Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data
2.2.1. MODIS Fractional Snow Cover (FSC) Data
2.2.2. Meteorological Data
2.2.3. Other Data
2.3. Methodology
2.3.1. Cloud Removal from MODIS FSC Data
2.3.2. Extracting the Largest Lake Area Mask
2.3.3. Determination of Snowline and SLA
2.3.4. SLA Dynamics Analysis
3. Results
3.1. Comparison of SLA Derived from MODIS FSC and Landsat OLI Images
3.2. Spatiotemporal Patterns of SLA
3.3. The Influences of Topographic Factors on SLA
3.4. Spatiotemporal Characteristics of Meteorological Factors Over the TS
3.5. The Influences of Meteorological Factors on SLA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, R.; Saikumar, D.; Kulkarni, A.V.; Chaudhary, B.S. Variations in snow cover and snowline altitude in Baspa Basin. Curr. Sci. 2009, 10, 96. [Google Scholar]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.-Q.; Li, X.-C.; Xie, H.; Ma, D.-H.; Liu, X.; Kou, C. Variability in snow cover phenology in China from 1952 to 2010. Hydrol. Earth Syst. Sci. 2016, 20, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Malmros, J.K.; Mernild, S.H.; Wilson, R.; Tagesson, T.; Fensholt, R. Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). Remote Sens. Environ. 2018, 209, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Shen, Y.; Zhang, W.; Long, Y. Fast Warming Has Accelerated Snow Cover Loss during Spring and Summer across the Northern Hemisphere over the Past 52 Years (1967–2018). Atmosphere 2020, 11, 728. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, X.-J.; Liu, S.-W.; Xiao, C.-D.; Wang, X. Valuating service loss of snow cover in Irtysh River Basin. Adv. Clim. Chang. Res. 2019, 10, 109–114. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Liu, S.; Yang, Y.; Xu, G.; Xu, Y.; Jiang, T.; Xiao, C. Snow cover loss compounding the future economic vulnerability of western China. Sci. Total. Environ. 2021, 755, 143025. [Google Scholar] [CrossRef]
- Seidel, K.; Ehrler, C.; Martinec, J. Derivation of Statistical Snow Line from High Resolution Snow Cover Mapping. In Remote Sensing of Land Ice and Snow; EARSeL Workshop: Münster, Germany, 1997; pp. 31–36. [Google Scholar]
- Licker, M.D. Dictionary of Earth Science; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Kaur, R.; Kulkarni, A.V.; Chaudhary, B. Using RESOURCESAT-1 data for determination of snow cover and snowline altitude, Baspa Basin, India. Ann. Glaciol. 2010, 51, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Wunderle, S.; Droz, M.; Kleindienst, H. Spatial and temporal analysis of the snow line in the alps: Based on NOAA-AVHRR data. Geogr. Helv. 2002, 57, 170–183. [Google Scholar] [CrossRef] [Green Version]
- Hantel, M.; Maurer, C. The median winter snowline in the Alps. Meteorol. Z. 2011, 20, 267–276. [Google Scholar] [CrossRef]
- Deng, Y.; Xie, Z.; Qin, J.; Wang, X.; Qiaoyuan, L.I. The Field of Equilibrium Line Altitude in the Ganga-Yarlung Zangbo Rivers System: Establishment and Its Environmental Significance. J. Geogr. Sci. 2006, 28, 865–872. [Google Scholar]
- Girona-Mata, M.; Miles, E.S.; Ragettli, S.; Pellicciotti, F. High-Resolution Snowline Delineation from Landsat Imagery to Infer Snow Cover Controls in a Himalayan Catchment. Water Resour. Res. 2019, 55, 6754–6772. [Google Scholar] [CrossRef] [Green Version]
