Digital Divide in Advanced Smart City Innovations
Abstract
:1. Introduction
RQ:What factors cause the digital divide in the 5G smart city?
- Discuss the digital divide issues as a risk of a sustainable smart city
- Explore the factors affecting the digital divide in a smart city in terms of 5G-based new technologies
- Suggest policy implications to become an inclusive and sustainable smart city using empirical results
2. Related Work on Smart Cities and Digital Divide
2.1. The Digital Divide
2.2. The Concept and Dimension of Smart Cities
3. Digital Divide in an Experience-Based Smart City
4. Determinants of a Digital Divide in a Future Smart City
4.1. Socio-Demographic Factors
4.2. Digital Literacy Factors
4.3. Necessity Factor
5. Methodology
5.1. Data
5.2. Measures
5.3. Analysis Method
6. Results
6.1. Descriptive Statistics
6.2. Correlation Analysis on Continuous Variables
6.3. Results of Logistic Regression Analysis
7. Discussion
- Opening booth for 5G technologies experience for citizens in smart cities
- Operating customized education programs for elderly, low-income families, and residents for rural areas
- Opening regular lecture for improving mobile literacy and sharing knowledge on 5G technologies
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Walker, S. Building understanding of smart city initiatives. In International Conference on Electronic Government; Springer: Berlin/Heidelberg, Germany, 2012; pp. 40–53. [Google Scholar]
- Rao, S.K.; Prasad, R. Impact of 5G technologies on smart city implementation. Wirel. Pers. Commun. 2018, 100, 161–176. [Google Scholar] [CrossRef]
- Ju, J.; Liu, L.; Feng, Y. Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommun. Policy 2018, 42, 881–896. [Google Scholar] [CrossRef]
- Anand, P.B. Right to information and local governance: An exploration. J. Hum. Dev. Capab. 2011, 12, 135–151. [Google Scholar] [CrossRef]
- Meijer, A. E-governance innovation: Barriers and strategies. Gov. Inf. Q. 2015, 32, 198–206. [Google Scholar] [CrossRef]
- Castelnovo, W. Co-production makes cities smarter: Citizens’ participation in smart city initiatives. In Co-Production in the Public Sector; Springer: Cham, Switzerland, 2016; pp. 97–117. [Google Scholar]
- Castells, M. Inofrmation Technology, Globalization and Social Development. (No. 114); UNRISD: Geneva, Switzerland, 1999. [Google Scholar]
- Naisbitt, J. Megatrends; Warner Books: New York, NY, USA, 1982; Volume 17. [Google Scholar]
- Thierer, A. How free computers are filling the digital divide. Herit. Found. Backgr. 2000, 1361, 1–21. [Google Scholar]
- Henriquez, L.; Kresin, F.; de Sensa, N. Amsterdam Smart Citizens Lab: Towards Community-Driven Data Collection. Available online: https://waag.org/sites/waag/files/2018-07/amsterdam-smart-citizen-lab-publicatie.pdf (accessed on 23 January 2017).
- Zandbergen, D.; Uitermark, J. In search of the smart citizen: Republican and cybernetic citizenship in the smart city. Urban Stud. 2020, 57, 1733–1748. [Google Scholar] [CrossRef] [Green Version]
- Selwyn, N. Reconsidering political and popular understandings of the digital divide. New Media Soc. 2004, 6, 341–362. [Google Scholar] [CrossRef]
- Le, N.T.; Hossain, M.A.; Islam, A.; Kim, D.Y.; Choi, Y.J.; Jang, Y.M. Survey of promising technologies for 5G networks. Mob. Inf. Syst. 2016, 2016, 2676589. [Google Scholar] [CrossRef] [Green Version]
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in smart city initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Nam, T. Between success and failure of smart cities: An essay of smart governance. Commun. Korean Inst. Inf. Sci. Eng. 2018, 36, 9–20. (In Korean) [Google Scholar]
- NTIA (US Department of Commerce). Falling through the Net I: A Survey of the ‘Have Nots’ in Rural and Urban America. 1995. Available online: http://www.ntia.doc.gov/ntiahome/fallingthru.html (accessed on 8 January 2021).
