Source Identification of Cd and Pb in Typical Farmland Topsoil in the Southwest of China: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis
2.2. Chemical Analysis
2.3. Multivariate Analysis
3. Results and Discussion
3.1. Potential Toxic Metals Concentrations
3.2. Spatial Distribution Characteristics of Cd and Pb
3.3. Pb Source Identification Based on Isotopic Ratio
3.4. Multivariate Analysis Results
3.4.1. Correlation Analysis
3.4.2. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurung, B.; Race, M.; Fabbricino, M.; Komínková, D.; Libralato, G.; Siciliano, A.; Guida, M. Assessment of metal pollution in the Lambro Creek (Italy). Ecotoxicol. Environ. Saf. 2018, 148, 754–762. [Google Scholar] [CrossRef]
- Ahmad, K.; Wajid, K.; Khan, Z.I.; Ugulu, I.; Memoona, H.; Sana, M.; Nawaz, K.; Malik, I.S.; Bashir, H.; Sher, M. Evaluation of Potential Toxic Metals Accumulation in Wheat Irrigated with Wastewater. Bull. Environ. Contam. Toxicol. 2019, 102, 822–828. [Google Scholar] [CrossRef]
- Sarret, G.; Blommaert, H.; Wiggenhauser, M. Comment on “Speciation and fate of toxic cadmium in contaminated paddy soils and rice using XANES/EXAFS spectroscopy”. J. Hazard. Mater. 2021, 401. [Google Scholar] [CrossRef]
- Tang, L.; Luo, W.; Tian, S.; He, Z.; Stoffella, P.J.; Yang, X. Genotypic differences in cadmium and nitrate co-accumulation among the Chinese cabbage genotypes under field conditions. Sci. Hortic. 2016, 201, 92–100. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef]
- Li, B.; Xiao, R.; Wang, C.; Cao, L.; Zhang, Y.; Zheng, S.; Yang, L.; Guo, Y. Spatial distribution ofsoil cadmium and its influencing factors in peri-urban farmland: A case study in the Jingyang District, Sichuan, China. Environ. Monit. Assess. 2017, 189, 1–16. [Google Scholar] [CrossRef]
- Gallon, C.; Ranville, M.A.; Conaway, C.H.; Landing, W.M.; Buck, C.S.; Morton, P.L.; Flegal, A.R. Asian industrial lead inputs to the north pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols. Environ. Sci. Technol. 2011, 45, 9874–9882. [Google Scholar] [CrossRef]
- Okin, G.S.; Parsons, A.J.; Wainwright, J.; Herrick, J.E.; Bestelmeyer, B.T.; Peters, D.C.; Fredrickson, E.L. Do Changes in Connectivity Explain Desertification? Bioscience 2009, 59, 237–244. [Google Scholar] [CrossRef]
- Filippelli, G.M.; Morrison, D.; Cicchella, D. Urban geochemistry and human health. Elements 2012, 8, 439–444. [Google Scholar] [CrossRef]
- Six, L.; Smolders, E. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils. Sci. Total Environ. 2014, 485–486, 319–328. [Google Scholar] [CrossRef]
- Creuzer, J.; Hargiss, C.L.M.; Norland, J.E.; DeSutter, T.; Casey, F.X.; DeKeyser, E.S.; Ell, M. Does Increased Road Dust Due to Energy Development Impact Wetlands in the Bakken Region? Water. Air. Soil Pollut. 2016, 227, 1–15. [Google Scholar] [CrossRef]
- Sun, J.; Hu, G.; Yu, R.; Lin, C.; Wang, X.; Huang, Y. Human health risk assessment and source analysis of metals in soils along the G324 Roadside, China, by Pb and Sr isotopic tracing. Geoderma 2017, 305, 293–304. [Google Scholar] [CrossRef]