- Krajčí, P.; Holko, L.; Perdigão, R.A.; Parajka, J. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J. Hydrol. 2014, 519, 1769–1778. [Google Scholar] [CrossRef]
- Holzer, T.; Baumgartner, M.; Apfl, G. Monitoring Swiss Alpine Snow Cover Variations Using Digital NOAA-AVHRR Data. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995; Volume 3, pp. 1765–1767. [Google Scholar]
- Zappa, M. Objective quantitative spatial verification of distributed snow cover simulations—an experiment for the whole of Switzerland / Vérification quantitative spatiale objective de simulations distribuées de la couche de neige—Une étude pour l’ensemble de la Suisse. Hydrol. Sci. J. 2008, 53, 179–191. [Google Scholar] [CrossRef]
- Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Østrem, G. The transient snowline and glacier mass balance in southern British Columbia and Alberta, Canada. Geogr. Ann. Ser. A-Phys. Geogr. 1973, 55, 93–106. [Google Scholar] [CrossRef]
- McFadden, E.M.; Ramage, J.M.; Rodbell, D.T. Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. Cryosphere 2011, 5, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Mernild, S.H.; Pelto, M.; Malmros, J.K.; Yde, J.C.; Knudsen, N.T.; Hanna, E. Identification of snow ablation rate, ELA, AAR and net mass balance using transient snowline variations on two Arctic glaciers. J. Glaciol. 2013, 59, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Kulkarni, A.V.; Venkataraman, G. Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980–2007. Geocarto Int. 2013, 28, 311–322. [Google Scholar] [CrossRef]
- Tawde, S.A.; Kulkarni, A.V.; Bala, G. Estimation of Glacier Mass Balance on a Basin Scale:An Approach Based on Satellite-Derived Snowlines and a Temperature Index Model. Curr. Sci. 2016, 111, 1977. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Deng, G.; Wang, X.; Jiang, Z.; Sang, G. Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Du, W.; Ji, W.; Xu, L.; Wang, S. Deformation Time Series and Driving-Force Analysis of Glaciers in the Eastern Tienshan Mountains Using the SBAS InSAR Method. Int. J. Environ. Res. Public Health 2020, 17, 2836. [Google Scholar] [CrossRef] [Green Version]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Yang, T.; Li, Q.; Ahmad, S.; Zhou, H.; Li, L. Changes in Snow Phenology from 1979 to 2016 over the Tianshan Mountains, Central Asia. Remote Sens. 2019, 11, 499. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Wang, X.; Wang, J.; Wang, X.; Li, H.; Jiang, Z. Spatiotemporal Variation of Snow Cover in Tianshan Mountains, Central Asia, Based on Cloud-Free MODIS Fractional Snow Cover Product, 2001–2015. Remote Sens. 2017, 9, 1045. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhang, X.; Du, J.; Zhou, X.; Tuo, Y.; Li, R.; Duan, Z. The vertical influence of temperature and precipitation on snow cover variability in the Central Tianshan Mountains, Northwest China. Hydrol. Process. 2019, 33, 1686–1697. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, X.; Hao, J.-S.; Li, L.-H. Snow cover estimation from MODIS and Sentinel-1 SAR data using machine learning algorithms in the western part of the Tianshan Mountains. J. Mt. Sci. 2020, 17, 884–897. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Salomonson, V.V. MODIS Snow Products User Guide to Collection 5; National Snow and Ice Data Center: Boulder, CO, USA; University of Colorado: Boulder, CO, USA, 2006; Volume 80, pp. 1–80. [Google Scholar]