- Hargittai, E. Second-level digital divide: Differences in people’s online skills. First Monday 2002, 7. [Google Scholar] [CrossRef]
- Scheerder, A.; van Deursen, A.; van Dijk, J. Determinants of Internet skills, uses, and outcomes. A systematic review of the second-and third-level digital divide. Telemat. Inform. 2017, 34, 1607–1624. [Google Scholar] [CrossRef]
- Van Dijk, J.A. The Deepening Divide: Inequality in the Information Society; Sage Publications: London, UK, 2005. [Google Scholar]
- Van Dijk, J.A. Digital divide research, achievements, and shortcomings. Poetics 2006, 34, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.H. A study on influencing factors on mobile internet usage level and the policy implications to eliminate the digital divide. Korean Policy Stud. Rev. 2017, 26, 151–176. (In Korean) [Google Scholar]
- Min, Y. Internet Access and digital divide: Focusing on access, utilization, and participation. J. Commun. Res. 2011, 48, 150–187. (In Korean) [Google Scholar]
- Colding, J.; Wallhagen, M.; Sörqvist, P.; Marcus, L.; Hillman, K.; Samuelsson, K.; Barthel, S. Applying a systems perspective on the notion of the smart city. Smart Cities 2020, 3, 420–429. [Google Scholar] [CrossRef]
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, R.J.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, J.H. Understanding smart cities: An integrative framework. In Proceedings of the HICSS, 45th Hawaii Conference, Maui, HI, USA, 4–7 January 2012; pp. 2289–2297. [Google Scholar]
- Giffinger, R.; Gudrun, H. Smart cities ranking: An effective instrument for the positioning of the cities? ACE Archit. City Environ. 2010, 4, 7–26. [Google Scholar]
- Washburn, D.; Sindhu, U.; Balaouras, S.; Dines, R.A.; Hayes, N.; Nelson, L.E. Helping CIOs understand “smart city” initiatives. Growth 2009, 17, 1–17. [Google Scholar]
- Lombardi, P.; Giordano, S.; Farouh, H.; Yousef, W. Modelling the smart city performance. Innov. Eur. J. Soc. Sci. Res. 2012, 25, 137–149. [Google Scholar] [CrossRef]
- Chun, S.A.; Kim, D.; Cho, J.S.; Chuang, M.; Shin, S.; Jun, D. Framework for smart city model composition: Choice of component design models and risks. Int. J. E-Plan. Res. 2021, 10, 50–69. [Google Scholar]
- Shapiro, J.M. Smart cities: Quality of life, productivity, and the growth effects of human capital. Rev. Econ. Stat. 2008, 88, 324335. [Google Scholar]
- Dameri, R.P. Searching for smart city definition: A comprehensive proposal. Int. J. Comput. Technol. 2013, 11, 2544–2551. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Conceptualizing smart cities with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, MD, USA, 12–15 June 2011; pp. 282–291. [Google Scholar]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Mckinsey. Smart Cities: Digital Solution for a More Livable Future; Mckinsey Global Institute: New York, NY, USA, 2018. [Google Scholar]
- Xiang, W.; Zheng, K.; Shen, X.S. (Eds.) 5G Mobile Communications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Skouby, K.E.; Lynggaard, P. Smart home and smart city solutions enabled by 5G, IoT, AAI, and CoT services. In Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India, 27–29 November 2014; pp. 874–878. [Google Scholar]
- Holland, R. Will the real Smart City please stand up? Creative, progressive, or just entrepreneurial. City 2008, 12, 302–320. [Google Scholar]
- Lindskog, H. Smart communities initiatives. In Proceedings of the 3rd ISOneWorld Conference, Las Vegas, NV, USA, 14–16 April 2004; Volume 16, pp. 14–16. [Google Scholar]
- Coe, A.; Paquet, G.; Roy, J. E-governance and smart communities: A social learning challenge. Soc. Sci. Comput. Rev. 2001, 19, 80–93. [Google Scholar] [CrossRef]
- Odendaal, N. Information and communication technology and local governance: Understanding the difference between cities in developed and emerging economies. Comput. Environ. Urban Syst. 2003, 27, 585–607. [Google Scholar] [CrossRef]