- Walraven, N.; van Os, B.J.H.; Klaver, G.T.; Middelburg, J.J.; Davies, G.R. The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. Sci. Total Environ. 2014, 472, 888–900. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, X. Multivariate and geostatistical analyses of heavy metal pollution from different sources among farmlands in the Poyang Lake region, China. J. Soils Sediments 2019, 19, 2472–2484. [Google Scholar] [CrossRef]
- Fang, F.; Yang, Y.; Guo, J.; Zhou, H.; Fu, C.; Li, Z. Three-dimensional fluorescence spectral characterization of soil dissolved organic matters in the fluctuating water-level zone of Kai County, Three Gorges Reservoir. Front. Environ. Sci. Eng. China 2011, 5, 426–434. [Google Scholar] [CrossRef]
- Peng, S.; Fu, G.Y.Z.; Zhao, X.H. Integration of USEPA WASP model in a GIS platform. J. Zhejiang Univ. Sci. A 2010, 11, 1015–1024. [Google Scholar] [CrossRef]
- Kong, J.; Guo, Q.; Wei, R.; Strauss, H.; Zhu, G.; Li, S.; Song, Z.; Chen, T.; Song, B.; Zhou, T.; et al. Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China. Sci. Total Environ. 2018, 637–638, 1035–1045. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, X.; Ni, S. Metal Contamination in Sediment of One of the Upper Reaches of the Yangtze River: Mianyuan River in Longmenshan Region, Southwest of China. Soil Sediment Contam. 2015, 24, 368–385. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, J.; Huang, X.; Liu, Q.; Luo, B.; Zhang, W.; Rao, Z.; Yu, Y. Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China. J. Environ. Sci. 2020, 89, 35–46. [Google Scholar] [CrossRef]
- Li, B.; Fu, Y.J.; Wang, C.Q.; Yang, Y. Speciation distribution characteristics of heavy metals and its relationships with soil acid chemical properties in the Chengdu plain. Nat. Environ. Pollut. Technol. 2015, 14, 349–354. [Google Scholar]
- Wang, X.; Bai, J.; Wang, J.; Le, S.; Wang, M.; Zhao, Y. Variations in cadmium accumulation and distribution among different oilseed rape cultivars in Chengdu Plain in China. Environ. Sci. Pollut. Res. 2019, 26, 3415–3427. [Google Scholar] [CrossRef] [PubMed]
- Chenery, S.R.; Izquierdo, M.; Marzouk, E.; Klinck, B.; Palumbo-roe, B.; Tye, A.M. Science of the Total Environment Soil—Plant interactions and the uptake of Pb at abandoned mining sites in the Rookhope catchment of the N. Pennines, UK—A Pb isotope study. Sci. Total Environ. 2012, 433, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Xu, Z.; Ren, M.; Guo, Q.; Hu, X.; Hu, G.; Wan, H.; Peng, P. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef]
- Yongming, H.; Peixuan, D.; Junji, C.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, Q.; Wen, X.; Yang, M.; Chen, H.; Wu, Z.; Lin, X. Multivariate statistical analysis of heavy metals in foliage dust near pedestrian bridges in Guangzhou, South China in 2009. Environ. Earth Sci. 2013, 70, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Asia, A.E.I.; Mishra, V.K.; Kim, K.; Kang, C.; Chan, K. Wintertime sources and distribution of airborne lead in Korea. Atmos. Environ. 2004, 38, 2653–2664. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Sakan, S.M.; Dević, G.J.; Relić, D.J.; Andelković, I.B.; Sakan, N.M.; Dordević, D.S. Environmental Assessment of Heavy Metal Pollution in Freshwater Sediment, Serbia. Clean Soil Air Water 2015, 43, 838–845. