433 | −2.9870 | 1.6084 | 2.6830 | −3.8045 | 2.0005 | |
Prob | 0.5288 * | 0.6902 * | 0.0057 * | 0.1904 * | 0.0994 * | 0.7502 * | 0.3099 ** | 0.0087 * | 0.1481 * | 0.5409 * | 0.4873 ** | |
Russia: Pevek | Coefficient | 0.0075 | 0.0104 | 0.2094 | 0.0066 | 0.0061 | 0.0013 | 0.0114 | 0.0058 | 0.0014 | 0.0023 | 0.1106 |
t-stat | −1.9409 | −3.8700 | 2.8895 | 1.0587 | 3.0855 | 2.9555 | −2.0065 | 3.1335 | −4.9722 | −2.5561 | −3.6091 | |
Prob | 0.0663 * | 0.4426 * | 0.5873 * | 0.4200 * | 0.0000 * | 0.0000 * | 0.1982 ** | 0.5987 * | 0.0003 * | 0.4093 * | 0.3863 * | |
Russia: Sabetta | Coefficient | 0.0207 | 0.0195 | 0.0396 | 0.0008 | 0.0897 | 0.0002 | 0.0058 | 0.1804 | 0.0004 | 0.0002 | 0.3472 |
t-stat | −2.2060 | −1.4809 | 2.9487 | 4.0596 | 3.1774 | 2.1247 | 3.0871 | −5.0822 | −3.8961 | −4.2247 | 3.6053 | |
Prob | 0.4791 * | 0.2853 * | 0.0035 ** | 0.7091 * | 0.6908 ** | 0.7883 * | 0.0039 * | 0.9431 ** | 0.2907 * | 0.6148 * | 0.5686 ** | |
Russia: Vladivostok | Coefficient | −0.0593 | −0.0355 | 0.0340 | 0.1985 | 0.1345 | 0.1590 | 0.0292 | 0.0853 | 0.2480 | 0.2175 | 0.4112 |
t-stat | 3.1134 | 1.4094 | 2.0556 | 3.5444 | 1.9800 | 4.9801 | −2.0440 | −3.5104 | 4.1564 | 3.9962 | 2.2275 | |
Prob | 0.0988 ** | 0.0527 ** | 0.0974 *** | 0.1307 ** | 0.4877 *** | 0.2874 *** | 0.0598 * | 0.1365 * | 0.3902 *** | 0.8271 *** | 0.3609 *** | |
South Korea: Gwangyang | Coefficient | −0.0570 | −0.0651 | 0.3406 | 0.3053 | 0.3415 | 0.3076 | −0.0817 | −0.0993 | −0.0018 | −0.0036 | 0.2808 |
t-stat | −3.5442 | −2.2309 | 4.1158 | 3.4724 | −1.5982 | −2.7951 | 2.0041 | −1.5081 | 2.5814 | 3.4140 | 1.7377 | |
Prob | 0.8691 ** | 0.4255 ** | 0.3754 ** | 0.5160 ** | 0.4773 *** | 0.5870 *** | 0.0482 * | 0.5802 * | 0.1263 * | 0.0006 ** | 0.1283 ** | |
South Korea: Pusan | Coefficient | 0.0814 | 0.0642 | 0.8115 | 0.8359 | 0.6776 | 0.6015 | −0.1405 | −0.1620 | −0.0057 | −0.0114 | 0.6217 |
t-stat | 1.8693 | 2.7993 | 4.6346 | 3.0045 | −3.6871 | −1.9865 | 2.0481 | 3.6111 | −1.5548 | −2.6932 | −4.8994 | |
Prob | 0.0809 ** | 0.5581 ** | 0.9500 *** | 0.8198 *** | 0.6900 *** | 0.5824 *** | 0.3870 ** | 0.4816 ** | 0.8347 ** | 0.5918 ** | 0.6000 *** | |
South Korea: Ulsan | Coefficient | −0.0474 | −0.0576 | 0.5209 | 0.5573 | 0.5116 | 0.4370 | 0.0045 | −0.0954 | −0.0664 | −0.0407 | 0.5836 |
t-stat | 3.5500 | 1.4732 | 3.5664 | 4.0560 | −2.8095 | −1.4567 | −3.9582 | −2.0585 | −3.4493 | −2.3763 | −3.1371 | |
Prob | 0.3571 ** | 0.5918 ** | 0.6816 *** | 0.4176 *** | 0.5983 *** | 0.4442 *** | 0.9185 * | 0.7203 * | 0.0037 * | 0.0448 ** | 0.2795 ** | |
Sweden: Gothenburg | Coefficient | 0.0045 | 0.0037 | 0.7054 | 0.7650 | 0.1619 | 0.1890 | 0.1581 | −0.0018 | 0.0136 | 0.0744 | −0.3028 |
t-stat | 1.5828 | 2.5336 | −4.9007 | −3.1974 | −1.8592 | −2.2971 | 1.8429 | −3.0284 | 1.7083 | 2.1286 | −3.1401 | |
Prob | 0.3752 * | 0.4975 * | 0.8162 *** | 0.7005 *** | 0.6866 ** | 0.2309 ** | 0.4105 ** | 0.1562 * | 0.0000 * | 0.0287 * | 0.5982 *** | |
Sweden: Halmstad | Coefficient | 0.0006 | 0.0004 | 0.3569 | 0.4021 | 0.1047 | 0.1456 | 0.0368 | −0.0035 | 0.0275 | 0.0805 | 0.0485 |
t-stat | 3.7099 | 2.8671 | −3.0988 | −2.6810 | −4.6438 | −2.0974 | 2.0815 | 4.4911 | 2.6092 | 3.8881 | −2.7002 | |
Prob | 0.3812 * | 0.4502 * | 0.4713 *** | 0.5658 *** | 0.1870 ** | 0.2619 ** | 0.5092 ** | 0.2976 * | 0.4983 * | 0.2550 * | 0.2976 ** |
Appendix D
Port | Parameter | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | Constant |
---|---|---|---|---|---|---|---|---|---|---|
China: Dalian | Coefficient | 0.1235 | 0.2248 | 0.2035 | 0.1944 | 0.0720 | −0.1424 | −0.0565 | −0.1527 | 3.2765 |
t-stat | 1.2741 *** | −3.4297 *** | −1.9264 ** | −2.3273 ** | 3.8319 * | −1.8300 ** | 1.7347 *** | 2.3091 *** | 2.2281 | |
China: Lianyungang | Coefficient | 0.1638 | 0.2134 | 0.1386 | 0.1307 | 0.2015 | −0.0748 | 0.0548 | −0.1132 | 2.4523 |
t-stat | −2.4371 ** | 2.9999 ** | −2.3982 * | −3.2591 * | −3.4778 * | 1.9756 * | 2.7232 ** | −3.4544 ** | 3.1742 | |
China: Qingdao | Coefficient | 0.2655 | 0.2318 | 0.3445 | 0.3616 | 0.1232 | −0.0375 | −0.3111 | −0.1459 | −4.1376 |
t-stat | 1.4967 ** | 2.6805 ** | −4.5940 *** | −1.8367 *** | 2.3719 * | 1.7622 ** | 3.4780 *** | −1.3254 *** | −1.5005 | |
China: Qinhuangdao | Coefficient | 0.2352 | 0.2002 | 0.1453 | 0.1542 | 0.0863 | 0.0283 | 0.0387 | −0.0371 | 5.1893 |
t-stat | 2.8307 ** | 3.1531 ** | 1.2763 * | 2.5395 * | −2.1279 * | 1.4721 * | 1.0724 ** | 4.3864 ** | 3.4722 | |
China: Rizhao | Coefficient | 0.4176 | 0.3726 | 0.1280 | 0.1666 | 0.0084 | 0.1637 | 0.0255 | 0.0169 | 4.8531 |
t-stat | 4.3809 ** | 2.0827 ** | −2.3195 * | −2.0874 * | 3.4807 * | −2.1489 * | −2.2987 * | 2.3206 ** | 3.3678 * | |
China: Shanghai | Coefficient | 0.7254 | 0.7742 | 0.5683 | 0.5967 | 0.1798 | 0.2483 | 0.2659 | −0.3215 | −5.2730 |
t-stat | 4.9512 *** | −2.3945 *** | 1.1700 *** | 2.4843 *** | −3.4615 ** | 2.3311 ** | −1.0315 *** | 3.8843 *** | −3.1662 | |
China: Weihai | Coefficient | 0.3017 | 0.4276 | 0.1635 | 0.1955 | 0.0564 | 0.1829 | 0.1946 | 0.0636 | 2.2113 |
t-stat | 4.5200 ** | 1.6991 ** | −4.2046 ** | −2.2316 ** | 3.2851 * | 2.1272 * | 3.0271 ** | −1.8200 ** | 3.6585 | |
China: Yantai | Coefficient | 0.2784 | 0.2465 | 0.1739 | 0.2341 | 0.1529 | 0.2585 | 0.0555 | −0.1478 | 4.3971 |
t-stat | 3.0773 *** | −2.5710 *** | 3.2285 ** | 1.7275 ** | −2.3004 ** | 3.1964 ** | 2.7232 ** | −2.7193 ** | 2.2276 | |
Denmark: Aarhus | Coefficient | 0.1845 | 0.1344 | 0.0722 | 0.0624 | 0.0965 | −0.0421 | 0.1617 | 0.0995 | −3.5323 |
t-stat | 2.3808 *** | 2.5956 *** | 1.5310 * | −2.2937 * | 1.5312 * | −3.1375 * | 1.2534 ** | 2.3852 * | 1.5905 | |
Denmark: Copenhagen | Coefficient | 0.1402 | 0.1732 | 0.0255 | 0.0813 | 0.0400 | 0.0667 | 0.0511 | 0.1267 | −4.6628 |
t-stat | −1.5213 *** | 3.1648 *** | −2.0176 * | −4.2565 * | 2.1406 * | 4.5489 * | 2.7042 * | −1.8553 * | −2.7390 | |
Denmark, Greenland: Nuuk | Coefficient | 0.7235 | 0.6857 | 0.1523 | 0.0246 | 0.5275 | −0.1382 | −0.0756 | −0.0250 | 5.2034 |
t-stat | 3.0804 *** | 4.1621 *** | −1.4592 * | 2.4521 * | −1.9221 ** | 2.3176 * | −1.3413 * | −1.5126 * | 3.5615 | |
Iceland: Reydharfjordur | Coefficient | 0.5156 | 0.4275 | 0.2551 | 0.2472 | 0.5384 | −0.0347 | 0.0614 | 0.0411 | 2.3587 |
t-stat | 2.7443 *** | 2.6310 *** | −1.2964 * | 2.8333 * | −1.6565 *** | 2.4251 * | 2.7256 * | 1.8324 * | 2.0671 | |
Iceland: Reykjavik | Coefficient | 0.6842 | 0.6198 | 0.4823 | 0.2755 | 0.1716 | −0.0423 | 0.1399 | 0.0638 | 4.2592 |
t-stat | 2.1763 *** | −2.5334 *** | −2.5562 ** | 2.6216 ** | −2.6288 ** | 1.7262 * | 3.1762 ** | −1.8230 ** | 3.7460 | |
Japan: Akita | Coefficient | 0.5111 | 0.6087 | 0.2431 | 0.2284 | 0.1803 | 0.0479 | −0.0843 | −0.0655 | −4.5829 |
t-stat | 2.2875 ** | 2.7918 ** | −3.3827 ** | −2.5197 ** | 2.6951 * | −1.6035 * | 2.4114 * | 1.5314 * | −2.7044 | |
Japan: Hakata | Coefficient | 0.4584 | 0.4975 | 0.1963 | 0.2512 | 0.3560 | 0.0671 | 0.0782 | 0.0821 | 4.8276 |
t-stat | 1.7721 ** | 2.8512 ** | 3.0008 ** | 2.4908 ** | 1.9542 * | 3.2556 * | 2.3907 * | −2.6630 * | 2.7921 | |
Japan: Kitakyushu | Coefficient | 0.3927 | 0.4584 | 0.1746 | 0.2165 | 0.2294 | 0.1777 | 0.0653 | 0.0882 | −5.6415 |
t-stat | 1.8409 ** | 2.9116 ** | −2.3875 ** | −2.1840 ** | 4.5517 ** | −1.8623 * | 2.7621 * | 1.7313 * | −4.5526 | |
Japan: Niigata | Coefficient | 0.2752 | 0.2460 | 0.2861 | 0.3485 | 0.0514 | 0.1405 | −0.1584 | −0.0621 | 3.3840 |
t-stat | −2.8150 *** | −2.3854 *** | 3.3705 *** | 2.6832 *** | 1.7280 *** | 2.7334 * | 1.7335 ** | 3.5992 ** | 2.0052 | |
Norway: Bergen | Coefficient | 0.2516 | 0.1563 | 0.2440 | 0.2186 | 0.1843 | 0.3247 | 0.1360 | 0.2239 | 3.5287 |
t-stat | 2.3543 ** | −2.1885 ** | −2.2598 * | −1.4934 * | −3.7609 ** | 1.6111 ** | −2.3952 ** | −2.5251 ** | 2.1645 | |
Norway: Hammerfest | Coefficient | 0.0744 | 0.0800 | 0.0961 | 0.0709 | 0.2665 | 0.2330 | 0.0941 | 0.3883 | 5.3054 |
t-stat | 2.3187 ** | 3.5816 ** | −3.0335 * | −2.5882 * | 2.9174 * | −3.5792 ** | −2.5304 ** | 3.4737 ** | 3.5287 | |
Norway: Stavanger | Coefficient | 0.2995 | 0.3447 | 0.0927 | 0.0731 | 0.2652 | 0.1755 | 0.4265 | 0.2385 | 4.2556 |
t-stat | 4.1850 *** | 2.5643 *** | 4.4436 ** | 1.8520 ** | −3.0186 ** | 1.7234 ** | 2.8667 ** | 1.7114 ** | 2.0081 | |
Norway: Tromso | Coefficient | 0.2713 | 0.2862 | 0.1543 | 0.1256 | 0.1913 | 0.0996 | 0.0309 | 0.0622 | 3.4619 |
t-stat | 2.2246 *** | −4.5505 *** | 2.6285 * | 2.7095 * | 1.7200 ** | −2.2838 * | 3.5176 * | 2.3787 * | 2.0387 | |
Norway: Trondheim | Coefficient | 0.1637 | 0.2739 | 0.3612 | 0.3330 | 0.0908 | 0.1831 | 0.4274 | 0.1916 | 5.1862 |