- Krajčí, P.; Holko, L.; Parajka, J. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014. J. Hydrol. Hydromech. 2016, 64, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska. Cryosphere 2011, 5, 1127–1133. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, J.; Li, H.; Liang, J.; Li, C.; Wang, X. Extraction and assessment of snowline altitude over the Tibetan plateau using MODIS fractional snow cover data (2001 to 2013). J. Appl. Remote Sens. 2014, 8, 084689. [Google Scholar] [CrossRef]
- Klein, A.; Barnett, A.; Lee, S. Evaluation of MODIS snow cover products in the Upper Rio Grande River Basin. In Proceedings of the EGS-AGU-EUG Joint Assembly, Nice, France, 6–11 April 2003. [Google Scholar]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, J.; Li, H.; Yan, L. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011. J. Appl. Remote Sens. 2013, 7, 073582. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Yang, J.; Chen, X.; Hao, J. Estimating snow depth using multi-source data fusion based on the D-InSAR method and 3DVAR fusion algorithm. Remote Sens. 2017, 9, 1195. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.-Q.; Liu, X. MODIS-observed spatial and temporal variation in snow cover in Xinjiang, China. Clim. Res. 2014, 59, 15–26. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fang, G.; Deng, H. Impact of climate change on water resources in the Tianshan Mountians. Acta Geogr. Sin. 2017, 72, 18–26. [Google Scholar]
- Li, Z.; Chen, Y.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef] [Green Version]
- Kaldybayev, A.; Chen, Y.; Issanova, G.; Wang, H.; Mahmudova, L. Runoff response to the glacier shrinkage in the Karatal river basin, Kazakhstan. Arab. J. Geosci. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Dozier, J. Climatic and hydrologic changes in the Tien Shan, central Asia. J. Clim. 1997, 10, 1393–1404. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Melack, J.M. Climate, Snow Cover, Glaciers, And Runoff in The Tien Shan, Central Asia 1. Water Resour. Bull. 1995, 31, 1113–1129. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Kuzmichonok, V.A. Glaciers and hydrological changes in the Tien Shan: Simulation and pre-diction. Environ. Res. Lett. 2007, 2, 45019. [Google Scholar] [CrossRef]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Glob. Planet. Chang. 2007, 56, 328–340. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Liu, S.; Jiang, L.; Wu, K.; Jiang, Z.; Guo, W. Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environ. Res. Lett. 2013, 8, 044052. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, Colorado USA, 2016; Available online: https://nsidc.org/data/MOD10A1/versions/6 (accessed on 21 March 2020).
- Salomonson, V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Rittger, K.; Brodzik, M.J.; Painter, T.H.; Racoviteanu, A.; Armstrong, R.; Dozier, J. Trends in annual minimum exposed snow and ice cover in High Mountain Asia from MODIS. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 17–22 April 2016; p. 18. [Google Scholar]
- Riggs, G.A.; Hall, D.K.; Román, M.O. MODIS snow products collection 6 user guide. Natl. Snow Ice Data Center 2015, 11, 66. [Google Scholar]
