Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Surveys
- Identification of general information about the farm (e.g., UAA);
- Structural characteristics of the farm: (i) crop production (e.g., crop rotation properties, land use, bare soil duration, sowing dates, chemical and organic fertilization, irrigation, crop residue management, yields) and (ii) livestock production (e.g., species, number of head) to estimate the amount of manure produced;
- Characteristics of the date palm crop (e.g., age, density, cultivars, yield).
2.3. Soil Sampling and Analysis
2.4. Estimation of Amounts of Manure and Dry Palms Produced
2.5. Statistical Analysis
3. Results
3.1. Assessment of Agricultural Practices in Oasis Cropping Systems
3.1.1. Typology of Oasis Cropping Systems
- Type I (traditional). Date palm associated with other crops: of the 47 farms, 32 followed the traditional system (Figure 1b). On these small farms (mean ± standard deviation (SD) = 2.3 ± 0.8 ha), the mean density of date palm was 50 trees.ha−1; the spaces between trees varied among plots on the same farm and among farms (Table 1). The mean number of date palm cultivars grown per farm was ca. 3. Associated crops were mainly annual crops, such as straw cereals (durum wheat: Triticum turgidum L.; soft wheat; barley: Hordeum vulgare), maize, faba bean (Vicia faba), cumin, and watermelon). There were also some perennial crops, such as alfalfa and henna. Livestock was an important element in this cropping system, especially the prolific and productive local sheep breed, D’man (12 ± 9.4 animals per farm), followed by goats (7 ± 5.2 animals per farm) and cattle (1 ± 1 animals per farm).
- Type II (modern). Monocropped date palm: The three farms of this type (mean ± SD UAA of 12.3 ± 4.9 ha) were entirely monocropped with date palm (Figure 1c). This new type, called “extensions”, is established on the edges of traditional oases and based on one cultivar plantation: Mejhoul or Boufeggous. The date palms had higher density (138 ± 8.6 trees.ha−1), with a fixed distance between palm trees and tree rows and drip irrigation from groundwater. This type of cropping system had no livestock.
- Type III. Mixed system of date palm associated with other crops and monocropped date palm: the 12 farms of this type had a mean UAA of 8.9 ± 3.7 ha. On average, 42% of the UAA was planted with date palm associated with other crops (traditional Type III), while 58% was planted with monocropped date palm (modern Type III). Thus, it is a mixed system that combines both traditional and modern systems. In plots of traditional Type III, the density of date palm was the same as that in the Type I cropping system (50 ± 25.7 trees.ha−1), with a variable distance between tree rows. Three cultivars of date palm were grown on each plot. In contrast, the plots of monocropped date palm (modern Type III) had the same density and fixed spacing as those in the Type II system, but only the Mejhoul or Boufeggous cultivar was monocropped, like in Type II. Livestock was also an important element in this system, especially sheep (20 ± 12.8 animals per farm). The presence of livestock along with cropping systems is crucial for soil fertility in traditional systems, but its absence in modern systems results in flows of organic inputs.
3.1.2. Current Management of Cropping Systems
3.1.3. Soil-Property Analysis of Cropping Systems
3.2. Potential Amounts of OWP for Recycling-Model-Based Circular Agriculture
- Livestock manure production: Sheep and cattle farming produces a large amount of manure each year, given the population of the local D’man sheep breed and the large volume of manure produced per cow. On average, Type I systems (Figure 4) produced less manure (19.4 t.farm−1.yr−1) than Type III systems (24.2 t.farm−1.yr−1). According to the surveys, livestock size, and even the presence or absence of livestock, varied depending on climate conditions. After successive drought years, there was a lack of fodder and cereal straw, which forced farmers to sell their animals. As a result, manure supply was reduced during dry seasons.