t-stat | −2.3062 *** | 1.8174 *** | 2.7556 ** | 1.8621 ** | −3.1634 ** | 4.2559 ** | 2.2965 ** | −3.0001 ** | 4.6559 | |
Russia: Anadyr | Coefficient | 0.0706 | 0.0032 | 0.00109 | 0.0075 | 0.0837 | −0.0112 | −0.0030 | 0.0028 | −3.1780 |
t-stat | −2.5873 * | −3.5985 * | −1.3917 * | −2.6173 * | 1.4095 ** | −2.3887 * | 2.6774 * | 2.1795 * | −2.5545 | |
Russia: Arkhangelsk | Coefficient | 0.0581 | 0.0374 | 0.0095 | 0.0457 | 0.1520 | −0.0135 | 0.2487 | 0.1553 | 5.2761 |
t-stat | −2.3995 ** | −2.0456 ** | −3.5286 * | 3.6812 * | 3.2293 * | 2.7697 * | −1.9990 * | −2.0046 * | 4.6882 | |
Russia: Dudinka | Coefficient | 0.0089 | 0.0037 | 0.0077 | 0.0065 | 0.1671 | 0.0202 | 0.00116 | 0.0122 | 3.4550 |
t-stat | −3.3553 * | 1.8820 * | −2.8148 * | −2.9153 * | −1.8729 ** | 2.8151 * | 1.5370 * | 2.7609 * | 2.7166 | |
Russia: Murmansk | Coefficient | 0.1417 | 0.1815 | 0.0621 | 0.0120 | 0.1773 | 0.0266 | 0.11744 | 0.2751 | 6.3375 |
t-stat | −3.0815 *** | −2.0058 *** | −1.8130 * | 2.4839 * | −2.0194 ** | −1.7810 ** | 2.7151 ** | −2.0365 ** | 5.0949 | |
Russia: Petropavlovsk | Coefficient | 0.1550 | 0.1732 | 0.0445 | 0.0278 | 0.0709 | 0.0628 | 0.0076 | 0.0090 | 3.5812 |
t-stat | −4.2656 * | −2.8954 * | 1.8182 * | 3.3365 * | −1.6845 ** | 3.1475 * | 2.6187 * | −2.1154 * | 3.2980 | |
Russia: Pevek | Coefficient | 0.1822 | 0.00135 | 0.0163 | 0.0189 | 0.0200 | 0.0447 | 0.0103 | 0.0067 | 4.3167 |
t-stat | 1.9457 * | 1.6089 * | 3.8265 * | 1.7704 * | −3.5287 ** | 2.1860 * | −3.1498 * | −1.5980 * | 2.0095 | |
Russia: Sabetta | Coefficient | 0.0663 | 0.0043 | 0.1664 | 0.0091 | 0.0084 | 0.2788 | 0.0060 | 0.0069 | 3.7599 |
t-stat | 2.5055 ** | −2.0787 * | 1.9875 ** | 2.4980 * | 2.5112 * | −4.5909 ** | −3.1693 * | −3.4897 * | 2.4631 | |
Russia: Vladivostok | Coefficient | 0.0884 | 0.2352 | 0.1713 | 0.2054 | 0.0535 | 0.1275 | 0.2926 | 0.2112 | 6.2680 |
t-stat | 4.4591 *** | 2.3716 ** | −2.5361 *** | 3.8276 *** | −2.6289 * | −2.5804 ** | 1.2017 *** | 1.7975 *** | 5.3799 | |
South Korea: Gwangyang | Coefficient | 0.4516 | 0.4285 | 0.3590 | 0.3082 | −0.0904 | −0.1126 | −0.0132 | −0.0089 | 3.2795 |
t-stat | 2.8029 *** | 1.5296 ** | −2.3983 *** | −1.6396 *** | 4.8275 * | −2.8227 * | 1.5541 * | −2.4002 ** | 2.7891 | |
South Korea: Pusan | Coefficient | 0.8217 | 0.7814 | 0.7093 | 0.6619 | −0.1541 | −0.1773 | −0.0158 | −0.0594 | 5.3987 |
t-stat | −2.0039 *** | −2.5870 *** | −1.4069 *** | −2.9276 *** | 1.8266 ** | 2.0095 ** | −4.5203 ** | −1.8886 ** | 3.1963 | |
South Korea: Ulsan | Coefficient | 0.6573 | 0.5718 | 0.5608 | 0.4767 | 0.0134 | −0.0874 | −0.1227 | −0.0995 | 4.0440 |
t-stat | 4.1280 *** | 3.0052 *** | −2.4816 *** | −2.0086 *** | −4.5598 * | −3.2790 * | −2.4986 * | −4.2644 ** | 3.8215 | |
Sweden: Gothenburg | Coefficient | 0.7031 | 0.7394 | 0.2001 | 0.1670 | 0.1783 | −0.0144 | 0.0169 | 0.0931 | 6.4778 |
t-stat | −2.3827 *** | −1.6590 *** | −2.3857 ** | −3.5281 ** | 3.5990 ** | −1.8976 * | 2.1024 * | −1.5509 * | 4.6380 | |
Sweden: Halmstad | Coefficient | 0.4136 | 0.4322 | 0.1760 | 0.1574 | 0.0775 | −0.0353 | 0.0665 | 0.0963 | 5.1385 |
t-stat | −1.4789 *** | −3.2971 *** | −3.9178 ** | −1.6660 ** | 4.9836 ** | 2.4812 * | 3.0009 * | 1.5987 * | 3.0041 |
Port | Parameter | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | Constant |
---|---|---|---|---|---|---|---|---|---|---|---|---|
China: Dalian | Coefficient | −0.0157 | −0.0245 | 0.1470 | 0.1568 | 0.1773 | 0.1982 | 0.0561 | −0.1450 | −0.0239 | −0.1725 | 3.7612 |
t-stat | 2.2249 ** | 3.0019 ** | 2.9387 ** | −4.0012 ** | 2.6981 * | −3.5099 ** | 2.8512 * | 1.9563 ** | 2.0045 *** | 3.2986 *** | 2.6546 | |
China: Lianyungang | Coefficient | −0.0358 | −0.0442 | 0.0528 | 0.0647 | 0.0425 | 0.0513 | 0.1630 | −0.0672 | 0.0730 | −0.1379 | 6.3715 |
t-stat | −3.2905 ** | −2.5990 ** | 3.6111 * | 2.1295 * | −1.6056 * | −2.6276 * | −2.4389 * | 4.1508 * | 2.6884 ** | −1.5203 ** | 4.2100 | |
China: Qingdao | Coefficient | 0.0312 | 0.0054 | 0.1452 | 0.1555 | 0.2234 | 0.2521 | 0.0618 | −0.0083 | −0.2953 | −0.1476 | −5.8761 |
t-stat | 3.1649 * | 2.5189 * | 3.3765 * | 3.6186 * | −2.6701 ** | −3.3478 ** | 4.7165 * | 3.4514 ** | 2.6197 *** | 3.2421 *** | −3.3409 | |
China: Qinhuangdao | Coefficient | −0.0754 | −0.0548 | 0.2387 | 0.1752 | 0.0733 | 0.0567 | 0.0831 | 0.0097 | 0.0205 | −0.0044 | 5.1285 |
t-stat | −2.6285 * | −3.7153 * | 1.7440 ** | 3.1508 ** | 4.5172 * | 3.3196 * | −2.2590 * | 1.3896 * | 4.0089 ** | 3.5217 ** | 4.0006 | |
China: Rizhao | Coefficient | −0.1340 | −0.1195 | 0.1297 | 0.1201 | 0.0376 | 0.0935 | 0.0097 | 0.1582 | 0.0094 | 0.0190 | 4.1138 |
t-stat | −4.2759 ** | −3.0164 ** | 2.2256 ** | 3.2378 ** | 2.1390 * | 2.8527 * | 1.8361 * | −3.4800 * | −2.7182 * | 1.3114 ** | 3.5706 | |
China: Shanghai | Coefficient | 0.1304 | 0.1256 | 0.4150 | 0.3628 | 0.4209 | 0.2514 | 0.1523 | 0.2195 | 0.2156 | −0.2230 | −6.1713 |
t-stat | 2.5981 * | 2.1294 * | 3.7598 *** | 3.4519 *** | 1.3871 *** | 1.5662 *** | −4.5299 ** | 5.3298 ** | 3.1590 *** | 2.1308 *** | −4.2992 | |
China: Weihai | Coefficient | −0.0122 | −0.0237 | 0.1442 | 0.1753 | 0.0674 | 0.0751 | 0.0640 | 0.1483 | 0.1815 | 0.0427 | 5.7634 |
t-stat | −1.5380 ** | −2.6908 ** | 4.5700 ** | 3.4729 ** | −4.2568 ** | −3.6225 ** | 2.8321 * | 3.2648 * | 1.2930 ** | −3.5113 ** | 2.5310 | |
China: Yantai | Coefficient | −0.0503 | −0.0531 | 0.1256 | 0.0950 | 0.1241 | 0.1553 | 0.1452 | 0.1527 | 0.0505 | −0.1486 | 4.4456 |
t-stat | 3.6125 ** | 2.7142 ** | 4.4003 ** | 3.6128 ** | 2.3987 ** | 3.1786 ** | −2.5009 ** | 4.7996 ** | 3.2913 ** | −2.7962 ** | 3.5897 | |
Denmark: Aarhus | Coefficient | −0.0246 | −0.0097 | 0.3419 | 0.2915 | 0.0347 | 0.0224 | 0.0575 | −0.0192 | 0.1164 | 0.0740 | −5.1362 |
t-stat | −4.4085 * | −3.7736 * | 5.3600 ** | 3.6262 ** | 1.5503 * | −2.2843 * | 1.6448 * | −2.4861 * | 3.7080 ** | 3.5123 * | −4.6251 | |
Denmark: Copenhagen | Coefficient | −0.1566 | −0.1454 | 0.2503 | 0.2264 | 0.0060 | 0.0554 | 0.0083 | 0.0164 | 0.0435 | 0.0777 | −3.2587 |
t-stat | 2.3051 ** | 4.7238 ** | −1.4967 ** | 2.7481 ** | −3.3714 * | −4.7006 * | 2.5091 * | 1.5226 * | 2.6172 * | −2.4553 * | −2.3521 | |
Denmark, Greenland: Nuuk | Coefficient | 0.0366 | 0.0473 | 0.7351 | 0.6775 | 0.0921 | 0.0070 | 0.4516 | −0.0832 | −0.0299 | −0.0134 | 4.5600 |
t-stat | −1.5827 * | −2.2518 * | 4.2879 *** | 3.8163 *** | 2.7265 * | 3.6198 * | −2.6315 ** | 3.4440 * | −1.7451 * | −3.5819 * | 4.2187 | |
Iceland: Reydharfjordur | Coefficient | 0.0342 | 0.0215 | 0.5274 | 0.3969 | 0.2830 | 0.2697 | 0.5930 | −0.0156 | 0.0715 | 0.0147 | 5.0232 |
t-stat | −2.4054 * | −2.7916 * | 4.2613 *** | 3.3514 *** | −2.5326 * | 4.4625 * | −2.4811 *** | 1.6822 * | 2.6380 * | 1.0000 * | 3.5714 | |
Iceland: Reykjavik | Coefficient | −0.0236 | −0.0174 | 0.6532 | 0.5731 | 0.3003 | 0.2954 | 0.1850 | −0.0123 | 0.1486 | 0.0638 | 6.3522 |
t-stat | −3.7198 * | 4.5261 * | 3.3899 *** | −2.5247 *** | −1.8345 ** | 1.9685 ** | −3.2747 ** | 2.4981 * | 3.5344 ** | −2.8625 ** | 5.4910 | |
Japan: Akita | Coefficient | −0.1123 | −0.0909 | 0.5563 | 0.6215 | 0.1964 | 0.2240 | 0.1498 | 0.0086 | −0.0465 | −0.0341 | −3.5213 |
t-stat | −2.5934 ** | −1.5487 ** | 2.5712 ** | 3.3408 ** | −2.5370 ** | −3.0567 ** | 4.4665 * | −2.4565 * | 1.3173 * | 2.4226 * | −2.3999 | |
Japan: Hakata | Coefficient | −0.0405 | −0.0864 | 0.4340 | 0.3422 | 0.1635 | 0.1754 | 0.3613 | 0.0170 | 0.0381 | 0.0654 | 3.6280 |
t-stat | 4.2984 ** | 3.7282 ** | 1.8651 ** | 2.8537 ** | 3.2049 ** | 2.6210 ** | 1.7506 * | 2.8418 * | 1.7399 * | −1.5980 * | 2.1341 | |
Japan: Kitakyushu | Coefficient | −0.2316 | −0.2300 | 0.3145 | 0.4928 | 0.2250 | 0.1549 | 0.2407 | 0.1255 | 0.0182 | 0.0333 | −5.3826 |
t-stat | 3.7388 ** | −2.2738 ** | 1.7507 ** | 4.5755 ** | −1.6131 ** | −2.1213 ** | 2.6628 ** | −1.5673 * | 3.1996 * | 2.0276 * | −3.0024 | |
Japan: Niigata | Coefficient | 0.1775 | 0.1104 | 0.2158 | 0.2470 | 0.2015 | 0.2824 | 0.0600 | 0.1364 | −0.0975 | −0.0409 | 6.2345 |
t-stat | 3.5172 ** | 1.7396 ** | −2.5573 *** | −3.6369 *** | 4.3862 *** | 2.5731 *** | 1.5382 *** | 4.7211 * | 2.7523 ** | 3.3278 ** | 4.6117 | |
Norway: Bergen | Coefficient | −0.0164 | −0.0331 | 0.1485 | 0.1001 | 0.1884 | 0.1569 | 0.1754 | 0.2362 | 0.1565 | 0.1831 | 3.5220 |
t-stat | −3.8526 ** | −3.5920 ** | 2.1567 ** | 2.8332 ** | −1.7210 * | −2.4352 * | −2.3709 ** | 2.5863 ** | −2.4207 ** | −2.7456 ** | 2.3476 | |
Norway: Hammerfest | Coefficient | −0.0265 | −0.0326 | 0.0472 | 0.0743 | 0.0399 | 0.0545 | 0.2356 | 0.2134 | 0.0612 | 0.3007 | 5.9992 |
t-stat | −3.4387 ** | −2.4187 ** | 3.4206 * | 2.6938 * | −3.4251 * | −2.5710 * | 2.4884 * | −1.6307 ** | −3.2655 ** | 1.6284 ** | 3.5475 | |