- Salomonson, V.; Appel, I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1747–1756. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Tetzner, D.; Thomas, E.; Allen, C. A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. Geoscience 2019, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.f17050d7 (accessed on 19 June 2020).
- Dozier, J.; Painter, T.H.; Rittger, K.; Frew, J.E. Time–space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv. Water Resour. 2008, 31, 1515–1526. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Nan, Z.; Che, J.; Sheng, Y.; Wu, Q.; Jin, H.; Luo, D.; Tang, Z.; et al. Mapping the permafrost stability on the Tibetan Plateau for 2005–2015. Sci. China Earth Sci. 2021, 64, 62–79. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Li, X.; Jiang, F.; Li, L.; Wang, G. Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int. J. Clim. 2010, 31, 1679–1693. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E. Application of the Innovative Trend Analysis Method for the Trend Analysis of Rainfall Anomalies in Southern Italy. Water Resour. Manag. 2018, 32, 4971–4983. [Google Scholar] [CrossRef]
- Gan, T.Y. Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resour. Res. 1998, 34, 3009–3015. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, Y. Implications of mass elevation effect for the altitudinal patterns of global ecology. J. Geogr. Sci. 2016, 26, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Zhang, B.-P.; Zhao, F.; Guo, B.; Liang, T. Estimation of mass elevation effect and its annual variation based on MODIS and NECP data in the Tibetan Plateau. J. Mt. Sci. 2018, 15, 1510–1519. [Google Scholar] [CrossRef]
- Bernhardt, M.; Schulz, K.; Liston, G.; Zängl, G. The influence of lateral snow redistribution processes on snow melt and sublimation in alpine regions. J. Hydrol. 2012, 424–425, 196–206. [Google Scholar] [CrossRef]
- Qin, D.; Liu, S.; Li, P. Snow cover distribution, variability, and response to climate change in western China. J. Clim. 2006, 19, 1820–1833. [Google Scholar]
- Rabatel, A.; Bermejo, A.; Loarte, E.; Soruco, A.; Gómez, J.; Leonardini, G.; Vincent, C.; Sicart, J.E. Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J. Glaciol. 2012, 58, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Rabatel, A.; Dedieu, J.-P.; Vincent, C. Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: Validation on three French glaciers, 1994–2002. J. Glaciol. 2005, 51, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Masson, T.; Dumont, M.; Mura, M.D.; Sirguey, P.; Gascoin, S.; Dedieu, J.-P.; Chanussot, J. An Assessment of Existing Methodologies to Retrieve Snow Cover Fraction from MODIS Data. Remote Sens. 2018, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Sirguey, P.; Mathieu, R.; Arnaud, Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial reso-lution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ. 2009, 113, 160–181. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hu, Z.; Dietz, A.; Zhao, A.; Uereyen, S.; Zhang, H.; Wang, M.; Mederer, P.; Kuenzer, C. Snow Moving to Higher Elevations: Analyzing Three Decades of Snowline Dynamics in the Alps. Geophys. Res. Lett. 2020, 47, e2019GL085742. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim. Dyn. 2015, 46, 303–316. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.-W.; Zhu, J.-J.; Li, X.; Xu, B.; Wang, Q.-J.; Huang, C.