- Date palm residue production: The mean number of dry palms produced annually differed significantly among the modern (Type II), mixed (Type III), and traditional (Type I) systems (19.60, 5.73 and 1.39 t per farm, respectively) (Figure 4). Traditional cropping systems produced significantly more dry palms per tree per year (mean of 16.8) than modern systems (13.0) (Table 5). The mean mass of a dry palm was 1.17 kg, regardless of the system. The surveyed farms in traditional and modern systems contained 118.6 and 100.0 ha of UAA, respectively. Modern systems produced significantly more dry palms (mean of 210.0 t) than traditional systems (116.2 t). Modern systems produced significantly higher amounts of OC, TN, TP, and TK than traditional systems.
4. Discussion
4.1. Potential Impacts of Current Agricultural Practices and Management of Organic Input Flows on Soil Fertility
4.2. Circular Agriculture of Date Palm Residues: A Solution for Oasis Sustainability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, Z.; Jian-Wei, W.; Qiu-Hong, Z.; Yun-Jiang, Y. A Preliminary Study of Oasis Evolution in the Tarim Basin, Xinjiang, China. J. Arid Environ. 2003, 55, 545–553. [Google Scholar] [CrossRef]
- Toutain, G.; Dollé, V. Situation des Systèmes oasiens en régions chaudes. Cah. Rech. Dév. 1989, 22, 3–14. [Google Scholar]
- Santoro, A.; Venturi, M.; Ben Maachia, S.; Benyahia, F.; Corrieri, F.; Piras, F.; Agnoletti, M. Agroforestry Heritage Systems as Agrobiodiversity Hotspots. The Case of the Mountain Oases of Tunisia. Sustainability 2020, 12, 4054. [Google Scholar] [CrossRef]
- Janati, A. Les cultures fourragères. In Les Systèmes Agricoles Oasiens; Dollé, V., Toutain, G., Eds.; Options Méditerranéennes: Série A. Séminaires Méditerranéens; CIHEAM: Montpellier, France, 1990; pp. 164–169. [Google Scholar]
- Sedra, M. Guide de Phoeniciculteur, Mise En Place et Conduite Des. Vergers Phoenicicoles Maroc; INRA éditions: Paris, France, 2012; p. 311. [Google Scholar]
- Schilling, J.; Freier, K.; Hertig, E.; Scheffran, J. Climate Change, Vulnerability and Adaptation in North Africa with Focus on Morocco. Agric. Ecosyst. Environ. 2012, 156, 12–26. [Google Scholar] [CrossRef]
- Rignall, K. The Labor of Agrodiversity in a Moroccan Oasis. J. Peasant Stud. 2016, 43, 711–730. [Google Scholar] [CrossRef]
- Sraïri, M.T.; Azahra M’ghar, F.; Benidir, M.; Bengoumi, M. Analyse Typologique de La Diversité et Des Performances de l’élevage Oasien. Cah. Agric. 2017, 26, 15005. [Google Scholar] [CrossRef] [Green Version]
- Karmaoui, A.; Ifaadassan, I.; Messouli, M.; Khebiza, M. Sustainability of the Moroccan Oasean System (Case Study: Middle Draa Valley). Glob. J. Technol. Optim. 2015, 6, 170. [Google Scholar] [CrossRef]
- Bouaziz, A.; Hammani, A.; Kuper, M. Les Oasis En Afrique Du Nord: Dynamiques Territoriales et Durabilité Des Systèmes de Production Agricole. Cah. Agric. 2018, 27, 14001. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.; Govaerts, B.; De León, F.; Hidalgo, C.; Dendooven, L.; Sayre, K.D.; Etchevers, J. Fourteen Years of Applying Zero and Conventional Tillage, Crop Rotation and Residue Management Systems and Its Effect on Physical and Chemical Soil Quality. Eur. J. Agron. 2009, 30, 228–237. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 2004, 68, 1945. [Google Scholar] [CrossRef]