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Li, X.; Qi, J.; Zhang, Q.; Guo, J.; Yu, L.; Zhao, R. Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding County, Southwestern China. Water 2018, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Thuong, N.T.; Yoneda, M.; Ikegami, M.; Takakura, M. Source discrimination of heavy metals in sediment and water of to Lich River in Hanoi City using multivariate statistical approaches. Environ. Monit. Assess. 2013, 185, 8065–8075. [Google Scholar] [CrossRef]
- Mallen, L. Multivariate Statistical and GIS-based Approach to Identify Heavy Metal Sources in Soils. Environ. Pollut. 2016, 114. [Google Scholar] [CrossRef]
- Jiang, C.; Jun, Z.; Gao, L. Sources and Ecological Risk Assessment of Heavy Metal(loid)s in Agricultural Soils of Huzhou, China. Soil Sediment Contam. 2015, 24, 437–453. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, W.; Long, Y.; Bao, X.; Yang, Q. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochem. Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Wang, L.F.; Yang, L.Y.; Kong, L.H.; Li, S.; Zhu, J.R.; Wang, Y.Q. Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. J. Geochem. Explor. 2014, 140, 87–95. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, X.; Tang, J.; Liu, W.; Yang, H. Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Appl. Geochem. 2017, 77, 80–88. [Google Scholar] [CrossRef]
- Kim, B.S.M.; Salaroli, A.B.; de Ferreira, P.A.L.; Sartoretto, J.R.; de Mahiques, M.M.; Figueira, R.C.L. Spatial distribution and enrichment assessment of heavy metals in surface sediments from Baixada Santista, Southeastern Brazil. Mar. Pollut. Bull. 2016, 103, 333–338. [Google Scholar] [CrossRef]
- González-Acevedo, Z.I.; García-Zarate, M.A.; Núñez-Zarco, E.A.; Anda-Martín, B.I. Heavy metal sources and anthropogenic enrichment in the environment around the Cerro Prieto Geothermal Field, Mexico. Geothermics 2018, 72, 170–181. [Google Scholar] [CrossRef]
- Chae, J.S.; Choi, M.S.; Song, Y.H.; Um, I.K.; Kim, J.G. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea. Mar. Pollut. Bull. 2014, 88, 373–382. [Google Scholar] [CrossRef]
- Cheng, H.; Hu, Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environ. Pollut. 2010, 158, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Erel, Y. Mechanisms and velocities of anthropogenic Pb migration in mediterranean soils. Environ. Res. 1998, 78, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Kelepertzis, E.; Komárek, M.; Argyraki, A.; Šillerová, H. Metal(loid) distribution and Pb isotopic signatures in the urban environment of Athens, Greece. Environ. Pollut. 2016, 213, 420–431. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, J.; Yin, H.; Hu, W.; Zhu, J.; Wang, X. Ecological risk assessment and source apportionment of metals in the surface sediments of river systems in Lake Taihu Basin, China. Environ. Sci. Pollut. Res. 2020, 27, 25943–25955. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Hu, G.; Yang, Q.; He, H.; Lin, C. Identification of Pb sources using Pb isotopic compositions in the core sediments from Western Xiamen Bay, China. Mar. Pollut. Bull. 2016, 113, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Q.; Zhang, W.; Li, X.D.; Yang, Z.; Zheng, H.Y.; Ding, H.; Wang, Q.L.; Xiao, J.; Fu, P.Q. Atmospheric lead in urban Guiyang, Southwest China: Isotopic source signatures. Atmos. Environ. 2015, 115, 163–169. [Google Scholar] [CrossRef]