Norway: Stavanger | Coefficient | 0.0153 | 0.0242 | 0.2580 | 0.2421 | 0.0166 | 0.0532 | 0.1775 | 0.1863 | 0.3350 | 0.2675 | 6.6820 |
t-stat | 3.2854 * | 2.4966 * | 4.7364 ** | 1.6408 ** | 3.2489 ** | 2.3005 ** | −1.5113 ** | 2.5981 ** | 4.1673 ** | 3.2151 ** | 4.7532 | |
Norway: Tromso | Coefficient | −0.0483 | −0.0574 | 0.2341 | 0.1752 | 0.0785 | 0.0519 | 0.1670 | 0.0445 | 0.0256 | 0.0662 | 5.5311 |
t-stat | 2.5800 ** | 3.2856 ** | 2.7209 ** | 3.1954 ** | 2.3661 * | 3.5998 * | 3.4839 ** | −2.9113 * | 1.2749 * | 3.4806 * | 3.8006 | |
Norway: Trondheim | Coefficient | 0.0677 | 0.0585 | 0.1217 | 0.1751 | 0.2630 | 0.2652 | 0.0523 | 0.1400 | 0.3675 | 0.2138 | 4.3717 |
t-stat | 2.3692 ** | 3.6401 ** | 2.5962 *** | 2.3760 *** | 3.2624 ** | 2.2471 ** | −1.6296 ** | 4.1625 ** | 2.8841 ** | −2.1532 ** | 3.9552 | |
Russia: Anadyr | Coefficient | 0.0018 | 0.0023 | 0.0562 | 0.0009 | 0.0065 | 0.0012 | 0.0550 | −0.0031 | −0.0042 | 0.0013 | −5.3276 |
t-stat | 2.1535 * | 2.5184 * | −1.2396 * | −1.2536 * | −2.1427 * | −1.3074 * | 2.6186 ** | −3.5283 * | 4.0635 * | 2.1467 * | −4.4884 | |
Russia: Arkhangelsk | Coefficient | −0.0332 | −0.0411 | 0.0357 | 0.0448 | 0.0125 | 0.0231 | 0.0824 | −0.0057 | 0.1621 | 0.1274 | 4.1235 |
t-stat | 2.1574 ** | 3.6275 ** | −2.5583 ** | −3.5751 ** | −4.8266 * | 5.2408 * | 1.6200 * | 4.8652 * | −2.6333 * | −3.6755 * | 3.0053 | |
Russia: Dudinka | Coefficient | 0.0095 | 0.0127 | 0.0234 | 0.0032 | 0.0070 | 0.0035 | 0.0844 | 0.0159 | 0.0167 | 0.0281 | 3.2344 |
t-stat | −2.3746 * | −2.4993 * | 4.3857 * | 2.6350 * | 3.5416 * | −4.3683 * | −1.7268 ** | 3.7004 * | 2.5758 * | 4.5006 * | 2.1206 | |
Russia: Murmansk | Coefficient | −0.0443 | −0.0325 | 0.1342 | 0.1781 | 0.0453 | 0.0328 | 0.1367 | 0.0335 | 0.1862 | 0.1775 | 6.1731 |
t-stat | 4.1986 ** | 3.6174 ** | −2.6315 *** | −3.4277 *** | −2.2200 * | 2.3990 * | 1.2708 ** | 2.2847 * | 3.4721 ** | −2.2740 ** | 4.5255 | |
Russia: Petropavlovsk | Coefficient | 0.0857 | 0.0546 | 0.1473 | 0.1624 | 0.0366 | 0.0247 | 0.0612 | 0.0554 | 0.0135 | 0.0076 | 3.2346 |
t-stat | 2.2249 * | 2.3358 * | −3.8821 * | −2.5290 * | 1.2987 * | 4.5224 * | −2.2775 ** | 1.7189 * | 2.5000 * | −3.5227 * | 2.9672 | |
Russia: Pevek | Coefficient | 0.0070 | 0.0122 | 0.2425 | 0.0258 | 0.0021 | 0.0046 | 0.0230 | 0.0337 | 0.0255 | 0.0088 | 5.3381 |
t-stat | −1.8421 * | −3.4339 * | 2.5190 * | 1.3912 * | 3.3059 * | 2.4483 * | −2.3995 ** | 3.2694 * | −4.7141 * | −2.1945 * | 4.0053 | |
Russia: Sabetta | Coefficient | 0.0243 | 0.0330 | 0.0527 | 0.0035 | 0.1232 | 0.0024 | 0.0113 | 0.2055 | 0.0013 | 0.0005 | 4.1225 |
t-stat | −2.5992 * | −1.7268 * | 2.3981 ** | 4.2664 * | 3.0676 ** | 2.8495 * | 3.4887 * | −5.1837 ** | −3.4416 * | −4.3663 * | 3.3406 | |
Russia: Vladivostok | Coefficient | −0.0884 | −0.0561 | 0.0402 | 0.2145 | 0.1567 | 0.1783 | 0.0285 | 0.0996 | 0.2743 | 0.2284 | 6.5893 |
t-stat | 3.2056 ** | 1.5725 ** | 2.6843 *** | 3.3003 ** | 1.3280 *** | 4.5871 *** | −2.1264 * | −3.4720 * | 4.0065 *** | 3.4071 *** | 5.2444 | |
South Korea: Gwangyang | Coefficient | −0.0664 | −0.0852 | 0.3643 | 0.3315 | 0.3364 | 0.3142 | −0.1398 | −0.1145 | −0.0020 | −0.0074 | 4.3718 |
t-stat | −3.2817 ** | −2.5006 ** | 4.1509 ** | 3.4782 ** | −1.7016 *** | −3.5290 *** | 2.2750 * | −2.4988 * | 3.4285 * | 3.5311 ** | 2.2269 | |
South Korea: Pusan | Coefficient | 0.0953 | 0.0714 | 0.8165 | 0.8554 | 0.6571 | 0.6794 | −0.1562 | −0.1724 | −0.0055 | −0.0247 | 6.1378 |
t-stat | 1.7136 ** | 2.2485 ** | 4.9127 *** | 4.2942 *** | −3.2704 *** | −1.6228 *** | 2.3007 ** | 3.7506 ** | −1.4682 ** | −2.8156 ** | 4.4093 | |
South Korea: Ulsan | Coefficient | −0.0676 | −0.0608 | 0.5153 | 0.5429 | 0.5620 | 0.4475 | 0.0063 | −0.1164 | −0.0725 | −0.0637 | 5.7107 |
t-stat | 3.3175 ** | 1.2601 ** | 3.4274 *** | 4.1212 *** | −2.0053 *** | −1.7312 *** | −3.9279 * | −2.1505 * | −3.1000 * | −2.4861 ** | 3.2123 | |
Sweden: Gothenburg | Coefficient | 0.0068 | 0.0052 | 0.6987 | 0.7425 | 0.1850 | 0.1874 | 0.1637 | −0.0032 | 0.0145 | 0.0957 | −4.1752 |
t-stat | 1.3791 * | 2.4720 * | −4.2405 *** | −3.6029 *** | −1.7442 ** | −2.4933 ** | 1.7446 ** | −3.1268 * | 1.5286 * | 2.3864 * | −3.6973 | |
Sweden: Halmstad | Coefficient | 0.0005 | 0.0007 | 0.3316 | 0.4254 | 0.1261 | 0.1100 | 0.0432 | −0.0047 | 0.0530 | 0.0813 | 2.2097 |
t-stat | 3.3796 * | 2.4305 * | −3.2777 *** | −2.7315 *** | −4.5985 ** | −2.6013 ** | 2.3615 ** | 4.5841 * | 2.7998 * | 3.7286 * | 2.0585 |
References
- United Nations Conference on Trade and Development. Review of Maritime Transport; United Nations Publications: New York, NY, USA, 2020. [Google Scholar]
- United Nations. World Economic Situation and Prospects as of Mid-2020; United Nations: New York, NY, USA, 2020. [Google Scholar]
- International Energy Agency. Global Energy Review 2020: The Impacts of the COVID-19 Crisis on Global Energy Demand and CO2 Emissions; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A Novel Coronavirus Outbreak of Global Health Concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.L.; Harding, N.; Zachreson, C.; Cliff, O.; Prokopenko, M. Modelling Transmission and Control of the COVID-19 Pandemic in Australia. Nat. Commun. 2020, 11, 5710. [Google Scholar] [CrossRef]
- Liu, J.; Hao, J.; Sun, Y.; Shi, Z. Network Analysis of Population Flow Among Major Cities and Its Influence on COVID-19 Transmission in China. Cities 2021, 112, 103138. [Google Scholar] [CrossRef]
- Hsiang, S.; Allen, D.; Annan-Phan, S.; Bell, K.; Bolliger, I.; Chong, T.; Druckenmiller, H.; Huang, L.Y.; Hultgren, A.; Krasovich, E.; et al. The Effect of Large-Scale Anti-Contagion Policies on the COVID-19 Pandemic. Nature 2020, 584, 262–267. [Google Scholar] [CrossRef]
- Monios, J.; Wilmsmeier, G. Deep Adaptation to Climate Change in the Maritime Transport Sector: A New Paradigm for Maritime Economics? Marit. Policy Manag. 2020, 47, 853–872. [Google Scholar] [CrossRef]
- World Trade Organization. World Trade Statistical Review 2020; World Trade Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Organisation for Economic Co-Operation and Development. OECD Economic Outlook: Volume 2020; OECD Publishing: Paris, France, 2020. [Google Scholar]
- Notteboom, T.; Pallis, T.; Rodrigue, J.-P. Disruptions and Resilience in Global Container Shipping and Ports: The COVID-19 Pandemic versus the 2008-2009 Financial Crisis. Marit. Econ. Logist. 2021. [Google Scholar] [CrossRef]
- Van Tatenhove, J.P.M. COVID-19 and European Maritime Futures: Different Pathways to Deal with the Pandemic. Marit. Stud. 2021, 20, 63–74. [Google Scholar] [CrossRef]
- Kolesnikova, M. EU Maritime Economy and COVID-19. Contemp. Eur. 2020, 4, 102–111. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development. COVID-19 and Global Value Chains: Policy Options to Build. More Resilient Production Networks; OECD Publishing: Paris, France, 2020. [Google Scholar]
- Liu, X.; Liu, Y.; Yan, Y. China Macroeconomic Report 2020: China’s Macroeconomy Is on the Rebound Under the Impact of COVID-19. Econ. Political Stud. 2020, 8, 395–435. [Google Scholar] [CrossRef]
- Nallon, E. COVID-19: A Maritime Perspective. Available online: https://www.maritime-executive.com/blog/covid-19-a-maritime-perspective-1 (accessed on 12 February 2021).
- Mishra, V.K.; Dutta, B.; Goh, M.; Figueira, J.R.; Greco, S. A Robust Ranking of Maritime Connectivity: Revisiting UNCTAD’s Liner Shipping Connectivity Index (LSCI). Marit. Econ. Logist. 2021. [Google Scholar] [CrossRef]
- Handfield, R.; Graham, G.; Burns, L. Corona Virus, Tariffs, Trade Wars and Supply Chain Evolutionary Design. Int. J. Oper. Prod. Manag. 2020, 40, 1649–1660. [Google Scholar] [CrossRef]
- Xi, J. The Governance of China II; Foreign Languages Press: Beijing, China, 2017. [Google Scholar]
- Wiederer, C.K. Logistics Infrastructure Along the Belt and Road Initiative Economies; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- State Council of the People’s Republic of China. Vision for Maritime Cooperation under the Belt and Road Initiative. Available online: http://english.www.gov.cn/archive/publications/2017/06/20/content_281475691873460.htm (accessed on 8 February 2021).
- Zhao, L. 3 Sea Routes Planned for Belt & Road Initiative. Available online: http://english.www.gov.cn/state_council/ministries/2017/06/21/content_281475692760102.htm (accessed on 8 February 2021).
- State Council of the People’s Republic of China. China’s Arctic Policy. The State Council Information Office of the People’s Republic of China; The State Council of the People’s Republic of China: Beijing, China, 2018.