- Farquharson, R.J.; Schwenke, G.D.; Mullen, J.D. Should We Manage Soil Organic Carbon in Vertosols in the Northern Grains Region of Australia? Aust. J. Exp. Agric. 2003, 43, 261–270. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Campbell, C.A.; McConkey, B.G.; Zentner, R.P.; Selles, F.; Curtin, D. Long-Term Effects of Tillage and Crop Rotations on Soil Organic C and Total N in a Clay Soil in Southwestern Saskatchewan. Can. J. Soil Sci. 1996, 76, 395–401. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop Rotational Diversity Enhances Belowground Communities and Functions in an Agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Lopez-Bellido, L.; Fuentes, M.; Castillo, J.E.; Lopez-Garrido, F.J.; Fernandez, E.J. Long-Term Tillage, Crop Rotation, and Nitrogen Fertilizer Effects on Wheat Yield under Rainfed Mediterranean Conditions. Agron. J. 1996, 88, 783–791. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V. Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties. Sustainability 2019, 11, 2770. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Yu, A.; Chai, Q.; Hu, F.; Feng, F.; Gan, Y. Wheat and Maize Relay-Planting with Straw Covering Increases Water Use Efficiency up to 46%. Agron. Sustain. Dev. 2015, 35, 815–825. [Google Scholar] [CrossRef]
- Gong, L.; He, G.; Liu, W. Long-Term Cropping Effects on Agricultural Sustainability in Alar Oasis of Xinjiang, China. Sustainability 2016, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Biculture Legume-Cereal Cover Crops for Enhanced Biomass Yield and Carbon and Nitrogen. Agron. J. 2005, 97, 1403–1412. [Google Scholar] [CrossRef] [Green Version]
- Austin, A.T.; Ballaré, C.L. Dual Role of Lignin in Plant Litter Decomposition in Terrestrial Ecosystems. Proc. Natl. Acad. Sci. USA 2010, 107, 4618–4622. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Mahmood, T.; Azam, F.; Qureshi, R.M. Comparative Effects of Applying Leguminous and Non-Leguminous Green Manures and Inorganic N on Biomass Yield and Nitrogen Uptake in Flooded Rice (Oryza sativa L.). Biol. Fertil. Soils 2004, 40, 147–152. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation Agriculture and Soil Carbon Sequestration: Between Myth and Farmer Reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Saffih-Hdadi, K.; Mary, B. Modeling Consequences of Straw Residues Export on Soil Organic Carbon. Soil Biol. Biochem. 2008, 40, 594–607. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Liang, B.C.; Ellert, B.H.; Drury, C.F. Fertilization Effects on Soil Organic Matter Turnover and Corn Residue C Storage. Soil Sci. Soc. Am. J. 1996, 60, 472–476. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. A Review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.A.; Follett, R.F. Carbon and Nutrient Cycles. J. Soil Water Conserv. 2002, 57, 455. [Google Scholar]
- Acharya, P.; Ghimire, R.; Cho, Y. Linking Soil Health to Sustainable Crop Production: Dairy Compost Effects on Soil Properties and Sorghum Biomass. Sustainability 2019, 11, 3552. [Google Scholar] [CrossRef] [Green Version]
- Sebillotte, M. Agronomie et Agriculture. Essai d’analyse Des Tâches de l’agronome. Cah. ORSTOM 1974, 24, 3–25. [Google Scholar]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.; Ding, G. Effects of Agricultural Management on Soil Organic Matter and Carbon Transformation—A Review. Plant Soil Environ. 2006, 52, 531. [Google Scholar] [CrossRef] [Green Version]
- Jarousseau, H.; Wassenaar, T.; Sallote, B.; Paillat, J.-M. Recyclage des déchets et dynamiques sociales dans la transition du rural au périurbain à la Réunion. Cah. Agric. 2016, 25, 65002. [Google Scholar] [CrossRef] [Green Version]
- Hakkou, A.; Bouakka, M. Oasis de Figuig: État Actuel de La Palmeraie et Incidence de La Fusariose Vasculaire. Sci. Chang. Planétaires Sécheresse 2004, 15, 147–158. [Google Scholar]