-L.; Hu, J. Early 21st century glacier thickness changes in the Central Tien Shan. Remote Sens. Environ. 2017, 192, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Chen, Y.; Li, Y. Glacier and snow variations and their impacts on regional water resources in mountains. J. Geogr. Sci. 2019, 29, 84–100. [Google Scholar] [CrossRef] [Green Version]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between~ 1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Tawde, S.A.; Kulkarni, A.V.; Bala, G. An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Ann. Glaciol. 2017, 58, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Mountain Research Initiative EDW Working Group; Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.J.; Greenwood, G.; Hashmi, M.Z.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
Year | Grid 1 Path 149, Row 31 | Grid 2 Path 143, Row 31 | Grid 3 Path 151, Row 31 | Grid 4 Path 147, Row 30 |
---|---|---|---|---|
2013 | 6 August, 7 September, 23 September | 27 July, 12 August, 28 August, Sep 29 | 19 July | 9 September, 25 September |
2014 | 10 September, 26 September | 14 July, 15 August, 31 August | 6 July, 6 July, 7 August, 23 August | 10 July, 26 July, 11 August, 12 September |
2015 | 11 July, 12 August, 29 September | 17 July, 18 August, 3 September, 19 September | 9 July, 11 September, 27 September | 13 July |
2016 | 14 August, 15 September | 4 August, 5 September, 21 September | 11 July, 27 July, 28 August, 29 September | 1 September, 17 September |
2017 | 2 September, 18 September | 6 July, 22 July, 7 August | 30 July, 31 August, 16 September | 2 July, 19 August, 4 September, 20 September |
2018 | 19 July, 4 August, 20 August | 10 August, 26 August, 27 September | 1 July, 3 September, 19 September | 21 July, 6 August |
2019 | 7 August, 23 August, 8 September, 24 September | 12 July, 28 July, 13 August, 29 August | 4 July, 5 August, 21 August, 22 September | 24 July, 25 August |
Total | 19 | 24 | 22 | 17 |
Grids | Mean Absolute Error (m) | Root Mean Square Error (m) |
---|---|---|
1 | 14.6 | 16.7 |
2 | 10.2 | 11.5 |
3 | 7.8 | 9.7 |
4 | 9.5 | 10.7 |
Months | Entire TS | NTS | ETS | WTS | CTS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | N | Trend | P | N | Trend | P | N | Trend | P | N | Trend | P | N | Trend | |
Jan | 40 | 35 | ↑ | 3 | 6 | ↓ | 13 | 15 | ↓ | 13 | 9 | ↑ | 11 | 5 | ↑ |
Feb | 36 | 18 | ↑ | 7 | 6 | ↑ | 14 | 7 | ↑ | 8 | 3 | ↑ | 7 | 2 | ↑ |
Mar | 15 | 5 | ↑ | 3 | 1 | ↑ | 8 | 3 | ↑ | 3 | 1 | ↑ | 1 | 0 | ↑ |
Apr | 15 | 3 | ↑ | 6 | 2 | ↑ | 4 | 1 | ↑ | 1 | 0 | ↑ | 4 | 0 | ↑ |
May | 2 | 1 | ↑ | 2 | 0 | ↑ | 0 | 0 | 0 | 1 | ↓ | 0 | 0 | ||
Jun | 1 | 14 | ↓ | 0 | 0 | 0 | 13 | ↓ | 1 | 1 | 0 | 0 | |||
Jul | 9 | 0 | ↑ | 0 | 0 | 6 | 0 | ↑ | 1 | 0 | ↑ | 2 | 0 | ↑ | |
Aug | 9 | 3 | ↑ | 1 | 0 | ↑ | 4 | 0 | ↑ | 3 | 1 | ↑ | 1 | 2 | ↓ |
Sep | 10 | 6 | ↑ | 1 | 1 | 4 | 3 | ↑ | 0 | 2 | ↓ | 5 | 0 | ↑ | |
Oct | 11 | 9 | ↑ | 0 | 0 | 0 | 5 | ↓ | 3 | 3 | 8 | 1 | ↑ | ||
Nov | 10 | 93 | ↓ | 1 | 33 | ↓ | 2 | 48 | ↓ | 4 | 9 | ↓ | 3 | 3 | |
Dec | 67 | 57 | ↑ | 10 | 22 | ↓ | 16 | 18 | ↓ | 32 | 15 | ↑ | 9 | 2 | ↑ |
Months | Entire TS | NTS | ETS | WTS | CTS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SlopeA | Slopep | Slopen | Slopep | Slopen | Slopep | Slopen | Slopep | Slopen | Slopep | Slopen | |
Jan | 4.74 | 22.49 | −15.54 | 10.51 | −11.58 | 27.63 | −16.84 | 17.93 | −15.96 | 25.09 | −15.63 |