- Tillman, H.; Yang, J.; Nielsson, E.T. The Polar Silk Road: China’s New Frontier of International Cooperation. China Q. Int. Strateg. Stud. 2018, 4, 345–362. [Google Scholar] [CrossRef]
- Gao, T. Going North: China’s Role in the Arctic Blue Economic Corridor. In Handbook of Research on International Collaboration, Economic Development, and Sustainability in the Arctic; Erokhin, V., Gao, T., Zhang, X., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 133–161. [Google Scholar] [CrossRef]
- Bennett, M. North by Northeast: Toward an Asian-Arctic Region. Eurasian Geogr. Econ. 2014, 55, 71–93. [Google Scholar] [CrossRef]
- Stephenson, S.R.; Brigham, L.; Smith, L.C. Marine Accessibility along Russia’s Northern Sea Route. Polar Geogr. 2013, 37, 111–133. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, Y.; Xu, M. Viability of Transarctic Shipping Routes: A Literature Review from the Navigational and Commercial Perspectives. Marit. Policy Manag. 2017, 44, 16–41. [Google Scholar] [CrossRef]
- Guy, E.; Lasserre, F. Commercial Shipping in the Arctic: New Perspectives, Challenges, and Regulations. Polar Rec. 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Jorgensen-Dahl, A. Future of Resources and Shipping in the Arctic; Centre for High North Logistics: Kirkenes, Norway, 2010. [Google Scholar]
- Zhang, Y.; Meng, Q.; Zhang, L. Is the Northern Sea Route Attractive to Shipping Companies? Some Insights from Recent Ship Traffic Data. Mar. Policy 2016, 73, 53–60. [Google Scholar] [CrossRef]
- Ng, A.K.Y.; Andrews, J.; Babb, D.; Lin, Y.; Becker, A. Implications of Climate Change for Shipping: Opening the Arctic Seas. Wires Clim. Chang. 2018, 9, ee507. [Google Scholar] [CrossRef]
- Becker, A.; Ng, A.K.Y.; McEvoy, D.; Mullett, J. Implications of Climate Change for Shipping: Ports and Supply Chains. Wires Clim. Chang. 2018, 9, ee508. [Google Scholar] [CrossRef] [Green Version]
- Erokhin, V.; Gao, T.; Zhang, X. Handbook of Research on International Collaboration, Economic Development, and Sustainability in the Arctic; IGI Global: Hershey, PA, USA, 2019. [Google Scholar] [CrossRef]
- Xu, H.; Yin, Z.; Jia, D.; Jin, F.; Ouyang, H. The Potential Seasonal Alternative of Asia-Europe Container Service via Northern Sea Route under the Arctic Sea Ice Retreat. Marit. Policy Manag. 2011, 38, 541–560. [Google Scholar] [CrossRef]
- Cao, Y.; Yu, M.; Hui, F.; Zhang, J.; Cheng, X. Review of Navigability Changes in Trans-Arctic Routes. Chin. Sci. Bull. 2021, 66, 21–33. [Google Scholar] [CrossRef]
- Farre, A.B.; Stephenson, S.R.; Chen, L.; Czub, M.; Dai, Y.; Demchev, D.; Efimov, Y.; Graczyk, P.; Grythe, H.; Keil, K.; et al. Commercial Arctic Shipping through the Northeast Passage: Routes, Resources, Governance, Technology, and Infrastructure. Polar Geogr. 2014, 37, 298–324. [Google Scholar] [CrossRef]
- Kikkas, K. International Transport Corridors and the Arctic. Mod. Innov. Res. 2015, 6, 178–184. [Google Scholar]
- Zalyvsky, N. The Northern Sea Route: The Potential of Expectations and the Real Functioning Problems. Arct. North 2015, 20, 32–50. [Google Scholar] [CrossRef]
- Fisenko, A. Geopolitical, Transportation and Economic Aspects of Development the Northern Sea Route in Russia. Transp. Bus. Russ. 2013, 107, 235–238. [Google Scholar]
- Zelentsov, V. Development of Arctic Transportation in Russia. Asia-Pac. J. Mar. Sci. Educ. 2012, 2, 9–16. [Google Scholar]
- Erokhin, V.; Gao, T.; Zhang, X. Arctic Blue Economic Corridor: China’s Role in the Development of a New Connectivity Paradigm in the North. In Arctic Yearbook 2018. Arctic Development: In Theory and in Practice; Heininen, L., Exner-Pirot, H., Eds.; Northern Research Forum: Akureyri, Iceland, 2018; pp. 456–474. [Google Scholar]
- Lasserre, F. Case Studies of Shipping along Arctic Routes. Analysis and Profitability Perspectives for the Container Sector. Transp. Res. Part. A Policy Pract. 2014, 66, 144–161. [Google Scholar] [CrossRef]
- Cariou, P.; Faury, O. Relevance of the Northern Sea Route (NSR) for Bulk Shipping. Transp. Res. Part. A Policy Pract. 2015, 78, 337–346. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, H.; Lin, Y. Study on China-EU Container Shipping Network in the Context of Northern Sea Route. J. Transp. Geogr. 2016, 53, 50–60. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Z.; Zhang, X.; Bao, Q.; Li, X. Prediction on Freight Function Structure of China’s Coastal Ports Under the Polar Silk Road: A Cargo Attraction Potential Perspective. Eurasian Geogr. Econ. 2020. [Google Scholar] [CrossRef]
- Erokhin, V.; Gao, T. Northern Sea Route: An Alternative Transport Corridor within China’s Belt and Road Initiative. In The Belt and Road Initiative: Law, Economics, and Politics; Chaisse, J., Gorski, J., Eds.; Brill Nijhoff: Leiden, The Netherlands, 2018; pp. 146–167. [Google Scholar]
- Enderwick, P. Viewpoint–Could the Belt and Road Initiative Be Derailed? An Analysis of Impediments to Completion. Crit. Perspect. Int. Bus. 2020. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and Development. Liner Shipping Connectivity Index, Quarterly. Available online: https://unctad.org/system/files/official-document/statcpbmn1_en.pdf (accessed on 10 February 2021).
- MDS Transmodal. Data and Models. Available online: https://www.mdst.co.uk/data (accessed on 9 February 2021).
- Lin, P.-C.; Kuo, S.-Y.; Chang, J.-H. The Direct and Spillover Effects of Liner Shipping Connectivity on Merchandise Trade. Marit. Bus. Rev. 2020, 5, 159–173. [Google Scholar] [CrossRef]
- Bartholdi, J.; Jarumaneeroj, P.; Ramudhin, A. A New Connectivity Index for Container Ports. Marit. Econ. Logist. 2016, 18, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Fugazza, M.; Hoffmann, J. Liner Shipping Connectivity as Determinant of Trade. J. Shipp. Trade 2017, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Minárik, M.; Čiderová, D. The “New Global”: The Role of Cargo Maritime Transport of Goods with focus on the Transportation Corridor between Southeast Asia and Northwestern Europe. Shs Web Conf. 2021, 92, 09010. [Google Scholar] [CrossRef]
- Frazila, R.B.; Zukhruf, F. Measuring Connectivity for Domestic Maritime Transport Network. J. East. Asia Soc. Transp. Stud. 2015, 11, 2363–2376. [Google Scholar] [CrossRef]
- Chang, S.; Huang, Y.; Shang, K.; Chiang, W. Impacts of Regional Integration and Maritime Transport on Trade: With Special Reference to RCEP. Marit. Bus. Rev. 2020, 5, 143–158. [Google Scholar] [CrossRef]
- Şeker, A. The Impacts of Liner Shipping Connectivity and Economic Growth on International Trade Case of European Countries and Turkey. In Handbook of Research on the Applications of International Transportation and Logistics for World Trade; Ceyhun, G.Ç., Ed.; IGI Global: Hershey, PA, USA, 2019; pp. 139–150. [Google Scholar] [CrossRef]
- Panahi, R.; Ghasemi, A.; Golpira, A. Future of Container Shipping in Iranian Ports: Traffic and Connectivity Index Forecast. J. Adv. Transp. 2017, 1, 5847372. [Google Scholar] [CrossRef] [Green Version]
- Jouili, T.A. Determinants of Liner Shipping Connectivity. Int. J. Adv. Appl. Sci. 2019, 6, 5–10. [Google Scholar] [CrossRef]
- Ding, W.; Levine, R.; Lin, C.; Xie, W. Corporate Immunity to the COVID-19 Pandemic; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Baber, H. Spillover Effect of COVID19 on the Global Economy. Transnatl. Mark. J. 2020, 8, 177–196. [Google Scholar] [CrossRef]
- Erokhin, V.; Gao, T. Impacts of COVID-19 on Trade and Economic Aspects of Food Security: Evidence from 45 Developing Countries. Int. J. Environ. Res. Public Health 2020, 17, 5775. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, R.F.; Ozkan, B.; Mulazimogullari, E. Historical Evidence for Economic Effects of COVID-19. Eur. J. Health Econ. 2020, 21, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Mityakov, S. COVID-19: Distribution Modeling and Economic Effects. Dev. Secur. 2020, 6, 4–17. [Google Scholar] [CrossRef]
- Bakalis, S.; Valdramidis, V.P.; Argyropoulos, D.; Ahrne, L.; Chen, J.; Cullen, P.J.; Cummins, E.; Datta, A.K.; Emmanouilidis, C.; Foster, T.; et al. Perspectives from CO+RE: How COVID-19 Changed Our Food Systems and Food Security Paradigms. Curr. Res. Food Sci. 2020, 3, 166–172. [Google Scholar] [CrossRef]
- Poudel, P.B.; Poudel, M.R.; Gautam, A.; Phuyal, S.; Tiwari, C.K.; Bashyal, N.; Bashyal, S. COVID-19 and Its Global Impact on Food and Agriculture. J. Biol. Today’s World 2020, 9, 221. [Google Scholar] [CrossRef]
- Bhargava, A.; Jamison, D.T.; Lau, L.J.; Murray, C.J. Modeling the Effects of Health on Economic Growth. J. Health Econ. 2001, 20, 423–440. [Google Scholar] [CrossRef]
- Liang, R.; Liu, Z. Port Infrastructure Connectivity, Logistics Performance and Seaborne Trade on Economic Growth: An Empirical Analysis on “21st-Century Maritime Silk Road”. J. Coast. Res. 2020, 106, 319–324. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, C.; Chen, W.; Wang, Y.; Wei, C. Maritime Convention and Fluctuation between Vietnam and China: A Data-Driven Study. Res. Transp. Bus. Manag. 2020, 34, 100414. [Google Scholar] [CrossRef]
- Bertho, F.; Borchert, I.; Mattoon, A. The Trade Reducing Effects of Restrictions on Liner Shipping. J. Comp. Econ. 2016, 44, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, R.F.; Ozkan, B. The Economic Effects of Epidemics: From SARS and MERS to COVID-19. Res. J. Adv. Humanit. 2020, 1, 21–29. [Google Scholar]
- Siddique, A.; Shahzad, A.; Lawler, J.; Mahmoud, K.A.; Lee, D.; Ali, N.; Bilal, M.; Rasool, K. Unprecedented Environmental and Energy Impacts and Challenges of COVID-19 Pandemic. Environ. Res. 2021, 193, 110443. [Google Scholar] [CrossRef] [PubMed]
- Verma, C.; Alrefaee, S.H.; Quraishi, M.A.; Ebenso, E.E.; Hussain, C.M. Environmental, Safety and Economic Risks of COVID-19 Pandemic in Petroleum Industries: A Prospective. J. Pet. Sci. Eng. 2021, 198, 108161. [Google Scholar] [CrossRef]
- Černikovaitė, M.; Karazijienė, Ž. Social-Economic Effects of the COVID-19 Pandemic in Lithuania. Shs Web Conf. 2021, 92, 01006. [Google Scholar] [CrossRef]
- Leach, M.; MacGregor, H.; Scoones, I.; Wilkinson, A. Post-Pandemic Transformations: How and Why COVID-19 Requires Us to Rethink Development. World Dev. 2021, 138, 105233. [Google Scholar] [CrossRef]
- Egger, D.; Miguel, E.; Warren, S.; Shenoy, A.; Elliott, K.; Parkerson, D.; Mobarak, M.; Fink, G.; Udry, C.; Walker, M.; et al. Falling Living Standards during the COVID-19 Crisis: Quantitative Evidence from Nine Developing Countries. Sci. Adv. 2021, 7, eabe0997. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and Development. UNCTAD Commodity Price Index. Methodological Note. Available online: https://unctadstat.unctad.org/wds/TableViewer/summary.aspx (accessed on 9 February 2021).
- Rosatom. Northern Sea Route 2020; Rosatom: Moscow, Russia, 2021. [Google Scholar]
- United Nations Conference on Trade and Development. Data Center. Available online: https://unctadstat.unctad.org/EN/ (accessed on 8 February 2021).
- Johns Hopkins University of Medicine. COVID-19 Dashboard. Available online: https://coronavirus.jhu.edu/map.html (accessed on 10 February 2021).
- Our World in Data. Coronavirus (COVID-19) Deaths. Available online: https://ourworldindata.org/covid-deaths?country=IND~USA~GBR~CAN~DEU~FRA#citation-citation (accessed on 10 February 2021).
- Chang, T.; Lee, K.-C.; Kang, S.-C.; Liu, W.-C. Is Per Capita Real GDP Stationary in Latin American Countries? Evidence from a Panel Stationary Test with Structural Breaks. Econ. Bull. 2008, 31, 1–12. [Google Scholar]
- Bahmani-Oskooee, M.; Chang, T.; Wu, T. Revisiting Purchasing Power Parity in African Countries: Panel Stationary Test with Sharp and Smooth Breaks. Appl. Financ. Econ. 2014, 24, 1429–1438. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Phillips, P.C.; Perron, P. Testing for a Unit Root in Time Series Regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Chang, T.; Chiang, G.; Zhang, Y. Is Volume Index of GDP Per Capita Stationary in OECD Countries? Panel Stationary Tests with Structural Breaks. Econ. Bull. 2009, 29, 588–598. [Google Scholar]
- Hoarau, J.-F. Testing PPP for Central American Real Exchange Rates. Evidence from New Panel Data Stationary Tests with Structural Breaks. Econ. Bull. 2008, 21, 1–5. [Google Scholar]
- Herwartz, H.; Reimers, H.E. Panel Nonstationary Tests of the Fisher Hypothesis: An Analysis of 114 Economies during the Period 1960–2004. Appl. Econom. Int. Dev. 2006, 6, 37–55. [Google Scholar]
- Aliyev, K.; Dehning, B.; Nadirov, O. Modelling the Impact of Fiscal Policy on Non-Oil GDP in a Resource Rich Country: Evidence from Azerbaijan. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2016, 64, 1869–1878. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds Testing Approaches to the Analysis of Level Relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Duasa, J. The Determinants of Malaysian Trade Balance: An ARDL Bound Testing Approach. Glob. Econ. Rev. 2007, 36, 89–102. [Google Scholar] [CrossRef]
- Ghosh, S. Import Demand of Crude Oil and Economic Growth: Evidence from India. Energy Policy 2009, 37, 699–702. [Google Scholar] [CrossRef]
- Raghuramapatruni, R.; Chaitanya, R.V.S. An Appraisal of the Impact of International Trade on Economic Growth of India–through the ARDL Approach. Int. J. Econ. Bus. Adm. 2020, 8, 376–387. [Google Scholar] [CrossRef]
- Oluwafemi, I.J.; Laseinde, O.T. Macroeconomic as Basis of Economic Growth: An ARDL Approach. J. Phys. Conf. Ser. 2019, 1378, 042073. [Google Scholar] [CrossRef]
- Adebayo, T.S. New Insights into Export-Growth Nexus: Wavelet and Causality Approaches. Asian J. Econ. Bus. Account. 2020, 15, 32–44. [Google Scholar] [CrossRef]
- Rhee, H.J. ARDL-Bounds Testing Approaches to the Factor Price Equalization: The Case of Korea, U.S. and Japan. Int. Area Stud. Rev. 2011, 15, 101–123. [Google Scholar]
- Alqaralleh, H. Stock Return-Inflation Nexus; Revisited Evidence Based on Nonlinear ARDL. J. Appl. Econ. 2020, 23, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Musa, A.B.; Danlami, I.A.; Elijah, S. The Asymmetric Effect of Currency Devaluation on Inflation in Malaysia; Evidence from Non-Linear ARDL. Int. J. Recent Technol. Eng. 2019, 8, 455–460. [Google Scholar]
- Ebrahimi, P.; Alipour, H.; Gholampour, A.; Ahmadi, M. Social Networks, Exchange Rate Fluctuation, and Economic Growth: ARDL Approach. Tékhne Rev. Appl. Manag. Stud. 2019, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Omotayo, O.H.; Ayomitunde, A.T.; Afolakemi, A.O.; Aromoke, O.O. Health, Agricultural Expenditure and Economic Growth in Nigeria: ARDL and ECM Approach. Int. J. New Econ. Soc. Sci. 2019, 10, 127–138. [Google Scholar] [CrossRef]
- Yuzbashkandi, S.S.; Sadi, M.A. Petroleum Production Impacts on the Economic Growth of the OPEC Countries: Panel ARDL Approach. SN Appl. Sci. 2020, 2, 693. [Google Scholar] [CrossRef] [Green Version]
- Pasha, A.; Ramzan, M. Asymmetric Impact of Economic Value-Added Dynamics on Market Value of Stocks in Pakistan Stock Exchange, a New Evidence from Panel Cointegration, FMOLS and DOLS. Cogent Bus. Manag. 2019, 6, 1653544. [Google Scholar] [CrossRef]
- Priyankara, E.A.C. The Long-run Effect of Services Exports on Total Factor Productivity Growth in Sri Lanka: Based on ARDL, FMOLS, CCR, and DOLS Approaches. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 240–258. [Google Scholar] [CrossRef]
- Bashier, A.A.; Siam, A.J. Immigration and Economic Growth in Jordan: FMOLS Approach. Int. J. Humanit. Soc. Sci. Educ. 2014, 9, 85–92. [Google Scholar]
- Stock, J.H.; Watson, M. A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Kurozumi, E.; Hayakawa, K. Asymptotic Properties of the Efficient Estimators for Cointegrating Regression Models with Serially Dependent Errors. J. Econom. 2009, 149, 118–135. [Google Scholar] [CrossRef] [Green Version]
- Toda, H.Y.; Yamamoto, T. Statistical Inference in Vector Autoregressions with Possibly Integrated Processes. J. Econom. 1995, 66, 225–250. [Google Scholar] [CrossRef]
- Belaid, F.; Ben Amar, A.; Goutte, S.; Guesmi, K. Emerging and Advanced Economies Markets Behaviour during the COVID-19 Crisis Era. Int. J. Financ. Econ. 2021. [Google Scholar] [CrossRef]
- Ben Amar, A.; Hachicha, N.; Halouani, N. Is There a Shift Contagion among Stock Markets during the COVID-19 Crisis? Further Insights from TYDL Causality Test. Int. Rev. Appl. Econ. 2020, 35, 188–209. [Google Scholar] [CrossRef]
- Amiri, A.; Ventelou, B. Granger Causality between Total Expenditure on Health and GDP in OECD: Evidence from the Toda-Yamamoto Approach. Econ. Lett. 2012, 116, 541–544. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Hammoudeh, S.; Hacihasanoglu, E. World Oil Prices, Precious Metal Prices and Macroeconomy in Turkey. Energy Policy 2009, 37, 5557–5566. [Google Scholar] [CrossRef]
- International Maritime Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Coronavirus.aspx (accessed on 19 February 2021).