- Ali, Y.S.S. Use of Date Palm Leaves Compost as A Substitution to Peatmoss. Am. J. Plant Physiol. 2008, 3, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Atinkut, H.B.; Yan, T.; Zhang, F.; Qin, S.; Gai, H.; Liu, Q. Cognition of Agriculture Waste and Payments for a Circular Agriculture Model in Central China. Sci. Rep. 2020, 10, 10826. [Google Scholar] [CrossRef] [PubMed]
- Muscio, A.; Sisto, R. Are Agri-Food Systems Really Switching to a Circular Economy Model? Implications for European Research and Innovation Policy. Sustainability 2020, 12, 5554. [Google Scholar] [CrossRef]
- De Boer, I.J.M.; van Ittersum, M.K. Circularity in Agricultural Production; Wageningen University & Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- Russo, I.; Confente, I.; Scarpi, D.; Hazen, B. From Trash to Treasure: The Impact of Consumer Perception of Bio-Waste Products in Closed-Loop Supply Chains. J. Clean. Prod. 2019, 218, 966–974. [Google Scholar] [CrossRef]
- Bekchanov, M.; Mirzabaev, A. Circular Economy of Composting in Sri Lanka: Opportunities and Challenges for Reducing Waste Related Pollution and Improving Soil Health. J. Clean. Prod. 2018, 202, 1107–1119. [Google Scholar] [CrossRef]
- Kradi, C.; Andriamainty Fils, J.M.; Jeddou, R.D.; Naït Merzoug, S.; Nguyen, V.T.; Ait Hmida, A. Analyse Des Systèmes de Production Oasiens et Des Stratégies Des Agriculteurs Dans La Province d’Errachidia Maroc; ICRA: Marrakesh, Morocco, 2002; p. 139. [Google Scholar]
- Molle, F.; Tanouti, O. Squaring the Circle: Agricultural Intensification vs. Water Conservation in Morocco. Agric. Water Manag. 2017, 192, 170–179. [Google Scholar] [CrossRef]
- ORMVA/TF. Monographie de la subdivision agricole de Goulmima. In Monographie des Subdivisions Agricoles de L’office Régional de Mise en Valeur Agricole du Tafilalet; ORMVA Ed: Errachidia, Morocco, 2012. [Google Scholar]
- N’aït M’barek, A. Le Palmier Dattier Dans L’Agriculture Oasienne Du Tafilalet; Ferry, M., Greiner, D., Eds.; Le palmier dattier dans l’agriculture d’oasis des pays méditerranéens; CIHEAM-IAMZ: Zaragoza, Spain, 1993; pp. 189–197. [Google Scholar]
- Indorante, S.J.; Hammer, R.D.; Koenig, P.G.; Follmer, L.R. Particle-Size Analysis by a Modified Pipette Procedure. Soil Sci. Soc. Am. J. 1990, 54, 560–563. [Google Scholar] [CrossRef]
- ISO. Soil Quality-Determination of the Specific Electrical Conductivity; DIN ISO 11265:1997; Deutsches Institut für Normung: Berlin, Germany, 1997; p. 4. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Government Printing Office: Washington, DC, USA, 1954.
- ISO. Soil Quality: Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution; ISO 11260:2018; ISO: Geneva, Switzerland, 1994. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. (Eds.) Methods of Soil Analysis: Part 3 Chemical Methods; SSSA Book Series; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA, 1996; ISBN 978-0-89118-866-7. [Google Scholar]
- ISO. Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method; ISO 11261:1995; AFNOR: Paris, France, 1995; pp. 257–260. [Google Scholar]
- Allison, L.E. Organic Carbon. In Agronomy Monographs; Norman, A.G., Ed.; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1965; pp. 1367–1378. ISBN 978-0-89118-204-7. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1989; pp. 100–107. [Google Scholar]
- Johannes, A.; Matter, A.; Schulin, R.; Weisskopf, P.; Baveye, P.C.; Boivin, P. Optimal Organic Carbon Values for Soil Structure Quality of Arable Soils. Does Clay Content Matter? Geoderma 2017, 302, 14–21. [Google Scholar] [CrossRef]
- Ministère de l’Agriculture du Développement Rural et des Pêches Maritimes du Maroc (MADRPM). Enquête Élevage, Effectif Des Animaux de Trait; Direction de la Programmation et des Affaires Economiques: Rabat, Morocco, 2004.