Feb | 12.21 | 24.83 | −13.03 | 32.52 | −13.59 | 28.06 | −16.31 | 23.24 | −4.22 | 12.51 | −13.07 |
Mar | 13.53 | 20.70 | −7.99 | 19.47 | −2.90 | 28.17 | −8.14 | 6.07 | −12.64 | 8.47 | 0 |
Apr | 11.98 | 17.06 | −13.45 | 18.00 | −16.19 | 15.88 | −7.95 | 18.29 | 0 | 16.53 | 0 |
May | 9.94 | 18.75 | −7.69 | 18.75 | 0 | 0 | 0 | 0 | −7.69 | 0 | 0 |
Jun | −1.17 | 14.43 | −8.93 | 0 | 0 | 0 | −8.89 | 14.43 | −9.46 | 0 | 0 |
Jul | 1.31 | 9.03 | 0 | 0 | 0 | 9.95 | 0 | 10.10 | 0 | 5.77 | 0 |
Aug | 1.95 | 7.85 | −8.42 | 7.81 | 0 | 7.18 | 0 | 8.14 | −10.10 | 9.67 | −7.58 |
Sep | 4.05 | 14.86 | −13.97 | 26.75 | −13.73 | 7.14 | −13.68 | 0 | −14.52 | 18.67 | 0 |
Oct | 1.12 | 17.04 | −18.34 | 0 | 0 | 0 | −18.55 | 14.65 | −18.17 | 17.93 | −17.79 |
Nov | 1.40 | 15.47 | −22.52 | 15.61 | −26.41 | 13.04 | −22.43 | 14.29 | −11.99 | 18.61 | −12.81 |
Dec | 2.94 | 19.82 | −17.25 | 14.43 | −16.40 | 15.06 | −16.68 | 22.20 | −19.04 | 25.80 | −17.15 |
Months | Temperature | Precipitation | Radiation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NTS | ETS | WTS | CTS | NTS | ETS | WTS | CTS | NTS | ETS | WTS | CTS | |
Jan | −0.008 | −0.004 | −0.025 | −0.024 | 0.014 | 0.016 | −0.037 | 0.032 | 0.032 | 0.043 | −0.021 | 0.023 |
Feb | −0.022 | −0.041 | −0.141 | 0.010 | −0.025 | 0.027 | −0.080 | −0.162 | 0.015 | −0.025 | −0.038 | 0.148 |
Mar | 0.413 | 0.300 | 0.641 ** | 0.450 | −0.133 | −0.073 | −0.174 | −0.307 | 0.430 * | 0.347 | 0.627 ** | 0.545 ** |
Apr | 0.678 ** | 0.559 ** | 0.586 ** | 0.624 ** | −0.205 | −0.180 | −0.408 | −0.412 | 0.681 ** | 0.616 ** | 0.580 ** | 0.715 ** |
May | 0.619 ** | 0.523 * | 0.710 ** | 0.678 ** | −0.155 | −0.130 | 0.004 | −0.036 | 0.627 ** | 0.624 ** | 0.610 ** | 0.687 ** |
Jun | 0.421 | 0.336 | 0.717 ** | 0.554 ** | −0.220 | −0.245 | −0.251 | −0.155 | 0.640 ** | 0.492 * | 0.671 ** | 0.511 * |
Jul | 0.279 | 0.439 | 0.135 | 0.402 | −0.137 | −0.151 | −0.022 | −0.147 | 0.220 | 0.250 | −0.045 | 0.377 |
Aug | 0.244 | 0.375 | 0.292 | 0.296 | −0.318 | −0.227 | −0.010 | −0.383 | 0.321 | 0.300 | 0.120 | 0.406 |
Sep | 0.569 ** | 0.557 ** | 0.520 * | 0.641 ** | −0.599 ** | −0.468 * | −0.385 | −0.555 ** | 0.773 ** | 0.652 ** | 0.598 ** | 0.708 ** |
Oct | 0.564 ** | 0.568 ** | 0.490 * | 0.498 * | −0.604 ** | −0.382 | −0.650 ** | −0.432 * | 0.769 ** | 0.615 ** | 0.768 ** | 0.592 ** |
Nov | 0.501 * | 0.390 | 0.611 ** | 0.399 | −0.496 * | −0.315 | −0.623 ** | −0.391 | 0.642 ** | 0.413 | 0.753 ** | 0.485 * |
Dec | −0.086 | −0.038 | 0.194 | 0.055 | −0.084 | −0.043 | −0.375 | −0.212 | 0.121 | 0.093 | 0.484 * | 0.268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, G.; Tang, Z.; Hu, G.; Wang, J.; Sang, G.; Li, J. Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability 2021, 13, 3992. https://doi.org/10.3390/su13073992
Deng G, Tang Z, Hu G, Wang J, Sang G, Li J. Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability. 2021; 13(7):3992. https://doi.org/10.3390/su13073992
Chicago/Turabian StyleDeng, Gang, Zhiguang Tang, Guojie Hu, Jingwen Wang, Guoqing Sang, and Jia Li. 2021. "Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019" Sustainability 13, no. 7: 3992. https://doi.org/10.3390/su13073992
APA StyleDeng, G., Tang, Z., Hu, G., Wang, J., Sang, G., & Li, J. (2021). Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability, 13(7), 3992. https://doi.org/10.3390/su13073992