- Madany, I.M.; Salim Akhter, M.; Al Jowder, O.A. The correlations between heavy metals in residential indoor dust and outdoor street dust in Bahrain. Environ. Int. 1994, 20, 483–492. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Y.; Wadood, S.A.; Sun, Q.; Guo, B. Source apportionment of cadmium pollution in agricultural soil based on cadmium isotope ratio analysis. Appl. Geochem. 2020, 123, 104776. [Google Scholar] [CrossRef]
- Punia, A.; Siddaiah, N.S.; Singh, S.K. Source and Assessment of Metal Pollution at Khetri Copper Mine Tailings and Neighboring Soils, Rajasthan, India. Bull. Environ. Contam. Toxicol. 2017, 99, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Mileusnić, M.; Mapani, B.S.; Kamona, A.F.; Ružičić, S.; Mapaure, I.; Chimwamurombe, P.M. Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mine, Namibia. J. Geochem. Explor. 2014, 144, 409–420. [Google Scholar] [CrossRef]
- Ma, L.; Konter, J.; Herndon, E.; Jin, L.; Steinhoefel, G.; Sanchez, D.; Brantley, S. Quantifying an early signature of the industrial revolution from lead concentrations and isotopes in soils of Pennsylvania, USA. Anthropocene 2014, 7, 16–29. [Google Scholar] [CrossRef]
- Komínková, D.; Fabbricino, M.; Gurung, B.; Race, M.; Tritto, C.; Ponzo, A. Sequential application of soil washing and phytoremediation in the land of fires. J. Environ. Manag. 2018, 206, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Sobik-Szołtysek, J.; Wystalska, K.; Grobelak, A. Effect of addition of sewage sludge and coal sludge on bioavailability of selected metals in the waste from the zinc and lead industry. Environ. Res. 2017, 156, 588–596. [Google Scholar] [CrossRef] [PubMed]
Element | Range | Mean | Median | SD | CV 1 | Skewness | Reference Value 2 | EFs |
---|---|---|---|---|---|---|---|---|
Cd | 0.21–2.2 | 0.81 | 0.72 | 0.40 | 0.49 | 1.62 | 0.08 | 9.16 |
Pb | 14.3–139 | 33.32 | 31.35 | 18.38 | 0.55 | 5.35 | 30.90 | 0.97 |
Cu | 21–61.2 | 39.24 | 39.90 | 8.38 | 0.21 | −0.09 | 31.10 | 1.13 |
Zn | 67.4–391 | 125.84 | 118.50 | 53.07 | 0.42 | 3.46 | 86.50 | 1.31 |
Cr | 62.7–122 | 91.40 | 88.80 | 12.67 | 0.14 | 0.28 | 79.00 | 1.04 |
Ni | 21.2–50.2 | 36.25 | 36.65 | 6.79 | 0.19 | −0.04 | 32.60 | 1.00 |
As | 4.89–40.8 | 10.11 | 9.22 | 5.60 | 0.55 | 4.62 | 10.40 | 0.87 |
Hg | 0.087–0.41 | 0.21 | 0.19 | 0.09 | 0.42 | 0.91 | 0.06 | 3.04 |
Se | 0.22–1.39 | 0.70 | 0.68 | 0.23 | 0.33 | 0.43 | 0.10 | 6.58 |
P | 662–3030 | 1537.03 | 1405.00 | 606.95 | 0.39 | 0.46 | 713.53 | 1.94 |
Sample | Description | Pb | Cd | ||
---|---|---|---|---|---|
mg·kg−1 | |||||
S1 | Agricultural Soil | 36.1 | 0.64 | 1.190 | 2.059 |
S2 | Agricultural Soil | 14.3 | 0.73 | 1.202 | 2.050 |
S3 | Agricultural Soil | 27.9 | 0.49 | 1.206 | 2.062 |
S4 | Agricultural Soil | 21.5 | 0.63 | 1.213 | 2.041 |
S5 | Agricultural Soil | 23.8 | 0.57 | 1.204 | 2.038 |