- Yigezu, Y.A.; El-Shater, T.; Boughlala, M.; Bishaw, Z.; Niane, A.A.; Maalouf, F.; Degu, W.T.; Wery, J.; Boutfiras, M.; Aw-Hassan, A. Legume-Based Rotations Have Clear Economic Advantages over Cereal Monocropping in Dry Areas. Agron. Sustain. Dev. 2019, 39, 58. [Google Scholar] [CrossRef] [Green Version]
- Hashimi, R.; Matsuura, E.; Komatsuzaki, M. Effects of Cultivating Rice and Wheat with and without Organic Fertilizer Application on Greenhouse Gas Emissions and Soil Quality in Khost, Afghanistan. Sustainability 2020, 12, 6508. [Google Scholar] [CrossRef]
- Ibno Namr, K.; Mrabet, R. Influence of Agricultural Management on Chemical Quality of a Clay Soil of Semi-Arid Morocco. J. Afr. Earth Sci. 2004, 39, 485–489. [Google Scholar] [CrossRef]
- Carter, M.R. Long-Term Tillage Effects on Cool-Season Soybean in Rotation with Barley, Soil Properties and Carbon and Nitrogen Storage for Fine Sandy Loams in the Humid Climate of Atlantic Canada. Soil Tillage Res. 2005, 81, 109–120. [Google Scholar] [CrossRef]
- Ortiz-Uribe, N.; Salomón-Torres, R.; Krueger, R. Date Palm Status and Perspective in Mexico. Agriculture 2019, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Mann, L.; Tolbert, V.; Cushman, J. Potential Environmental Effects of Corn (Zea Mays L.) Stover Removal with Emphasis on Soil Organic Matter and Erosion. Agric. Ecosyst. Environ. 2002, 89, 149–166. [Google Scholar] [CrossRef]
- Sarkar, S.; Skalicky, M.; Hossain, A.; Brestic, M.; Saha, S.; Garai, S.; Ray, K.; Brahmachari, K. Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. Sustainability 2020, 12, 9808. [Google Scholar] [CrossRef]
- Wilhelm, W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and Soil Productivity Response to Corn Residue Removal: A Literature Review. Agron. J. 2004, 96, 18. [Google Scholar] [CrossRef]
- Boateng, S.A.; Dennis, E.A. Management of Crop Residues for Sustainable Crop Production. J. Ghana Sci. Assoc. 2001, 3, 7–14. [Google Scholar] [CrossRef]
- Badraoui, M.; Bouabid, R.; Rachidi, F.; Ljouad, L. Land degradation and conservation in the agroécosystems of Morocco. In Proceedings of the Ecosystem-Based Assessment of Soil Degradation to Facilitate Land Users’ and Land Owners’ Prompt Actions, Adana, Turkey, 2–7 June 2003; pp. 247–258. [Google Scholar]
- Chehma, A.; Longo, H. Valorisation Des Sous-Produits Du Palmier Dattier En Vue de Leur Utilisation En Alimentation Du Bétail. Rev. Energ. Ren. 2001, 59–64. Available online: https://www.researchgate.net/publication/268395037_Valorisation_des_Sous-Produits_du_Palmier_Dattier_en_Vue_de_leur_Utilisation_en_Alimentation_du_Betail (accessed on 26 March 2021).