- International Chamber of Shipping. COVID-19. Available online: https://www.ics-shipping.org/supporting-shipping/covid/ (accessed on 19 February 2021).
- McKibbin, W.; Fernando, R. The Global Macroeconomic Impacts of COVID-19: Seven Scenarios; Australian National University: Canberra, Australia, 2020. [Google Scholar] [CrossRef] [Green Version]
- Doumbia-Henry, C. Shipping and COVID-19: Protecting Seafarers as Frontline Workers. Wmu J. Marit. Aff. 2020, 19, 279–293. [Google Scholar] [CrossRef]
- Gutsulyak, V. Legal Regulation of Merchant Ships Entering Foreign Ports in Conditions of the COVID-19 Pandemic. State Law 2020, 7, 100–110. [Google Scholar] [CrossRef]
- Taskin, M. Assessment of the Effects of COVID-19 Pandemic on Time Charter Contracts in the Context of “Off-Hire” Clause. Istanb. Hukuk Mecm. 2020, 78, 333–362. [Google Scholar]
- Samli, K.Y. The Effects of the COVID-19 Pandemic on Maritime Carrier’s Liability and Right to Recover Freight Charges. Istanb. Hukuk Mecm. 2020, 78, 299–331. [Google Scholar] [CrossRef]
- Koyuncu, K.; Tavacioğlu, L.; Gökmen, N.; Arican, U.C. Forecasting COVID-19 Impact on RWI/ISL Container Throughput Index by Using SARIMA Models. Marit. Policy Manag. 2021. [Google Scholar] [CrossRef]
- Deb, P.; Furceri, D.; Ostry, J.O.; Tawk, N. The Economic Effects of COVID-19 Containment Measure; International Monetary Fund: Washington, DC, USA, 2020. [Google Scholar]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore, Y.; Piontti, A.; Mu, K.; Rossi, L.; et al. The Effect of Travel Restrictions on the Spread of the 2019 Novel Coronavirus (COVID-19) Outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Glatter, R. Covid-19 Coronavirus Can Survive in Frozen Meat and Fish for up to 3 Weeks, Study Finds. Available online: https://www.forbes.com/sites/robertglatter/2020/08/23/covid-19-coronavirus-can-survive-on-frozen-meat-and-fish-for-up-to-3-weeks-study-finds/?sh=28d543088774 (accessed on 20 February 2021).
- Gan, N. China Turns Its Attention to Frozen Foods in Battle to Eliminate Virus Threat, but Experts Remain Skeptical. Available online: https://edition.cnn.com/2020/11/13/health/china-frozen-food-coronavirus-intl-hnk/index.html (accessed on 20 February 2021).
- Seaman, T. China Finds Live Coronavirus Trace on Fish Packaging in World First. Available online: https://www.undercurrentnews.com/2020/10/17/china-finds-live-coronavirus-trace-on-fish-packaging-in-world-first/ (accessed on 20 February 2021).
- Xinhuanet. China Suspends Imports from Norwegian Aquatic Producer over Coronavirus. Available online: http://xinhuanet.com/english/2020-09/23/c_139390020.htm (accessed on 20 February 2021).
- News.ru. China Closes Ports for Fish Imports from Russia. Available online: https://news.ru/en/economics/china-closes-ports-for-fish-imports-from-russia/ (accessed on 20 February 2021).
- Sergeev, G. The Twilight of Neoliberal Globalization. Terra Econ. 2020, 18, 67–77. [Google Scholar] [CrossRef]
- Garcia-Weil, A. COVID-19 and Its Effects on the Asymmetry of the EU-China Relations: Towards a New Economic Paradigm? Araucaria. Rev. Iberoam. Filos. PolíticaHumanid. Y Relac. Int. 2020, 22, 405–432. [Google Scholar] [CrossRef]
- Perrone, A. COVID-19: Crisis of Globalization and “Revenge of the Border”. The Effects of the Pandemic on the World Economic and Political Future. Doc. Geogr. 2020, 1, 307–320. [Google Scholar] [CrossRef]
- He, L.; Lin, X.; Zhang, Z. The Impact of De-Globalization on China’s Economic Transformation: Evidence from Manufacturing Sector. J. Policy Modeling 2020, 42, 628–660. [Google Scholar] [CrossRef]
- Albertoni, N.; Wise, C. International Trade Norms in the Age of Covid-19 Nationalism on the Rise? Fudan J. Humanit. Soc. Sci. 2020, 14, 41–66. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Mustapha, K.B.; Godsell, J.; Adamu, Z.; Babatunde, K.A.; Akintade, D.D.; Acquaye, A.; Fujii, H.; Ndiaye, M.M.; Yamoah, F.A.; et al. A Critical Analysis of the Impacts of CIVID-19 on the Global Economy and Ecosystems and Opportunities for Circular Economy Strategies. Resour. Conserv. Recycl. 2021, 164, 105169. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Liu, X.; Zhou, X. COVID-19 Shock and Global Value Chains: Is There a Substitute for China? Emerg. Mark. Financ. Trade 2020, 56, 3588–3598. [Google Scholar] [CrossRef]
- Flock Freight. How to Build a Pandemic-Proof Global Supply Chain. Available online: https://www.sdcexec.com/risk-compliance/whitepaper/21136210/flock-freight-how-to-build-a-pandemicproof-global-supply-chain (accessed on 12 February 2021).
- Vidya, C.T.; Prabheesh, K.P. Implications of COVID-19 Pandemic on the Global Trade Networks. Emerg. Mark. Financ. Trade 2020, 56, 2408–2421. [Google Scholar] [CrossRef]
- Che, Y.; Liu, W.; Zhang, Y.; Zhao, L. China’s Exports during the Global COVID-19 Pandemic. Front. Econ. China 2020, 15, 541–574. [Google Scholar] [CrossRef]
- Sand, P. Dry Bulk Shipping: No Quick Recovery for the Dry Bulk Market as COVID-19 Digs Deeper. Available online: https://www.bimco.org/news/market_analysis/2020/20200526_dry_bulk_shipping (accessed on 12 February 2021).
- Adekoya, O.; Oliyide, J. The Hedging Effectiveness of Industrial Metals Against Different Oil Shocks: Evidence from the Four Newly Developed Oil Shocks Datasets. Resour. Policy 2020, 69, 101831. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X.; Luo, S.; Shan, J.; Wang, F. Influencing Factors Analysis of Crude Oil Futures Price Volatility Based on Mixed-Frequency Data. Appl. Sci. 2020, 10, 8393. [Google Scholar] [CrossRef]
- Demirer, R.; Gupta, R.; Pierdzioch, C.; Shahzad, S.J.H. The Predictive Power of Oil Price Shocks on Realized Volatility of Oil: A Note. Resour. Policy 2020, 69, 101856. [Google Scholar] [CrossRef]
- Nyga-Lukaszewska, H.; Aruga, K. Energy Prices and COVID-Immunity: The Case of Crude Oil and Natural Gas Prices in the US and Japan. Energies 2020, 13, 6300. [Google Scholar] [CrossRef]
- Moon, J.; Jung, T.Y. A Critical Review of Korea’s Long-Term Contract for Renewable Energy Auctions: The Relationship between the Import Price of Liquefied Natural Gas and System Marginal Price. Util. Policy 2020, 67, 101132. [Google Scholar] [CrossRef]
- Ge, J.; Polhill, G.; Macdiarmid, J.; Fitton, N.; Smith, P.; Clark, H.; Dawson, T.; Aphale, M. Food and Nutrition Security Under Global Trade: A Relation-Driven Agent-Based Global Trade Model. R. Soc. Open Sci. 2021, 8, 201587. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, Y. Impact of the COVID-19 Pandemic on Agricultural Exports. J. Integr. Agric. 2020, 19, 2937–2945. [Google Scholar] [CrossRef]
- Froehlich, H.; Gentry, R.; Lester, S.; Cottrell, R.; Fay, G.; Branch, T.; Gephart, J.; White, E.; Baum, J. Securing a Sustainable Future for US Seafood in the Wake of a Global Crisis. Mar. Policy 2021, 124, 104328. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wang, X. COVID-19, Supply Chain Disruption and China’s Hog Market: A Dynamic Analysis. China Agric. Econ. Rev. 2020, 12, 427–443. [Google Scholar] [CrossRef]
- Cao, L.; Li, T.; Wang, R.; Zhu, J. Impact of COVID-19 on China’s Agricultural Trade. China Agric. Econ. Rev. 2020, 13, 1–21. [Google Scholar] [CrossRef]
Countries | F-Statistics | |
---|---|---|
2015–2019 | 2020 | |
China | 13.5743 | 14.0719 |
Denmark | 10.1720 | 9.1427 |
Iceland | 11.4866 | 8.3820 |
Japan | 20.0552 | 21.5932 |
Norway | 9.4003 | 10.6315 |
Russia | 7.1465 | 8.4988 |
South Korea | 14.9028 | 13.1100 |
Sweden | 8.4991 | 9.1451 |
Country | Parameter | ∆X3 | ∆X4 | ∆X5 | ∆X6 | ∆X7 | ∆X8 | ∆X9 | ∆X10 | ECM |
---|---|---|---|---|---|---|---|---|---|---|
China | Coefficient | 0.1311 | 0.1785 | 0.2524 | 0.2206 | 0.0411 | −0.1552 | −0.0207 | −0.0561 | 0.2301 |
t-stat | 3.2059 | −4.0693 | 2.9733 | −3.5291 | 1.5634 | 2.0591 | 3.1298 | 3.8298 | 2.7428 | |
Prob | 0.4052 ** | 0.2951 ** | 0.6021 ** | 0.4904 ** | 0.2830 ** | 0.2756 ** | 0.2885 *** | 0.1407 *** | 0.1082 ** | |
Denmark | Coefficient | 0.0820 | 0.1694 | 0.0846 | 0.0337 | 0.1029 | −0.0147 | 0.0759 | 0.0934 | −0.0503 |
t-stat | 2.4392 | −2.2942 | 3.0920 | −3.1108 | 1.1406 | −4.8388 | 3.0746 | 4.5055 | 1.5509 | |
Prob | 0.3501 ** | 0.2909 ** | 0.1701 ** | 0.2235 * | 0.1773 ** | 0.0440 * | 0.0005 ** | 0.0122 ** | 0.2182 * | |
Iceland | Coefficient | 0.5100 | 0.4535 | 0.3335 | 0.1609 | 0.5002 | −0.0609 | 0.0642 | 0.0316 | 0.0335 |
t-stat | −2.4027 | 3.5400 | −2.2852 | 2.5574 | −1.0043 | −3.6201 | 1.3866 | 2.0434 | 4.5820 | |
Prob | 0.1823 *** | 0.7512 ** | 0.3977 ** | 0.1000 ** | 0.1904 *** | 0.0003 * | 0.0013 ** | 0.0608 ** | 0.0444 ** | |
Japan | Coefficient | 0.7544 | 0.6524 | 0.3144 | 0.3207 | 0.5194 | 0.2451 | −0.1018 | −0.1527 | −0.1607 |