- Hargittai, E.; Hinnant, A. Digital inequality: Differences in young adults’ use of the Internet. Commun. Res. 2008, 35, 602–621. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Eom. A study on influencing factors on mobile Internet use of marriage immigrants in Korea. J. Korean Assoc. Reg. Inf. Soc. 2019, 22, 73–109. (In Korean) [Google Scholar]
- Van Deursen, A.J.; Van Dijk, J.A. The digital divide shifts to differences in usage. New Media Soc. 2014, 16, 507–526. [Google Scholar] [CrossRef]
- Helsper, E.J. Gendered internet use across generations and life stages. Commun. Res. 2010, 37, 352–374. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.C.; Kim, J. Digital divide: Conceptual and practical implications. Korean J. Sociol. 2002, 36, 123–155. (In Korean) [Google Scholar]
- Mossberger, K.; Tolbert, C.J.; Stansbury, M. Virtual Inequality: Beyond the Digital Divide; Georgetown University Press: Washington, DC, USA, 2003. [Google Scholar]
- Schiller, H. Information Inequality. The Deepening Social Crisis in America; Routledge: New York, NY, USA, 1996. [Google Scholar]
- Selwyn, N.; Gorard, S.; Furlong, J.; Madden, L. Older adults’ use of information and communications technology in everyday life. Aging Soc. 2003, 23, 561. [Google Scholar] [CrossRef] [Green Version]
- Hargittai, E.; Shafer, S. Differences in actual and perceived online skills: The role of gender. Soc. Sci. Q. 2006, 87, 432–448. [Google Scholar] [CrossRef]
- Harper, V. The digital divide (DD): A reconceptualization for educators. AACE J. 2003, 11, 96–103. [Google Scholar]
- Ono, H.; Zavodny, M. Gender and the Internet. Soc. Sci. Q. 2003, 84, 111–121. [Google Scholar] [CrossRef]
- Wasserman, I.M.; Richmond-Abbott, M. Gender and the Internet: Causes of variation in access, level, and scope of use. Soc. Sci. Q. 2005, 86, 252–270. [Google Scholar] [CrossRef]
- Bannert, M.; Arbinger, P.R. Gender-related differences in exposure to and use of computers: Results of a survey of secondary school students. Eur. J. Psychol. Educ. 1996, 11, 269–282. [Google Scholar] [CrossRef]
- Broos, A. Gender and information and communication technologies (ICT) anxiety: Male self-assurance and female hesitation. Cyberpsychol. Behav. 2005, 8, 21–31. [Google Scholar] [CrossRef]
- Comber, C.; Colley, A.; Hargreaves, D.J.; Dorn, L. The effects of age, gender and computer experience upon computer attitudes. Educ. Res. 1997, 39, 123–133. [Google Scholar] [CrossRef]
- Dutton, W.; Helsper, E. Internet in Britain: 2007, Oxford Internet Surveys; University of Oxford, Oxford Internet Institute: Oxford, UK, 2007. [Google Scholar]
- Fallows, D. How Women and Men Use the Internet. Pew Internet American Life Project. 2005. Available online: http://www.pewinternet.org/Reports/2005/How-Women-and-Men-Use-the-Internet.aspx (accessed on 10 November 2007).
- Kim, H. Age-related differences in the digital divide: Focusing on married female immigrants. Fam. Environ. Res. 2018, 56, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Loges, W.E.; Jung, J.Y. Exploring the digital divide: Internet connectedness and age. Commun. Res. 2001, 28, 536–562. [Google Scholar] [CrossRef]
- Millward, P. The ‘grey digital divide’: Perception, exclusion, and barriers of access to the Internet for older people. First Monday 2003. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Kim, D. A study on the relationship between mobile literacy and life satisfaction of the elderly: Focusing on the mediating effect of mobile-based living service usage level. J. Gov. Stud. 2014, 227–267. (In Korean) [Google Scholar]
- Jones, S.; Fox, S. Generations Online in 2009; Pew Internet American Life Project: Washington, DC, USA, 2009; pp. 1–9. [Google Scholar]