- El-Modafar, C. Mechanisms of Date Palm Resistance to Bayoud Disease: Current State of Knowledge and Research Prospects. PMPP Physiol. Mol. Plant Pathol. 2010, 74, 287–294. [Google Scholar] [CrossRef]
- Sadik, M.W.; Al Ashhab, A.O.; Zahran, M.K.; Alsaqan, F.M. Composting Mulch of Date Palm Trees through Microbial Activator in Saudi Arabia. Int. J. Biochem. Biotechnol. 2012, 1, 156–161. [Google Scholar]
- Alkoaik, F.N.; Khalil, A.I.; Alqumajan, T. Performance Evaluation of a Static Composting System Using Date Palm Residues. Middle East. J. Sci. Res. 2011, 7, 972–983. [Google Scholar]
- Waqas, M.; Nizami, A.S.; Aburiazaiza, A.S.; Barakat, M.A.; Rashid, M.I.; Ismail, I.M.I. Optimizing the Process of Food Waste Compost and Valorizing Its Applications: A Case Study of Saudi Arabia. J. Clean. Prod. 2018, 176, 426–438. [Google Scholar] [CrossRef]
- Haug, R.T. The Practical Handbook of Compost Engineering; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Benabderrahim, M.A.; Elfalleh, W.; Belayadi, H.; Haddad, M. Effect of Date Palm Waste Compost on Forage Alfalfa Growth, Yield, Seed Yield and Minerals Uptake. Int. J. Recycl. Org. Waste Agric. 2018, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, J.J.; Campbell, C.A.; Desjardins, R.L. Some Perspectives on Carbon Sequestration in Agriculture. Agric. For. Meteorol. 2007, 142, 288–302. [Google Scholar] [CrossRef]
- Dhaouadi, A.K. Insertion des Produits Résiduaires Organiques Dans les Systèmes de Culture: Cas des Systèmes Céréaliers de la Plaine de Versailles et du Plateau des Alluets. Sciences agricoles. Doctoral Dissertation, AgroParisTech, Paris, France, 2014. [Google Scholar]
Type | Farm Number | UAA (ha) | DP Density (Tree.ha−1) | Number of DP Cultivars | Livestock (Number) | ||
---|---|---|---|---|---|---|---|
ADP | MDP | ADP | MDP | ||||
I | 32 | 2.3 ± 0.8 | 50 ± 28.4 | 0 | 3 ± 1 | 0 | 12 ± 9.4 S; 7 ± 5.2 G; 1 ± 1 C |
II | 3 | 12.3 ± 4.9 | 0 | 138 ± 8.6 | 0 | 1 ± 0 | 0 |
III | 12 | 8.9 ± 3.7 | 50 ± 25.7 | 138 ± 10 | 3 ± 1 | 1 ± 0 | 20 ± 12.8 S; 6 ± 4.7 G; 1 ± 1 C |
Cropping System | Crop | Land Use per Farm | Yield | Mineral Fertilization | Organic Fertilization | Crop Residues | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Type I | Type III | N | P2O5 | Type | Dose | Freq. | App. Method | ||||
% | % | t.ha−1 | kg.ha−1 | kg.ha−1 | t.ha−1 | per Year | |||||
Associated crops in Type I and traditional Type III | Wheat | 49 | 49 | 1.3 ± 0.6 | 40 ± 10.5 | 32.5 ± 17.7 | M | 2.7 ± 2.1 | 1 | Inc | Exported |
Barley | 7 | 5 | 0.9 ± 0.4 | 25.1 ± 8.4 | 15.0 ± 7.2 | M | 1.5 ± 1.0 | 1 | Inc | Exported | |
Silage maize | 2 | 1 | 7.0 ± 0.6 | 35.2 ± 5.4 | 28.6 ± 13.2 | M | 2.0 ± 1.7 | 1 | Inc | Exported | |
Alfalfa | 21 | 21 | 3.0 ± 0.9 | 10.8 ± 6.3 | 11.8 ± 09.6 | M | 5.1 ± 1.5 | 2 | Inc, mulch | Exported | |
Faba bean | 5 | 4 | 1.2 ± 0.7 | 8.0 ± 5.9 | 5.4 ± 3.7 | M | 2.0 ± 0.4 | 1 | Inc | Exported | |
Cumin | 3 | 2 | 0.2 ± 0.0 | 31.5 ± 6.5 | 27 ± 6.3 | M | 2.5 ± 1.2 | 1 | Inc | Exported | |