t-stat | 1.4156 | 2.1003 | −3.5023 | −2.2909 | 1.3663 | 1.2945 | 2.4083 | 2.4091 | −2.3076 | |
Prob | 0.3723 *** | 0.8201 *** | 0.4141 *** | 0.3410 *** | 0.3065 *** | 0.1777 ** | 0.3091 *** | 0.4866 *** | 0.6389 *** | |
Norway | Coefficient | 0.0942 | 0.0805 | 0.1507 | 0.2154 | 0.2011 | 0.5519 | 0.0504 | 0.0238 | 0.2492 |
t-stat | 2.2709 | 2.2664 | −1.1578 | −1.2388 | 1.7747 | 3.0004 | −2.4025 | −2.0777 | −1.4883 | |
Prob | 0.1114 ** | 0.2005 ** | 0.1942 ** | 0.0000 ** | 0.3029 ** | 0.7035 *** | 0.0412 ** | 0.0561 ** | 0.1994 ** | |
Russia | Coefficient | 0.0826 | 0.1904 | 0.0549 | 0.0662 | 0.1413 | −0.0501 | 0.0152 | 0.0105 | −0.3596 |
t-stat | −2.1527 | −1.5388 | −2.0285 | −2.4019 | 2.0285 | −2.0483 | 3.7498 | 3.1023 | 3.8537 | |
Prob | 0.3491 * | 0.4021 ** | 0.0083 ** | 0.2898 * | 0.2474 ** | 0.0015 ** | 0.1753 ** | 0.1591 * | 0.4374 * | |
South Korea | Coefficient | 0.2409 | 0.3502 | 0.3046 | 0.2326 | 0.4140 | 0.0930 | −0.0502 | −0.1287 | 0.1665 |
t-stat | 1.3000 | 1.5556 | 3.1774 | 1.5092 | 2.8287 | −1.6282 | 3.0006 | 2.4272 | 1.6097 | |
Prob | 0.3917 *** | 0.4834 *** | 0.2395 *** | 0.3316 *** | 0.5286 ** | 0.0101 ** | 0.1284 *** | 0.1485 *** | 0.1116 *** | |
Sweden | Coefficient | 0.2003 | 0.2013 | 0.2090 | 0.1700 | 0.1104 | −0.0674 | 0.0166 | 0.0903 | −0.2208 |
t-stat | −4.4627 | −3.5508 | −1.3286 | −2.0446 | 2.0537 | −2.1260 | 2.0845 | 1.5396 | −2.2754 | |
Prob | 0.2509 ** | 0.3627 ** | 0.1298 ** | 0.2679 * | 0.2952 ** | 0.1305 * | 0.0127 * | 0.1877 * | 0.1377 * |
Country | Parameter | ∆X1 | ∆X2 | ∆X3 | ∆X4 | ∆X5 | ∆X6 | ∆X7 | ∆X8 | ∆X9 | ∆X10 | ECM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
China | Coefficient | −0.0172 | 0.0029 | 0.1205 | 0.1693 | 0.2412 | 0.1984 | 0.0255 | −0.1303 | −0.0145 | −0.0403 | 0.1977 |
t-stat | 1.1928 | 2.4802 | 4.2918 | −5.4827 | 3.6980 | −4.0015 | 1.1983 | 2.4550 | 3.0961 | 4.9522 | 3.9584 | |
Prob | 0.0193 * | 0.0337 ** | 0.5891 ** | 0.4094 ** | 0.2295 ** | 0.3791 ** | 0.0142 * | 0.1876 ** | 0.0198 *** | 0.0361 *** | 0.2951 ** | |
Denmark | Coefficient | −0.0040 | −0.0101 | 0.0977 | 0.1185 | 0.0381 | 0.0270 | 0.1309 | −0.0095 | 0.0842 | 0.0720 | −0.0303 |
t-stat | 3.2801 | 2.1798 | 2.9063 | −1.0391 | 3.8555 | −4.0053 | 2.6178 | −3.9487 | 4.4275 | 5.2973 | 2.4981 | |
Prob | 0.1225 * | 0.3415 * | 0.2988 ** | 0.0794 ** | 0.1862 * | 0.2062 * | 0.0526 ** | 0.0293 * | 0.0860 * | 0.0056 * | 0.0922 * | |
Iceland | Coefficient | 0.0027 | 0.0064 | 0.4954 | 0.4286 | 0.3004 | 0.1487 | 0.4550 | −0.0008 | 0.0555 | 0.0064 | 0.0193 |
t-stat | 2.9024 | 3.0540 | −3.1171 | 4.6032 | −3.0978 | 3.8684 | −1.2095 | −2.5365 | 1.4736 | 2.9021 | 3.6466 | |
Prob | 0.2870 * | 0.1996 * | 0.2095 *** | 0.3117 *** | 0.2719 ** | 0.1396 ** | 0.0281 *** | 0.0000 * | 0.0001 ** | 0.0003 ** | 0.0295 ** | |
Japan | Coefficient | −0.3015 | −0.1855 | 0.7926 | 0.6860 | 0.2981 | 0.3106 | 0.5527 | 0.2117 | −0.1204 | −0.1835 | −0.1320 |
t-stat | −3.5523 | −2.8473 | 1.5930 | 2.4877 | −3.9615 | −2.5493 | 1.4902 | 2.0836 | 3.9223 | 2.8504 | −1.4955 | |
Prob | 0.4984 *** | 0.3861 *** | 0.5983 *** | 0.6994 *** | 0.2755 *** | 0.3987 *** | 0.2653 *** | 0.0584 ** | 0.1887 *** | 0.2309 *** | 0.3091 *** | |
Norway | Coefficient | −0.0452 | −0.0384 | 0.0527 | 0.0695 | 0.1141 | 0.2095 | 0.1844 | 0.5763 | 0.0646 | 0.0053 | 0.2094 |
t-stat | −1.0836 | −2.3918 | 3.1951 | 2.7070 | −1.0479 | −1.1704 | 2.0596 | 3.4609 | −1.2984 | −2.5918 | −1.0672 | |
Prob | 0.1179 ** | 0.3251 ** | 0.0592 ** | 0.0486 ** | 0.0185 * | 0.0278 * | 0.1035 ** | 0.8848 *** | 0.0390 ** | 0.0442 ** | 0.0333 ** | |
Russia | Coefficient | 0.0041 | 0.0292 | 0.0689 | 0.1274 | 0.0202 | 0.0385 | 0.1300 | −0.0487 | 0.0053 | 0.0127 | −0.3890 |
t-stat | 4.8560 | 3.6005 | −2.0576 | −1.7066 | −2.2367 | −1.5092 | 2.5982 | −3.1052 | 1.5295 | 2.0004 | 4.1987 | |
Prob | 0.2957 ** | 0.3146 ** | 0.2208 * | 0.3517 * | 0.1985 * | 0.0188 * | 0.2397 * | 0.0006 * | 0.0049 * | 0.1156 * | 0.4912 * | |
South Korea | Coefficient | 0.0666 | 0.0718 | 0.2985 | 0.3020 | 0.2563 | 0.1900 | 0.4005 | 0.0825 | −0.0415 | −0.0923 | 0.1475 |
t-stat | −2.1947 | −2.0987 | 1.6096 | 1.8044 | 2.0054 | 1.4553 | 2.6360 | −1.4044 | 2.4986 | 2.8921 | 1.8259 | |
Prob | 0.3021 *** | 0.2451 *** | 0.1239 *** | 0.2508 *** | 0.1946 *** | 0.3409 *** | 0.6931 ** | 0.0036 ** | 0.0318 *** | 0.0197 *** | 0.0504 *** | |
Sweden | Coefficient | 0.0003 | 0.0036 | 0.1753 | 0.2113 | 0.2291 | 0.1486 | 0.1054 | −0.0592 | 0.0014 | 0.0965 | −0.2095 |
t-stat | 1.6398 | 2.4019 | −5.5094 | −4.3005 | −1.1982 | −2.3075 | 1.9945 | −3.0758 | 1.7095 | 2.0349 | −3.1199 | |
Prob | 0.0520 * | 0.0481 * | 0.1398 ** | 0.1864 ** | 0.0097 * | 0.0392 * | 0.1708 ** | 0.0505 * | 0.0000 * | 0.0038 * | 0.0008 * |
Country | Parameter | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | Constant |
---|---|---|---|---|---|---|---|---|---|---|
China | Coefficient | 0.1523 | 0.1620 | 0.2208 | 0.2019 | 0.0506 | −0.1713 | −0.0499 | −0.0668 | 3.2612 |
t-stat | 3.4128 ** | −3.5982 ** | 2.5052 ** | −3.0276 ** | 1.3049 ** | 2.1445 ** | 3.4091 *** | 2.1367 *** | 2.1553 | |
Denmark | Coefficient | 0.1859 | 0.1415 | 0.1100 | 0.0542 | 0.1233 | −0.0285 | 0.0521 | 0.0840 | −2.0788 |
t-stat | 2.0024 ** | −2.1387 ** | 2.4719 ** | −3.6528 * | 1.5621 ** | −4.2872 * | 2.4865 ** | 4.1726 ** | −1.7262 | |
Iceland | Coefficient | 0.5724 | 0.4736 | 0.3004 | 0.1811 | 0.6376 | −0.0883 | 0.0404 | 0.0551 | 5.1285 |
t-stat | −2.3182 *** | 3.1671 ** | −1.8638 ** | 2.9512 ** | −1.8170 *** | −3.9166 * | 1.6523 ** | 2.6600 ** | 3.4109 | |
Japan | Coefficient | 0.7169 | 0.6882 | 0.3230 | 0.3592 | 0.5441 | 0.2610 | −0.1332 | −0.1775 | −3.2458 |
t-stat | 2.0584 *** | 2.8509 *** | −3.2099 *** | −2.6091 *** | 1.6730 *** | 1.5094 ** | 2.9615 *** | 1.3409 *** | −4.5091 | |
Norway | Coefficient | 0.1002 | 0.0995 | 0.1784 | 0.2592 | 0.2240 | 0.5607 | 0.0612 | 0.0309 | 2.2493 |
t-stat | 2.4081 ** | 2.1682 ** | −1.2955 ** | −1.4187 ** | 2.1483 ** | 3.3021 *** | −2.5443 ** | −2.3183 ** | 2.6991 | |
Russia | Coefficient | 0.0995 | 0.2309 | 0.0707 | 0.0831 | 0.1715 | −0.0773 | 0.0170 | 0.0148 | −3.3399 |
t-stat | −2.5023 * | −1.7192 ** | −2.1973 ** | −2.6886 * | 2.3091 ** | −2.4088 ** | 2.0493 ** | 4.8122 * | −3.2942 | |
South Korea | Coefficient | 0.2677 | 0.3069 | 0.3330 | 0.2045 | 0.4509 | 0.0847 | −0.0742 | −0.1309 | 5.2700 |
t-stat | 1.3920 *** | 1.8491 *** | 3.8186 *** | 2.2353 *** | 3.5412 ** | −2.0596 ** | 4.1827 *** | 2.5511 *** | 2.3818 | |
Sweden | Coefficient | 0.2145 | 0.2346 | 0.2155 | 0.1764 | 0.1399 | −0.0472 | 0.0334 | 0.0916 | −5.0376 |
t-stat | −4.8921 ** | −3.0830 ** | −1.9188 ** | −2.5616 * | 2.3984 ** | −1.0001 * | 3.5925 * | 1.6810 * | −3.5922 |
Country | Parameter | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | Constant |
---|---|---|---|---|---|---|---|---|---|---|---|---|
China | Coefficient | −0.0209 | 0.0045 | 0.1018 | 0.1576 | 0.2665 | 0.2301 | 0.0305 | −0.1447 | −0.0160 | −0.0562 | 5.2815 |
t-stat | 1.5622 * | 1.9832 ** | 3.3090 ** | −5.8935 ** | 4.4587 ** | −4.5634 ** | 1.4986 * | 3.5981 ** | 3.2999 *** | 3.6645 *** | 3.1874 | |
Denmark | Coefficient | −0.0113 | −0.0222 | 0.0626 | 0.1409 | 0.0453 | 0.0465 | 0.1003 | −0.0160 | 0.0764 | 0.0650 | −6.2966 |
t-stat | 3.5620 * | 2.6874 * | 3.5527 ** | −1.5412 ** | 3.3300 * | −4.1384 * | 2.7056 ** | −3.4885 * | 4.6081 * | 5.4817 * | −1.1383 | |
Iceland | Coefficient | 0.0098 | 0.0100 | 0.4215 | 0.4005 | 0.3196 | 0.1350 | 0.4084 | −0.0023 | 0.0508 | 0.0053 | 4.2650 |
t-stat | 2.4091 * | 3.3958 * | −3.7402 *** | 3.7756 *** | −3.2091 ** | 3.4987 ** | −2.6019 *** | −2.9044 * | 1.7750 ** | 2.3601 ** | 2.5948 | |
Japan | Coefficient | −0.3349 | −0.1505 | 0.7414 | 0.6629 | 0.2448 | 0.3231 | 0.5367 | 0.2340 | −0.1506 | −0.2064 | −3.4896 |
t-stat | −3.0072 *** | −2.2061 *** | 1.7750 *** | 2.0026 *** | −3.5093 *** | −2.2297 *** | 1.5873 *** | 2.3851 ** | 4.6095 *** | 2.3091 *** | −4.7750 | |
Norway | Coefficient | −0.0506 | −0.0512 | 0.0680 | 0.0804 | 0.1237 | 0.2095 | 0.2066 | 0.5391 | 0.0572 | 0.0088 | 3.2409 |
t-stat | −1.2347 ** | −2.1985 ** | 3.0221 ** | 2.5875 ** | −1.2091 * | −1.1986 * | 2.3914 ** | 3.0056 *** | −2.4095 ** | −2.7093 ** | 2.1778 | |
Russia | Coefficient | 0.0059 | 0.0308 | 0.0735 | 0.1509 | 0.0334 | 0.0405 | 0.1276 | −0.0627 | 0.0084 | 0.0103 | −4.0516 |
t-stat | 4.0692 ** | 3.4813 ** | −2.3918 * | −1.5601 * | −2.5963 * | −1.2761 * | 2.1052 * | −3.6091 * | 1.0016 * | 2.3967 * | −3.0793 | |
South Korea | Coefficient | −0.0987 | −0.0570 | 0.3408 | 0.2694 | 0.2409 | 0.2063 | 0.4168 | 0.0705 | −0.0506 | −0.0848 | 2.5908 |
t-stat | −2.4094 *** | −2.3091 *** | 1.4915 *** | 1.6021 *** | 2.5710 *** | 1.7092 *** | 2.0594 ** | −2.9776 ** | 2.1741 *** | 2.3999 *** | 2.0007 | |