W01 | Phosphate Ore | 24.3 | 1.13 | 1.396 | 1.743 |
W02 | Coal Ore | 22.1 | 9.94 | 1.271 | 1.966 |
W03 | Dustfall | 138 | 4.38 | 1.163 | 2.114 |
W04 | Ardealite | 35.3 | 0.46 | 1.358 | 1.785 |
Correlation | Cd | Pb | Cu | Zn | Cr | Ni | As | Hg | Se | P |
---|---|---|---|---|---|---|---|---|---|---|
Cd | 1 | 0.000 | 0.000 | 0.000 | 0.010 | 0.006 | 0.000 | 0.244 | 0.000 | 0.000 |
Pb | 0.624 2 | 1 | 0.010 | 0.000 | 0.930 | 0.798 | 0.000 | 0.581 | 0.000 | 0.045 |
Cu | 0.796 2 | 0.415 2 | 1 | 0.000 | 0.000 | 0.000 | 0.178 | 0.001 | 0.000 | 0.000 |
Zn | 0.881 2 | 0.873 2 | 0.727 2 | 1 | 0.093 | 0.069 | 0.000 | 0.323 | 0.000 | 0.000 |
Cr | 0.413 2 | 0.015 | 0.594 2 | 0.276 | 1 | 0.001 | 0.393 | 0.276 | 0.265 | 0.014 |
Ni | 0.441 2 | −0.043 | 0.642 2 | 0.298 | 0.503 2 | 1 | 0.534 | 0.043 | 0.004 | 0.002 |
As | 0.603 2 | 0.881 2 | 0.223 | 0.756 2 | −0.143 | −0.104 | 1 | 0.493 | 0.006 | 0.040 |
Hg | 0.194 | 0.093 | 0.529 2 | 0.165 | 0.181 | 0.331 1 | −0.115 | 1 | 0.189 | 0.102 |
Se | 0.646 2 | 0.583 2 | 0.645 2 | 0.729 2 | 0.186 | 0.454 2 | 0.441 2 | 0.218 | 1 | 0.000 |
P | 0.856 2 | 0.328 1 | 0.779 2 | 0.696 2 | 0.395 1 | 0.483 2 | 0.335 1 | 0.270 | 0.628 2 | 1 |
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | % of Variance | Cumulative (%) | Total | % of Variance | Cumulative (%) | Total | % of Variance | Cumulative (%) | |
1 | 4.89 | 69.80 | 69.80 | 4.89 | 69.80 | 69.80 | 2.57 | 36.74 | 36.74 |
2 | 1.25 | 17.83 | 87.63 | 1.25 | 17.83 | 87.63 | 1.99 | 28.43 | 65.17 |
3 | 0.44 | 6.29 | 93.93 | 0.44 | 6.29 | 93.93 | 1.14 | 16.21 | 81.39 |
4 | 0.28 | 3.97 | 97.89 | 0.28 | 3.97 | 97.89 | 1.08 | 15.40 | 96.79 |
5 | 0.07 | 0.99 | 98.89 | ||||||
6 | 0.06 | 0.86 | 99.75 | ||||||
7 | 0.02 | 0.25 | 100.00 |
Element | Component | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Pb | 0.915 | 0.082 | 0.259 | 0.227 |
Cd | 0.458 | 0.718 | 0.210 | 0.370 |
Zn | 0.697 | 0.455 | 0.320 | 0.383 |
Cu | 0.123 | 0.526 | 0.293 | 0.788 |
As | 0.956 | 0.204 | 0.113 | −0.041 |
Se | 0.301 | 0.321 | 0.866 | 0.234 |
P | 0.136 | 0.916 | 0.270 | 0.257 |
Eigenvalue Percent of Variance | 36.744 | 28.427 | 16.213 | 15.404 |
Cumulative Percent | 36.744 | 65.171 | 81.385 | 96.788 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Shi, Z.; Ni, S.; Wang, X.; Liao, C.; Wei, F. Source Identification of Cd and Pb in Typical Farmland Topsoil in the Southwest of China: A Case Study. Sustainability 2021, 13, 3729. https://doi.org/10.3390/su13073729
Zhang J, Shi Z, Ni S, Wang X, Liao C, Wei F. Source Identification of Cd and Pb in Typical Farmland Topsoil in the Southwest of China: A Case Study. Sustainability. 2021; 13(7):3729. https://doi.org/10.3390/su13073729
Chicago/Turabian StyleZhang, Junji, Zeming Shi, Shijun Ni, Xinyu Wang, Chao Liao, and Fei Wei. 2021. "Source Identification of Cd and Pb in Typical Farmland Topsoil in the Southwest of China: A Case Study" Sustainability 13, no. 7: 3729. https://doi.org/10.3390/su13073729
APA StyleZhang, J., Shi, Z., Ni, S., Wang, X., Liao, C., & Wei, F. (2021). Source Identification of Cd and Pb in Typical Farmland Topsoil in the Southwest of China: A Case Study. Sustainability, 13(7), 3729. https://doi.org/10.3390/su13073729