- Hwang, Y.; Park, N.; Lee, H.; Lee, W.T. Exploring digital literacy in convergent media environment: Communication competence and generation gap. Korean J. J. Commun. Stud. 2012, 56, 198–225. (In Korean) [Google Scholar]
- Song, K.J. Exploratory study on digital divide of multicultural families and preemptive policy effects. Soc. Theory 2015, 48, 135–163. [Google Scholar]
- Van Dijk, J.A.G.M.; Hacker, K. The digital divide as a complex and dynamic phenomenon special issue: Remapping the digital divide. Inf. Soc. 2003, 19, 315–326. [Google Scholar] [CrossRef]
- Servon, L. Four myths about the digital divide. Plan. Theory Pract. 2002, 3, 222–227. [Google Scholar] [CrossRef]
- Sung, W. A study on digital literacy and digital divide in the smart city. Korean Soc. Public Adm. 2014, 25, 53–75. (In Korean) [Google Scholar]
- Katz, J.E.; Rice, R.E. Social Consequences of Internet Use: Access, Involvement, and Interaction; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Kim, E.J. A study on the policy alternatives for bridging the generation gap across the digital divide. Korean Policy Sci. Rev. 2006, 11, 195–219. (In Korean) [Google Scholar]
- Lee, S. Analysis of the effects of smart devices on digital divide in America. J. Korean Libr. Inf. Sci. Soc. 2012, 43, 29–52. (In Korean) [Google Scholar]
- Hindman, D.B. The rural-urban digital divide. J. Mass Commun. Q. 2000, 77, 549–560. [Google Scholar] [CrossRef]
- Kim, J.C.; Min, B.I. Digital divide between the Seoul metropolitan area and local region. Korean Gov. Rev. 2006, 26, 115–143. (In Korean) [Google Scholar]
- Townsend, L.; Sathiaseelan, A.; Fairhurst, G.; Wallace, C. Enhanced broadband access as a solution to the social and economic problems of the rural digital divide. Local Econ. 2013, 28, 580–595. [Google Scholar] [CrossRef] [Green Version]
- Vicente, M.R.; López, A.J. Assessing the regional digital divide across the European Union-27. Telecommun. Policy 2011, 35, 220–237. [Google Scholar] [CrossRef]
- Pereira, J.P.R. Broadband access and the digital divide. In New Advances in Information Systems and Technologies; Springer: Cham, Switzerland, 2016; pp. 363–368. [Google Scholar]
- Fong, M.W. Digital divide between urban and rural regions in China. Electron. J. Inf. Syst. Dev. Ctries. 2009, 36, 1–12. [Google Scholar] [CrossRef]
- Szeles, M.R. New insights from a multilevel approach to the regional digital divide in the European Union. Telecommun. Policy 2018, 42, 452–463. [Google Scholar] [CrossRef]
- Yeo, C.H.; Seo, Y.H. An analysis on the spatial spillover patterns of aging population in rural areas. J. Korean Assoc. Geogr. Inf. Stud. 2014, 17, 39–53. (In Korean) [Google Scholar] [CrossRef]
- Dobransky, K.; Hargittai, E. The disability divide in internet access and use. Inf. Commun. Soc. 2006, 9, 313–334. [Google Scholar] [CrossRef] [Green Version]
- Vicente, M.R.; López, A.J. A multidimensional analysis of the disability digital divide: Some evidence for Internet use. Inf. Soc. 2010, 26, 48–64. [Google Scholar] [CrossRef]
- Merchant, G. Writing the future in the digital age. Literacy 2007, 41, 118–128. [Google Scholar] [CrossRef]
- Eshet, Y. Digital literacy: A conceptual framework for survival skills in the digital era. J. Educ. Multimed. Hypermedia 2004, 13, 93–106. [Google Scholar]
- Ahn, U. A study on factors of determining continuous use of SNS: Based on technology readiness acceptance model. J. Korea Serv. Manag. Soc. 2016, 17, 257–258. [Google Scholar]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 2000. [Google Scholar]
- Fazio, R.H. How do attitudes guide behavior? In Handbook of Motivation and Cognition: Foundations of Social Behavior; Guilford Press: New York, NY, USA, 1986; Volume 1, pp. 204–243. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- National Information Society Agency. The Report on the Digital Divide; National Information Society Agency: Daegu, Korea, 2020.