Sweden | Coefficient | 0.0010 | 0.0052 | 0.1529 | 0.2073 | 0.2196 | 0.1500 | 0.1234 | −0.0601 | 0.0025 | 0.0807 | −4.0675 |
t-stat | 2.3881 * | 2.0655 * | −4.1884 ** | −3.8996 ** | −1.3609 * | −2.4861 * | 1.8602 ** | −3.1498 * | 1.4082 * | 2.2061 * | −3.2981 |
Country | Parameter | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | Constant |
---|---|---|---|---|---|---|---|---|---|---|---|---|
China | FMOLS coefficient | −0.0187 | 0.0041 | 0.1156 | 0.1344 | 0.2406 | 0.2220 | 0.0243 | −0.1316 | −0.0153 | −0.0504 | 5.1438 |
FMOLS t-stat | 1.4153 * | 1.5385 ** | 3.0287 ** | −5.6193 ** | 4.2857 ** | −4.3451 ** | 1.0054 * | 3.2852 ** | 3.1709 *** | 3.3572 *** | 4.2065 | |
DOLS coefficient | −0.0130 | 0.0054 | 0.0983 | 0.1197 | 0.2181 | 0.1956 | 0.0250 | −0.1247 | −0.0147 | −0.0427 | 5.0032 | |
DOLS t-stat | 1.6831 * | 1.2042 ** | 2.4321 ** | −4.3852 ** | 4.0729 ** | −4.1328 ** | 1.0396 * | 2.7953 | 3.0865 *** | 3.1845 *** | 4.1739 | |
Denmark | FMOLS coefficient | −0.0105 | −0.0016 | 0.0578 | 0.1354 | 0.0412 | 0.0424 | 0.0975 | −0.0140 | 0.0723 | 0.0631 | −6.3945 |
FMOLS t-stat | 3.1548 * | 2.2000 * | 3.3132 ** | −1.3805 ** | 3.1844 * | −4.0538 * | 2.5214 ** | −3.2481 * | 4.4808 * | 5.1536 * | −3.0082 | |
DOLS coefficient | −0.0127 | −0.0088 | 0.0615 | 0.1442 | 0.0383 | 0.0415 | 0.0827 | −0.0125 | 0.639 | 0.0528 | −5.2631 | |
DOLS t-stat | 3.2740 * | 2.3523 * | 3.2057 ** | −1.2790 ** | 3.2567 * | −4.1782 * | 2.6064 ** | −3.1225 * | 4.2055 * | 5.2552 * | −4.3994 | |
Iceland | FMOLS coefficient | 0.0084 | 0.0097 | 0.4153 | 0.3886 | 0.3093 | 0.1290 | 0.4158 | −0.0014 | 0.0457 | 0.0049 | 4.1486 |
FMOLS t-stat | 2.1095 * | 3.1684 * | −3.2584 *** | 3.5940 *** | −3.1875 ** | 3.2368 ** | −2.3362 *** | −2.0740 ** | 1.6521 ** | 2.0748 ** | 3.5509 | |
DOLS coefficient | 0.0069 | 0.0080 | 0.3968 | 0.3732 | 0.3149 | 0.1321 | 0.3967 | −0.0035 | 0.0553 | 0.0037 | 4.0043 | |
DOLS t-stat | 2.3804 * | 3.2515 * | 0.4251 *** | 3.2049 *** | −3.2648 ** | 3.3489 ** | −2.1680 *** | −1.8589 ** | 1.4474 ** | 2.1485 ** | 3.2817 | |
Japan | FMOLS coefficient | −0.3077 | −0.0339 | 0.6826 | 0.6537 | 0.2234 | 0.3006 | 0.5163 | −0.1144 | −0.1361 | −0.1750 | −4.6700 |
FMOLS t-stat | −2.4985 *** | −2.0376 *** | 1.5485 *** | 2.1940 *** | −3.1555 *** | −2.1348 *** | 1.2850 *** | 2.0379 ** | 4.2683 *** | 2.1322 *** | −3.3574 | |
DOLS coefficient | −0.3150 | −0.0532 | 0.7038 | 0.6218 | 0.2165 | 0.2872 | 0.4734 | −0.1352 | −0.1075 | −0.1894 | −4.2382 | |
DOLS t-stat | −3.0064 *** | −2.1011 *** | 1.4624 *** | 2.0741 *** | −3.2902 *** | −2.3641 *** | 1.3258 *** | 2.1567 ** | 4.1954 *** | 2.2051 *** | −3.8595 | |
Norway | FMOLS coefficient | −0.0487 | −0.0094 | 0.0635 | 0.0746 | 0.1053 | 0.2140 | 0.1846 | 0.5250 | 0.0495 | 0.0082 | 3.1570 |
FMOLS t-stat | −1.0039 ** | −2.0830 ** | 3.0000 ** | 2.2566 ** | −1.1845 * | −1.1283 * | 2.2952 ** | 3.1227 *** | −2.2211 ** | −2.3549 ** | 2.2064 | |
DOLS coefficient | −0.0406 | −0.0113 | 0.0597 | 0.7212 | 0.1190 | 0.2036 | 0.1703 | 0.4942 | 0.0468 | 0.0074 | 3.1282 | |
DOLS t-stat | −1.0158 ** | −2.1947 ** | 3.0516 ** | 2.1337 ** | −1.0698 ** | −1.2562 ** | 2.1784 ** | 3.1396 *** | −2.1690 ** | −2.1513 ** | 2.3975 | |
Russia | FMOLS coefficient | 0.0047 | 0.0286 | 0.0744 | 0.1368 | 0.0312 | 0.0395 | 0.1069 | 0.0648 | 0.0076 | 0.0114 | −4.0373 |
FMOLS t-stat | 4.0254 ** | 3.3485 ** | −2.1586 * | −1.4195 * | −2.1877 * | −1.2136 * | 2.0625 * | −3.5351 * | 1.0350 * | 2.1538 * | −3.2480 | |
DOLS coefficient | 0.0039 | 0.0251 | 0.0600 | 0.1206 | 0.0290 | 0.0253 | 0.1123 | −0.0774 | 0.0137 | 0.0152 | −4.1488 | |
DOLS t-stat | 4.0160 ** | 3.1492 ** | −2.1173 ** | −1.3017 ** | −2.2184 * | −1.1545 * | 1.9258 * | −3.1695 * | 1.2594 * | 2.2705 * | −3.3694 | |
South Korea | FMOLS coefficient | −0.0916 | −0.0134 | 0.3142 | 0.2355 | 0.2138 | 0.1850 | 0.3867 | −0.1684 | −0.0482 | −0.0758 | 2.6212 |
FMOLS t-stat | −2.2475 *** | −2.4872 *** | 1.2676 *** | 1.4772 *** | 2.2754 *** | 1.4431 *** | 2.0258 ** | −2.4376 ** | 2.0863 *** | 2.1450 *** | 2.3597 | |
DOLS coefficient | −0.0723 | −0.0165 | 0.2890 | 0.2142 | 0.1849 | 0.1942 | 0.4250 | −0.1593 | −0.0490 | −0.0649 | 2.5073 | |
DOLS t-stat | −2.0649 *** | −2.1840 *** | 1.3574 *** | 1.2095 *** | 2.0687 *** | 1.5185 *** | 1.8637 ** | −2.5499 ** | 1.9317 *** | 2.2478 *** | 2.4826 | |
Sweden | FMOLS coefficient | 0.0013 | 0.0048 | 0.1349 | 0.2146 | 0.1960 | 0.1414 | 0.1066 | −0.0583 | 0.0021 | 0.0796 | −4.0918 |
FMOLS t-stat | 2.2454 * | 1.7487 * | −4.0268 ** | −3.6384 ** | −1.2694 * | −2.1342 * | 1.5284 ** | −3.0574 * | 1.3780 * | 2.1347 * | −3.4275 | |
DOLS coefficient | 0.0017 | 0.0030 | 0.1253 | 0.1852 | 0.1775 | 0.1286 | 0.1127 | −0.0439 | 0.0033 | 0.0625 | −4.1207 | |
DOLS t-stat | 2.1056 ** | 1.5389 ** | −3.7995 ** | −3.2591 ** | −1.3038 ** | −2.2963 * | 1.6435 ** | −2.5665 ** | 1.2684 * | 2.0000 ** | −3.3590 |
Country | Parameter | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | Constant |
---|---|---|---|---|---|---|---|---|---|---|
China | FMOLS coefficient | 0.1862 | 0.1527 | 0.2418 | 0.2135 | 0.0542 | −0.1893 | −0.0536 | −0.0624 | 3.3891 |
FMOLS t-stat | 2.7265 ** | −3.8184 ** | 2.4633 ** | −3.1632 ** | 1.3490 ** | 2.2002 ** | 3.6289 *** | 2.2016 *** | 2.4400 | |
DOLS coefficient | 0.1900 | 0.1301 | 0.2147 | 0.2470 | 0.0584 | −0.1625 | −0.0577 | −0.0680 | 3.1576 | |
DOLS t-stat | 3.5528 ** | −2.3710 ** | 2.3592 ** | −3.0083 ** | 1.5746 ** | 2.0371 ** | 3.5825 *** | 2.4672 *** | 2.5965 | |
Denmark | FMOLS coefficient | 0.1753 | 0.1569 | 0.1251 | 0.0536 | 0.1285 | −0.0310 | 0.0531 | 0.0865 | −2.1327 |
FMOLS t-stat | 1.9791 ** | −2.1062 ** | 2.4604 ** | −3.7518 * | 1.5703 ** | −4.2592 * | 2.6094 ** | 4.1541 ** | −1.6056 | |
DOLS coefficient | 0.1684 | 0.1638 | 0.1309 | 0.0522 | 0.1052 | −0.0286 | 0.0627 | 0.0970 | −2.1594 | |
DOLS t-stat | 2.1550 ** | −2.0571 ** | 2.3700 ** | −3.6295 * | 1.6481 ** | −4.0007 * | 2.4862 ** | 3.8253 ** | −1.7380 | |
Iceland | FMOLS coefficient | 0.5562 | 0.4506 | 0.3185 | 0.1900 | 0.6673 | −0.0924 | 0.0458 | 0.0586 | 5.2462 |
FMOLS t-stat | −2.3673 *** | 3.0021 ** | −1.7370 ** | 2.8725 ** | −1.7241 *** | −3.8712 * | 1.7004 ** | 2.5432 ** | 3.5117 | |
DOLS coefficient | 0.5159 | 0.4425 | 0.3213 | 0.1747 | 0.6208 | −0.0853 | 0.0573 | 0.0594 | 5.2085 | |
DOLS t-stat | −2.4851 *** | 3.2174 ** | −1.6536 ** | 2.7582 ** | −1.6532 *** | −3.6905 * | 1.6841 ** | 2.6709 ** | 3.2439 | |
Japan | FMOLS coefficient | 0.7083 | 0.6910 | 0.3057 | 0.3447 | 0.5613 | −0.1342 | −0.1463 | −0.1800 | −3.0557 |
FMOLS t-stat | 2.1360 *** | 2.7382 *** | −3.1725 *** | −2.5184 *** | 1.7481 *** | 1.5397 *** | 3.1205 *** | 1.2941 *** | −4.4186 | |
DOLS coefficient | 0.6749 | 0.6425 | 0.3158 | 0.3085 | 0.5357 | −0.1308 | −0.1738 | −0.1752 | −3.7305 | |
DOLS t-stat | 2.5261 *** | 2.6957 *** | −3.2621 *** | −2.4850 *** | 1.6232 *** | 1.4841 *** | 3.3463 *** | 1.5384 *** | −3.8419 | |
Norway | FMOLS coefficient | 0.1106 | 0.0844 | 0.1625 | 0.2492 | 0.2383 | 0.5325 | 0.0676 | 0.0375 | 2.3568 |
FMOLS t-stat | 2.4295 ** | 2.2598 ** | −1.2463 ** | −1.3051 ** | 2.3966 ** | 3.2692 *** | −2.3315 ** | −2.1632 ** | 2.2571 | |
DOLS coefficient | 0.0918 | 0.0793 | 0.1792 | 0.2174 | 0.2157 | 0.5046 | 0.0582 | 0.0491 | 2.4915 | |
DOLS t-stat | 2.3704 *** | 2.3201 *** | −1.3758 ** | −1.2593 ** | 2.0582 ** | 3.0001 *** | −2.4071 ** | −2.0586 ** | 2.0868 | |
Russia | FMOLS coefficient | 0.0937 | 0.2257 | 0.0759 | 0.0890 | 0.1693 | 0.0728 | 0.0185 | 0.0257 | −3.4036 |
FMOLS t-stat | −2.7251 * | −1.8942 ** | −2.3682 ** | −2.4173 * | 2.5256 ** | −2.2735 ** | 2.1263 ** | 4.6280 * | −3.0157 | |
DOLS coefficient | 0.0863 | 0.2084 | 0.0483 | 0.0752 | 0.1508 | −0.0594 | 0.0242 | 0.0199 | −3.3885 | |
DOLS t-stat | −2.4009 ** | −1.7511 ** | −2.7500 ** | −2.1845 * | 2.4775 ** | −2.5002 ** | 2.0736 ** | 3.2875 ** | −2.8730 | |
South Korea | FMOLS coefficient | 0.2416 | 0.2897 | 0.3149 | 0.1746 | 0.4369 | −0.1715 | −0.0695 | −0.1488 | 5.1404 |
FMOLS t-stat | 1.1875 *** | 1.5096 *** | 3.7490 *** | 2.0289 *** | 3.1830 ** | −1.8154 ** | 4.0051 *** | 2.3269 *** | 3.9748 | |
DOLS coefficient | 0.2193 | 0.2795 | 0.3287 | 0.1980 | 0.4068 | −0.1729 | −0.5704 | −0.1267 | 4.2541 | |
DOLS t-stat | 1.0632 *** | 1.6006 *** | 3.4211 *** | 1.7176 *** | 3.0127 ** | −1.9952 ** | 3.9827 *** | 2.0946 *** | 3.8826 | |
Sweden | FMOLS coefficient | 0.1709 | 0.2053 | 0.1900 | 0.1538 | 0.1247 | −0.0414 | 0.0285 | 0.0874 | −5.0107 |
FMOLS t-stat | −4.5286 ** | −3.1602 ** | −1.7396 ** | −2.3871 * | 2.0093 ** | −1.1987 * | 3.1994 * | 1.3086 * | −3.2485 | |
DOLS coefficient | 0.1047 | 0.1886 | 0.1794 | 0.1604 | 0.1309 | −0.0355 | 0.0305 | 0.0500 | −4.7526 | |