Henna | 10 | 9 | 3.3 ± 0.1 | 5.8 ± 3.5 | 3.0 ± 1.1 | M | 3.3 ± 0.5 | 2 | Inc, mulch | Exported | |
Watermelon | 3 | 9 | 54.1 ± 10.3 | 64.4 ± 13 | 68.7 ± 11.1 | C | 4.2 ± 1.7 | 1 | Inc | Returned to field | |
Date palm | ND | ND | 2.0 ± 0.6 | 0 | 0 | M | 0.4 ± 0.2 | 1 | Inc | Left on site or burned | |
Monocropped date palm in Type II and modern Type III | Date palm | ND | ND | 13.0 ± 3.5 | ND | ND | M-C | 6.5 ± 0.6 | 0.33 | Inc | Left on site or burned |
Crop Rotation | Surveyed Farms (%) | Cash Crops | Planting Month | Rotation Duration | Bare Soil Duration | |
---|---|---|---|---|---|---|
Type I | Type III | |||||
% Farms | % Farms | Months | Months | |||
Cereal-BS-cereal-BS | 45 | - | - | November | 24 | 11 |
Cereal-BS-faba bean-BS | 45 | - | - | November | 24 | 13 |
Cereal-BS-cumin-BS | 15 | 16 | 17 | November | 24 | 13 |
Alfalfa-BS-cereal-BS | 91 | - | - | March for alfalfa | 48–96 | 6 |
Alfalfa-BS | 6 | - | - | March for alfalfa | 48–96 | 0 |
Henna | 28 | 31 | 25 | February | Up to 360 | 0 |
Watermelon-BS-watermelon-BS | 15 | 16 | 25 | January | 12 | 6 |
Cropping System | Soil Texture Distribution | Clay (%) | SOM:Clay (%) | P (ppm) | K (ppm) | EC (mS.cm−1) | CaCO3 (%) | pH |
---|---|---|---|---|---|---|---|---|
Type I | Silty, Silty-sandy, Sandy | 13.4 ± 10.1 | 10.4 ± 7.9 | 22.1 ± 10.2 b | 244.8 ± 71.5 a | 0.1 ± 0.0 b | 18.4 ± 10.5 | 7.6 ± 0.2 |
Type II and modern Type III | Silty, Silty-sandy | 10.9 ± 2.6 | 6.4 ± 3.8 | 12.2 ± 4.3 c | 146.0 ± 21.6 b | 4.3 ± 0.4 a | 17.1 ± 7.3 | 7.7 ± 0.2 |
Traditional Type III | Silty, Silty-sandy, Sandy-silty | 11.8 ± 8.3 | 6.8 ± 6.0 | 32.6 ± 13.4 a | 221.0 ± 53.7 a | 0.1 ± 0.0 b | 14.1 ± 9.1 | 7.7 ± 0.1 |
System | Number of Dry Palms per Tree | Weight of Dry Palm Leaf (kg) | Total Amount of Dry Palms (t) | OC (kg) | TN (kg) | TP (kg) | TK (kg) |
---|---|---|---|---|---|---|---|
Traditional | 16.80 ± 1.68 * | 1.17 ± 0.06 | 116.2 * | 58,216.2 * | 464.8 * | 34.86 * | 581 * |
Modern | 13.00 ± 0.94 | 1.17 ± 0.10 | 210.0 | 105,210.0 | 840.0 | 63.00 | 1050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Janati, M.; Akkal-Corfini, N.; Bouaziz, A.; Oukarroum, A.; Robin, P.; Sabri, A.; Chikhaoui, M.; Thomas, Z. Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases. Sustainability 2021, 13, 4713. https://doi.org/10.3390/su13094713
El Janati M, Akkal-Corfini N, Bouaziz A, Oukarroum A, Robin P, Sabri A, Chikhaoui M, Thomas Z. Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases. Sustainability. 2021; 13(9):4713. https://doi.org/10.3390/su13094713
Chicago/Turabian StyleEl Janati, Mustapha, Nouraya Akkal-Corfini, Ahmed Bouaziz, Abdallah Oukarroum, Paul Robin, Ahmed Sabri, Mohamed Chikhaoui, and Zahra Thomas. 2021. "Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases" Sustainability 13, no. 9: 4713. https://doi.org/10.3390/su13094713
APA StyleEl Janati, M., Akkal-Corfini, N., Bouaziz, A., Oukarroum, A., Robin, P., Sabri, A., Chikhaoui, M., & Thomas, Z. (2021). Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases. Sustainability, 13(9), 4713. https://doi.org/10.3390/su13094713