- Knoke, D.; Burke, P.J.; Burke, P.J. Log-Linear Models; Sage: London, UK, 1980; Volume 20. [Google Scholar]
- Morrow-Howell, N.; Proctor, E. The use of logistic regression in social work research. J. Soc. Serv. Res. 1993, 16, 87–104. [Google Scholar] [CrossRef]
- Glasgow, N.; Berry, E.H. Introduction to rural aging in twenty-first-century America. In Rural Aging in 21st Century America; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–13. [Google Scholar]
Dimension | Current Smart Cities Services | Future Smart Cities Services (Based on 5G or Beyond) |
---|---|---|
Contents provision | Information needs and provision services | Immersive use experience services |
Channel | Textual or single-channel interaction | Multimodal/multi-media Interactions/playable |
Knowledge generation | Data Analytics-based patterns or predictability | Inference-based Predictions and anticipatory services |
Focus | Surveillance and alerting oriented service | Executing automated complex sequence of actions |
The role of citizens | Consumers | Active DIY actors |
Variable | Frequency | (%) | Variable | Frequency | (%) | ||
---|---|---|---|---|---|---|---|
Gender | Male | 3339 | 50.06 | Education attain level (graduated) | Elementary | 836 | 12.12 |
Female | 3391 | 49.94 | Middle | 1041 | 15.09 | ||
Age | Below 10 | 14 | 0.2 | High | 2848 | 41.28 | |
10~19 | 898 | 101 | College/ university | 2175 | 31.52 | ||
20~29 | 950 | 13.77 | Monthly income (thousand KRW) 1 USD = KRW 1130 (19 March 2021) | 0~990 | 239 | 3.81 | |
30~39 | 1012 | 14.67 | 1000~1999 | 592 | 8.58 | ||
40~49 | 1187 | 17.20 | 2000~2999 | 877 | 12.71 | ||
50~59 | 1211 | 17.55 | 3000~3999 | 1728 | 25.04 | ||
60~69 | 866 | 12.55 | 4000~4999 | 1539 | 22.30 | ||
Above 70 | 762 | 11.05 | 5000~5999 | 1300 | 18.84 | ||
Disability status | YES | 202 | 2.93 | Over 6000 | 625 | 9.06 | |
NO | 6698 | 97.07 | Residential area | Si (city) | 6309 | 91.43 | |
Gun (rural) | 591 | 8.57 |
Variables | Survey Items and Measurement | |
---|---|---|
The Use Experience with New Technologies | Experience in using the following lists of intelligent technologies (AI speakers, mixed reality, smart homes, drones, blockchain, self-driving cars, and biometrics) No (0), Yes (1). Coded as dummy variables | |
Socio-demographic factors | Gender | Male (0) or Female (1) |
Age | The age of respondents | |
Education | The highest level of education Elementary (1), Middle School (2), High School (3), College and University (4) | |
Income | The level of monthly income (thousand Won) | |
Region | The residential area of respondent City (0), Rural (1). Coded as dummy variables | |
Disability status | The Disability status of the respondent No (0), Yes (1). Coded as dummy variables | |
Digital literacy factors | Computer literacy | The level of operational skills of computer The average value of the following seven items, which are measured with a four-point ordinal scale. (1) Able to set up, delete and update the software (2) Able to connect network (wired and wireless) and use it (3) Able to set up user preference of the web browser (Chrome, Internet Explorer) (4) Able to connect and use various devices (digital camera, printer, scanner) (5) Able to transmit the file to others on the Internet. (6) Able to scan and clean the virus program. (7) Able to draw up a document on a word processer. |