DOLS t-stat | −3.9405 *** | −3.2943 *** | −1.5708 ** | −2.0175 * | 1.8548 ** | −1.2893 ** | 2.4685 ** | 1.4429 * | −3.5982 |
Causality Directions | Parameter | China | Denmark | Iceland | Japan | Norway | Russia | South Korea | Sweden | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | ||
YX1 | TS | 3.05 | 4.66 | 0.85 | 7.31 | 0.46 | 3.02 | 6.11 | 1.06 | ||||||||
P | 0.09 * | 0.08 * | 0.66 | 0.04 ** | 0.77 | 0.09 * | 0.04 ** | 0.49 | |||||||||
X1Y | TS | 5.58 | 1.53 | 0.64 | 3.04 | 0.58 | 0.39 | 5.80 | 0.90 | ||||||||
P | 0.08 * | 0.27 | 0.79 | 0.08 * | 0.69 | 0.50 | 0.04 ** | 0.53 | |||||||||
YX2 | TS | 1.86 | 1.04 | 0.62 | 1.10 | 0.37 | 0.86 | 0.83 | 1.01 | ||||||||
P | 0.45 | 0.35 | 0.80 | 0.26 | 0.80 | 0.44 | 0.37 | 0.50 | |||||||||
X2Y | TS | 0.72 | 0.90 | 0.55 | 1.39 | 0.51 | 0.30 | 3.25 | 0.86 | ||||||||
P | 0.68 | 0.44 | 0.83 | 0.15 | 0.72 | 0.59 | 0.09 * | 0.54 | |||||||||
YX3 | TS | 13.07 | 15.46 | 3.65 | 1.75 | 2.18 | 1.94 | 9.15 | 16.22 | 7.37 | 9.70 | 0.85 | 0.98 | 12.69 | 10.26 | 0.77 | 4.05 |
P | 0.00 *** | 0.00 *** | 0.15 | 0.22 | 0.27 | 0.36 | 0.01 ** | 0.00 *** | 0.05 * | 0.03 ** | 0.44 | 0.40 | 0.02 ** | 0.01 ** | 0.37 | 0.06 * | |
X3Y | TS | 8.88 | 6.84 | 6.46 | 7.15 | 9.09 | 9.95 | 13.56 | 13.25 | 5.29 | 5.83 | 0.63 | 3.21 | 19.67 | 7.42 | 3.88 | 2.23 |
P | 0.03 ** | 0.06 * | 0.07 * | 0.07 * | 0.02 ** | 0.03 ** | 0.00 *** | 0.00 *** | 0.08 * | 0.07 * | 0.52 | 0.09 * | 0.00 *** | 0.03 ** | 0.06 * | 0.12 | |
YX4 | TS | 10.50 | 13.09 | 2.98 | 1.26 | 2.00 | 1.14 | 10.95 | 14.40 | 4.31 | 8.88 | 1.14 | 1.18 | 12.25 | 15.42 | 0.66 | 1.47 |
P | 0.02 ** | 0.00 *** | 0.28 | 0.30 | 0.31 | 0.57 | 0.00 *** | 0.00 *** | 0.09 * | 0.04 ** | 0.29 | 0.36 | 0.02 ** | 0.00 *** | 0.42 | 0.30 | |
X4Y | TS | 10.98 | 7.25 | 6.12 | 7.00 | 8.16 | 8.52 | 12.04 | 13.13 | 7.02 | 7.69 | 1.66 | 3.90 | 17.50 | 6.84 | 2.79 | 3.79 |
P | 0.02 ** | 0.05 * | 0.07 * | 0.07 * | 0.03 ** | 0.04 ** | 0.00 *** | 0.00 *** | 0.05 * | 0.05 * | 0.15 | 0.07 * | 0.00 *** | 0.04 ** | 0.08 * | 0.07 * | |
YX5 | TS | 11.35 | 12.96 | 0.51 | 3.46 | 1.37 | 4.44 | 2.82 | 7.27 | 0.58 | 2.06 | 0.43 | 0.34 | 8.74 | 13.70 | 0.58 | 1.86 |
P | 0.00 *** | 0.00 *** | 0.76 | 0.08 * | 0.40 | 0.09 * | 0.08 * | 0.04 ** | 0.79 | 0.22 | 0.62 | 0.52 | 0.05 * | 0.00 *** | 0.45 | 0.22 | |
X5Y | TS | 6.72 | 5.24 | 7.84 | 9.41 | 11.24 | 11.17 | 9.55 | 4.54 | 10.13 | 5.20 | 1.00 | 1.41 | 10.01 | 4.95 | 3.13 | 3.54 |
P | 0.04 ** | 0.08 * | 0.03 ** | 0.02 ** | 0.01 ** | 0.01 ** | 0.01 ** | 0.06 * | 0.01 ** | 0.07 * | 0.35 | 0.27 | 0.03 ** | 0.07 * | 0.07 * | 0.08 * | |
YX6 | TS | 7.46 | 12.41 | 0.79 | 3.08 | 1.25 | 1.92 | 4.38 | 6.92 | 0.85 | 3.99 | 0.79 | 1.11 | 7.07 | 10.14 | 0.83 | 1.65 |
P | 0.03 ** | 0.00 *** | 0.61 | 0.09 * | 0.43 | 0.37 | 0.05 * | 0.04 ** | 0.56 | 0.09 * | 0.48 | 0.38 | 0.06 * | 0.01 ** | 0.33 | 0.27 | |
X6Y | TS | 6.05 | 7.77 | 5.40 | 5.99 | 6.28 | 6.03 | 7.47 | 3.80 | 6.55 | 7.05 | 0.27 | 0.24 | 14.32 | 4.37 | 2.04 | 2.12 |
P | 0.04 ** | 0.04 ** | 0.08 * | 0.07 * | 0.06 * | 0.07 * | 0.02 ** | 0.07 * | 0.06 * | 0.05 * | 0.80 | 0.66 | 0.01 ** | 0.07 * | 0.09 * | 0.15 | |
YX7 | TS | 3.22 | 2.23 | 3.47 | 0.95 | 0.97 | 0.90 | 0.68 | 0.70 | 2.83 | 2.10 | 3.71 | 4.78 | 1.13 | 0.74 | 1.14 | 3.11 |
P | 0.09 * | 0.25 | 0.23 | 0.42 | 0.51 | 0.63 | 0.49 | 0.54 | 0.14 | 0.21 | 0.08 * | 0.05 * | 0.60 | 0.43 | 0.19 | 0.09 * | |
X7Y | TS | 5.13 | 2.41 | 8.55 | 6.53 | 1.14 | 1.20 | 1.04 | 0.96 | 4.90 | 2.16 | 6.58 | 4.22 | 1.93 | 0.48 | 3.00 | 2.05 |
P | 0.04 ** | 0.20 | 0.02 ** | 0.07 * | 0.48 | 0.55 | 0.30 | 0.49 | 0.08 * | 0.19 | 0.00 *** | 0.06 * | 0.41 | 0.52 | 0.07 * | 0.16 | |
YX8 | TS | 1.37 | 1.29 | 2.20 | 0.49 | 0.76 | 0.73 | 0.41 | 0.22 | 4.27 | 11.71 | 2.84 | 3.78 | 1.74 | 1.06 | 0.93 | 1.18 |
P | 0.43 | 0.51 | 0.37 | 0.68 | 0.59 | 0.71 | 0.62 | 0.83 | 0.09 * | 0.02 ** | 0.09 * | 0.07 * | 0.46 | 0.20 | 0.26 | 0.45 | |
X8Y | TS | 5.90 | 4.97 | 3.14 | 0.82 | 1.27 | 0.88 | 2.24 | 5.37 | 21.40 | 18.48 | 5.97 | 6.16 | 9.84 | 9.99 | 1.07 | 0.97 |
P | 0.04 ** | 0.08 * | 0.28 | 0.50 | 0.44 | 0.64 | 0.09 * | 0.04 ** | 0.00 *** | 0.00 *** | 0.03 ** | 0.02 ** | 0.04 ** | 0.01 ** | 0.21 | 0.51 | |
YX9 | TS | 2.98 | 8.47 | 0.84 | 1.93 | 4.25 | 5.47 | 1.45 | 2.71 | 1.22 | 8.25 | 3.02 | 5.85 | 2.59 | 4.60 | 0.85 | 5.28 |
P | 0.09 * | 0.03 ** | 0.55 | 0.16 | 0.15 | 0.08 * | 0.23 | 0.09 * | 0.32 | 0.04 ** | 0.09 * | 0.03 ** | 0.30 | 0.07 * | 0.32 | 0.03 ** | |
X9Y | TS | 7.01 | 10.73 | 6.90 | 4.25 | 15.37 | 13.06 | 6.19 | 6.25 | 17.53 | 13.06 | 5.25 | 4.15 | 11.97 | 12.53 | 4.12 | 2.97 |
P | 0.03 ** | 0.02 ** | 0.04 ** | 0.08 * | 0.00 *** | 0.00 *** | 0.03 ** | 0.04 ** | 0.00 *** | 0.01 ** | 0.04 ** | 0.06 * | 0.02 ** | 0.00 *** | 0.04 ** | 0.09 * | |
YX10 | TS | 1.01 | 4.84 | 1.55 | 0.36 | 0.53 | 0.60 | 0.77 | 0.48 | 0.64 | 0.61 | 3.58 | 5.26 | 0.95 | 3.58 | 0.30 | 1.62 |
P | 0.56 | 0.08 * | 0.47 | 0.70 | 0.68 | 0.81 | 0.45 | 0.77 | 0.71 | 0.64 | 0.08 * | 0.04 ** | 0.64 | 0.09 * | 0.59 | 0.28 | |
X10Y | 9.67 | 11.86 | 5.02 | 1.61 | 0.82 | 0.66 | 4.30 | 9.96 | 0.73 | 0.42 | 5.01 | 3.69 | 5.33 | 7.27 | 0.69 | 0.50 | |
P | 0.02 ** | 0.01 ** | 0.09 * | 0.27 | 0.57 | 0.77 | 0.05 * | 0.03 ** | 0.69 | 0.79 | 0.04 ** | 0.07 * | 0.08 * | 0.03 ** | 0.41 | 0.74 |
Causality Directions | China | Denmark | Iceland | Japan | Norway | Russia | South Korea | Sweden | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | 2015-19 | 2020 | |
YX1 | A/BC | A/UC | W/NC | AA/BC | W/NC | A/UC | AA/BC | W/NC | ||||||||
X1Y | A/BC | W/RC | W/NC | A/BC | W/NC | W/RC | AA/BC | W/NC | ||||||||
YX2 | W/NC | W/NC | W/NC | W/NC | W/NC | W/NC | W/RC | W/NC | ||||||||
X2Y | W/NC | W/NC | W/NC | W/NC | W/NC | W/NC | A/UC | W/NC | ||||||||
YX3 | S/BC | S/BC | W/RC | W/RC | W/RC | W/RC | AA/BC | S/BC | A/BC | AA/BC | W/NC | W/RC | AA/BC | AA/BC | W/RC | A/UC |
X3Y | AA/BC | A/BC | A/UC | A/UC | AA/UC | AA/UC | S/BC | S/BC | A/BC | A/BC | W/NC | A/UC | S/BC | AA/BC | A/UC | W/RC |
YX4 | AA/BC | S/BC | W/RC | W/RC | W/RC | W/RC | S/BC | S/BC | A/BC | AA/BC | W/NC | W/RC | AA/BC | S/BC | W/RC | W/RC |
X4Y | AA/BC | A/BC | A/UC | A/UC | AA/UC | AA/UC | S/BC | S/BC | A/BC | A/BC | W/NC | A/UC | S/BC | AA/BC | A/UC | A/UC |
YX5 | S/BC | S/BC | W/RC | A/BC | W/RC | A/BC | A/BC | AA/BC | W/RC | W/RC | W/NC | W/NC | A/BC | S/BC | W/RC | W/RC |
X5Y | AA/BC | A/BC | AA/UC | AA/BC | AA/UC | AA/BC | AA/BC | A/BC | AA/UC | A/UC | W/NC | W/NC | AA/BC | A/BC | A/UC | A/UC |
YX6 | AA/BC | S/BC | W/RC | A/BC | W/RC | W/RC | A/BC | AA/BC | W/RC | A/BC | W/NC | W/NC | A/BC | AA/BC | W/RC | W/NC |
X6Y | AA/BC | AA/BC | A/UC | A/BC | A/UC | A/UC | AA/BC | A/BC | A/UC | A/BC | W/NC | W/NC | AA/BC | A/BC | A/UC | W/NC |
YX7 | A/BC | W/NC | W/RC | W/RC | W/NC | W/NC | W/NC | W/NC | W/RC | W/NC | A/BC | A/BC | W/NC | W/NC | W/RC | A/UC |
X7Y | AA/BC | W/NC | AA/UC | A/UC | W/NC | W/NC | W/NC | W/NC | A/UC | W/NC | S/BC | A/BC | W/NC | W/NC | A/UC | W/RC |
YX8 | W/RC | W/RC | W/NC | W/NC | W/NC | W/NC | W/RC | W/RC | A/BC | AA/BC | A/BC | A/BC | W/RC | W/RC | W/NC | W/NC |
X8Y | AA/UC | A/UC | W/NC | W/NC | W/NC | W/NC | A/UC | AA/UC | S/BC | S/BC | AA/BC | AA/BC | AA/UC | AA/UC | W/NC | W/NC |
YX9 | A/BC | AA/BC | W/RC | W/RC | W/RC | A/BC | W/RC | A/BC | W/RC | AA/BC | A/BC | AA/BC | W/RC | A/BC | W/RC | AA/BC |
X9Y | AA/BC | AA/BC | AA/UC | A/UC | S/UC | S/BC | AA/UC | AA/BC | S/UC | AA/BC | AA/BC | A/BC | AA/UC | S/BC | AA/UC | A/BC |
YX10 | W/RC | A/BC | W/RC | W/NC | W/NC | W/NC | W/RC | W/RC | W/NC | W/NC | A/BC | AA/BC | W/RC | A/BC | W/NC | W/NC |
X10Y | AA/UC | AA/BC | A/UC | W/NC | W/NC | W/NC | A/UC | AA/UC | W/NC | W/NC | AA/BC | A/BC | A/UC | AA/BC | W/NC | W/NC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tianming, G.; Erokhin, V.; Arskiy, A.; Khudzhatov, M. Has the COVID-19 Pandemic Affected Maritime Connectivity? An Estimation for China and the Polar Silk Road Countries. Sustainability 2021, 13, 3521. https://doi.org/10.3390/su13063521
Tianming G, Erokhin V, Arskiy A, Khudzhatov M. Has the COVID-19 Pandemic Affected Maritime Connectivity? An Estimation for China and the Polar Silk Road Countries. Sustainability. 2021; 13(6):3521. https://doi.org/10.3390/su13063521
Chicago/Turabian StyleTianming, Gao, Vasilii Erokhin, Aleksandr Arskiy, and Mikail Khudzhatov. 2021. "Has the COVID-19 Pandemic Affected Maritime Connectivity? An Estimation for China and the Polar Silk Road Countries" Sustainability 13, no. 6: 3521. https://doi.org/10.3390/su13063521
APA StyleTianming, G., Erokhin, V., Arskiy, A., & Khudzhatov, M. (2021). Has the COVID-19 Pandemic Affected Maritime Connectivity? An Estimation for China and the Polar Silk Road Countries. Sustainability, 13(6), 3521. https://doi.org/10.3390/su13063521