Mobile literacy | The level of operational skills of a mobile device The average value of the following seven items, which are measured with a four-point ordinal scale. (1) Able to manage settings of the device. (2) Able to set up a wireless network of the device. (3) Able to send the file device to a computer. (4) Able to transmit own files or images to others. (5) Able to search, download, update, delete applications on device. (6) Able to scan and clean the virus on the device. (7) Able to write a document with the device. | |
Necessity factor | The perception of necessity | The level of perceived necessity of respondents on new technologies (AI speakers, mixed reality, smart homes, drones, blockchain, self-driving cars, and biometrics) The response to each technology’s necessity level is measured by the following categories with a four-point ordinal scale. Measured with a four-point ordinal scale. (1) Completely unnecessary. (2) Unnecessary. (3) Necessary. (4) Completely necessary. |
Variable | Obs. | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|
Digital Literacy | Computer | 6900 | 2.614 | 0.953 | 1 | 4 |
Mobile | 6900 | 2.884 | 0.880 | 1 | 4 | |
Necessity | AI-Speakers | 6900 | 2.753 | 0.661 | 1 | 4 |
Biometrics | 6900 | 2.816 | 0.722 | 1 | 4 | |
Drones | 6900 | 2.838 | 0.740 | 1 | 4 | |
Smart Homes | 6900 | 2.819 | 0.708 | 1 | 4 | |
Mixed Reality | 6900 | 2.525 | 0.753 | 1 | 4 | |
Self-driving car | 6900 | 2.827 | 0.794 | 1 | 4 | |
Blockchain | 6900 | 2.558 | 0.759 | 1 | 4 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | Age | 1.00 | |||||||||||
(2) | Education | −0.12 (0.00) | 1.00 | ||||||||||
(3) | Income | −0.47 (0.00) | 0.4 (0.00) | 1.00 | |||||||||
(4) | Computer Literacy | −0.59 (0.00) | 0.46 (0.00) | 0.47 (0.00) | 1.00 | ||||||||
(5) | Mobile Literacy | −0.58 (0.00) | 0.45 (0.00) | 0.48 (0.00) | 0.84 (0.00) | 1.00 | |||||||
(6) | Necessity of A.S. | −0.26 (0.00) | 0.16 (0.00) | 0.20 (0.00) | 0.29 (0.00) | 0.29 (0.00) | 1.00 | ||||||
(7) | Necessity of B.M. | −0.30 (0.00) | 0.22 (0.00) | 0.22 (0.00) | 0.33 (0.00) | 0.32 (0.00) | 0.51 (0.00) | 1.00 | |||||
(8) | Necessity of Drones | −0.25 (0.00) | 0.17 (0.00) | 0.21 (0.00) | 0.29 (0.00) | 0.27 (0.00) | 0.46 (0.00) | 0.55 (0.00) | 1.00 | ||||
(9) | Necessity of S.H. | −0.24 (0.00) | 0.20 (0.00) | 0.22 0.00) | 0.28 (0.00) | 0.27 (0.00) | 0.51 (0.00) | 0.53 (0.00) | 0.52 (0.00) | 1.00 | |||
(10) | Necessity of MR. | −0.24 (0.00) | 0.18 (0.00) | 0.19 (0.00) | 0.26 (0.00) | 0.23 (0.00) | 0.55 (0.00) | 0.49 (0.00) | 0.49 (0.00) | 0.48 (0.00) | 1.00 | ||
(11) | Necessity of S.D.C | −0.21 (0.00) | 0.18 (0.00) | 0.18 (0.00) | 0.25 (0.00) | 0.25 (0.00) | 0.49 (0.00) | 0.48 (0.00) | 0.53 (0.00) | 0.49 (0.00) | 0.54 (0.00) | 1.00 | |
(12) | Necessity of BC. | −0.23 (0.00) | 0.19 (0.00) | 0.20 (0.00) | 0.26 (0.00) | 0.24 (0.00) | 0.46 (0.00) | 0.50 (0.00) | 0.49 (0.00) | 0.52 (0.00) | 0.57 (0.00) | 0.53 (0.00) | 1.00 |
DV: Use Experience | (1) AI Speakers | (2) Biometrics | (3) Drones | (4) Smart Homes | (5) Mixed Reality | (6) Self-Driving | (7) Blockchain | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR. | P > z | OR. | P > z | OR. | P > z | OR. | P > z | OR. | P > z | OR. | P > z | OR. | P > z | ||
Socio demogra-phic | Gender (female) | 1.065 | 0.290 | 1.067 | 0.297 | 0.964 | 0.683 | 0.865 | 0.128 | 0.973 | 0.794 | 0.832 | 0.274 | 1.280 | 0.236 |
Age | 0.963 | 0.000 | 0.963 | 0.000 | 0.961 | 0.000 | 0.979 | 0.000 | 0.957 | 0.000 | 0.993 | 0.272 | 0.981 | 0.029 | |
Education | 1.403 | 0.000 | 1.515 | 0.000 | 1.153 | 0.013 | 1.586 | 0.000 | 1.386 | 0.000 | 1.351 | 0.008 | 1.788 | 0.000 | |
Income | 1.104 | 0.000 | 1.082 | 0.000 | 1.122 | 0.000 | 1.077 | 0.008 | 0.999 | 0.961 | 1.069 | 0.165 | 0.973 | 0.638 | |
Disabled (yes) | 0.630 | 0.033 | 1.044 | 0.840 | 0.941 | 0.851 | 0.851 | 0.650 | 0.824 | 0.630 | N/A | 0.941 | 0.933 | ||
Region (rural) | 0.636 | 0.000 | 0.541 | 0.000 | 0.492 | 0.003 | 0.706 | 0.111 | 0.583 | 0.034 | 0.976 | 0.942 | 0.266 | 0.066 | |
Digital Literacy | Computer literacy | 1.266 | 0.000 | 1.200 | 0.010 | 1.054 | 0.622 | 1.055 | 0.635 | 1.567 | 0.000 | 1.370 | 0.061 | 1.477 | 0.068 |
Mobile literacy | 1.477 | 0.000 | 1.428 | 0.000 | 1.352 | 0.007 | 1.464 | 0.002 | 1.182 | 0.202 | 1.143 | 0.495 | 1.037 | 0.884 | |
Necessity | Necessity | 1.486 | 0.000 | 1.653 | 0.000 | 1.109 | 0.124 | 1.744 | 0.000 | 1.617 | 0.000 | 1.319 | 0.018 | 1.591 | 0.002 |
_cons | 0.017 | 0.000 | 0.010 | 0.000 | 0.027 | 0.000 | 0.001 | 0.000 | 0.005 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | |
Obs | 6790 | 6790 | 6790 | 6790 | 6790 | 6956 | 6790 | ||||||||
LR Chi2 | 1670.36 | 1409.86 | 418.23 | 382.38 | 426.45 | 70.46 | 80.46 | ||||||||
Nagelkerke R2 | 0.305 | 0.276 | 0.134 | 0.132 | 0.164 | 0.054 | 0.085 |
Factor/Variables | AI Speakers | Bio Metrics | Drones | Smart Homes | Mixed Reality | Self-Driving | Block Chain | |
---|---|---|---|---|---|---|---|---|
Socio-demographic factor | Gender (Female) | - | - | - | - | - | - | - |
Age (Old) | Negative | Negative | Negative | Negative | Negative | - | Negative | |
Education (High) | Positive | Positive | Positive | Positive | Positive | Positive | Positive | |
Income (High) | Positive | Positive | Positive | Positive | - | - | - | |
Disability (Yes) | Negative | - | - | - | - | - | - | |
Region (Rural) | Negative | Negative | Negative | - | Negative | - | Negative | |
Digital literacy factor | Computer | Positive | Positive | - | - | Positive | Positive | Positive |
Mobile | Positive | Positive | Positive | Positive | - | - | - | |
Necessity factor | Perception of necessity | Positive | Positive | - | Positive | Positive | Positive | Positive |
Technologies | Effect (+/−) | Confirmed Hypotheses | Determinants |
---|---|---|---|
AI speakers | Positive | H1b, H1c, H2, H2a, H3 | Education, income, computer literacy, mobile literacy, necessity |
Negative | H1a, H1e, H1d | Age, disability, region | |
Biometrics | Positive | H1b, H1c, H2, H2a, H3 | Education, income, computer literacy, mobile literacy, necessity |
Negative | H1a, H1e | Age, region | |
Drones | Positive | H1b, H1c, H2b | Education, income, mobile literacy |
Negative | H1a, H1e | Age, region | |
Smart Homes | Positive | H1b, H1c, H2b, H3 | Education, income, mobile literacy, necessity |
Negative | H1a | Age | |
Mixed Reality | Positive | H1b, H2, H3 | Education, computer literacy, necessity |
Negative | H1a, H1e, | Age, region | |
Self-driving Car | Positive | H1b, H2 | Education, computer literacy |
Negative | N/A | N/A | |
BlockChain | Positive | H1b, H2, H3 | Education, computer literacy, necessity |
Negative | H1a, H1e | Age, region |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.-Y.; Kim, D.; Chun, S.A. Digital Divide in Advanced Smart City Innovations. Sustainability 2021, 13, 4076. https://doi.org/10.3390/su13074076
Shin S-Y, Kim D, Chun SA. Digital Divide in Advanced Smart City Innovations. Sustainability. 2021; 13(7):4076. https://doi.org/10.3390/su13074076
Chicago/Turabian StyleShin, Seung-Yoon, Dongwook Kim, and Soon Ae Chun. 2021. "Digital Divide in Advanced Smart City Innovations" Sustainability 13, no. 7: 4076. https://doi.org/10.3390/su13074076
APA StyleShin, S. -Y., Kim, D., & Chun, S. A. (2021). Digital Divide in Advanced Smart City Innovations. Sustainability, 13(7), 4076. https://doi.org/10.3390/su13074076