Research on Global Grain Trade Network Pattern and Its Driving Factors
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. The Analysis Framework: Factors Affecting International Grain Trade
3.2. Complex Network Analysis Method
3.2.1. Constructing the Global Grain Trade Network
3.2.2. Node Degree and Distribution of Node Degree
3.2.3. Core-Peripheral Analysis
3.3. The Quadratic Assignment Procedure (QAP) Model
3.4. Data Sources and Preparation
4. Grain Network Topology
4.1. Overall Network Characteristics
4.1.1. The Global Grain Network Has Scale-Free Properties
4.1.2. The Global Grain Network Presents a Significant “Core-Periphery” Structure
4.2. Node Features
4.2.1. Heterogeneity of the Out-Degree Nodes
4.2.2. Heterogeneity of In-Degree Nodes
5. Driving Factor for the Evolution of the Global Grain Networks
5.1. Results of QAP Model Regression
5.2. Robustness Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porkka, M.; Kummu, M.; Siebert, S.; Varis, O. From Food Insufficiency towards Trade Dependency: A Historical Analysis of Global Food Availability. PLoS ONE 2013, 8, e82714. [Google Scholar] [CrossRef] [Green Version]
- Puma, M.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the Evolving Fragility of the Global Food System. Environ. Res. Lett. 2015, 10, 24007. [Google Scholar] [CrossRef]
- D’Odorico, P.; Carr, J.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding Humanity through Global Food Trade. Earth Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Matthews, A. Trade Rules, Food Security and the Multilateral Trade Negotiations. Eur. Rev. Agric. Econ. 2014, 41, 511–535. [Google Scholar] [CrossRef] [Green Version]
- Gephart, J.A.; Pace, M. Structure and Evolution of the Global Seafood Trade Network. Environ. Res. Lett. 2015, 10, 125014. [Google Scholar] [CrossRef] [Green Version]
- Dupas, M.-C.; Halloy, J.; Chatzimpiros, P. Time Dynamics and Invariant Subnetwork Structures in the World Cereals Trade Network. PLoS ONE 2019, 14, e0216318. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, G.K.; Brauman, K.; Sun, S.; Carlson, K.M.; Cassidy, E.S.; Gerber, J.; West, P. Rethinking Agricultural Trade Relationships in an Era of Globalization. BioScience 2015, 65, 275–289. [Google Scholar] [CrossRef]
- Duan, J.; Xu, Y.; Jiang, H. Tradevulnerability Assessment in the Grain-Importing Countries: A Case Study of China. PLoS ONE 2021, 16, e0257987. [Google Scholar] [CrossRef]
- FAO. World Food and Nutrition Press Security: Report. 2019. Available online: www.fao.org/home/search/en?Page=0&category=publications (accessed on 25 October 2020).
- Foley, J.A.; Ramankutty, N.; Brauman, K.; Cassidy, E.S.; Gerber, J.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.; West, P.; et al. Solutions for a Cultivated Planet. Nat. Cell Biol. 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Crist, E.; Mora, C.; Engelman, R. The Interaction of Human Population, Food Production, and Biodiversity Protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Herzberger, A.; Chung, M.G.; Kapsar, K.; Frank, K.A.; Liu, J. Telecoupled Food Trade Affects Pericoupled Trade and Intracoupled Production. Sustainability 2019, 11, 2908. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M. Ángeles; Boguñá, M. Topology of the World Trade Web. Phys. Rev. E 2003, 68, 015101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagiolo, G.; Reyes, J.; Schiavo, S. World-Trade Web: Topological Properties, Dynamics, and Evolution. Phys. Rev. E 2009, 79, 036115. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Yang, Y.; Liu, Y.; Jin, F. Characteristics of Evolution of Global Energy Trading Network and Relationships Between Major Countries. Prog. Geogr 2019, 38, 1621–1632. [Google Scholar] [CrossRef]
- Kitamura, T.; Managi, S. Driving Force and Resistance: Network Feature in Oil Trade. Appl. Energy 2017, 208, 361–375. [Google Scholar] [CrossRef]
- Hou, W.; Liu, H.; Wang, H.; Wu, F. Structure and Patterns of the International Rare Earths Trade: A Complex Network Analysis. Resour. Policy 2018, 55, 133–142. [Google Scholar] [CrossRef]
- Sui, G.; Zou, J.; Wu, S.; Tang, D. Comparative Studies on Trade and Value-Added Trade Along the “Belt and Road”: A Network Analysis. Complexity 2021, 2021, 3994004. [Google Scholar] [CrossRef]
- Dong, C.; Yin, Q.; Lane, K.J.; Yan, Z.; Shi, T.; Liu, Y.; Bell, M. Competition and Transmission Evolution of Global Food Trade: A Case Study of Wheat. Phys. A Stat. Mech. Appl. 2018, 509, 998–1008. [Google Scholar] [CrossRef]
- Shutters, S.T.; Muneepeerakul, R. Agricultural Trade Networks and Patterns of Economic Development. PLoS ONE 2012, 7, e39756. [Google Scholar] [CrossRef]
- Cai, H.; Song, Y. The state’s Position in International Agricultural Commodity Trade. China Agric. Econ. Rev. 2016, 8, 430–442. [Google Scholar] [CrossRef]
- Wang, X.; Niu, S.W.; Qiang, W.L.; Liu, A.M.; Cheng, S.K.; Qiu, X. Trade Network of Global Agricultural Products Weighted by Physical and Value Quantity. Econ. Geogr. 2019, 39, 164–173. [Google Scholar] [CrossRef]
- Fan, Y.; Ren, S.; Cai, H.; Cui, X. The state’s Role and Position in International Trade: A Complex Network Perspective. Econ. Model. 2014, 39, 71–81. [Google Scholar] [CrossRef]
- Chen, W.-Q.; Graedel, T.E.; Nuss, P.; Ohno, H. Building the Material Flow Networks of Aluminum in the 2007 U.S. Economy. Environ. Sci. Technol. 2016, 50, 3905–3912. [Google Scholar] [CrossRef]
- Nuss, P.; Chen, W.-Q.; Ohno, H.; Graedel, T.E. Structural Investigation of Aluminum in the U.S. Economy Using Network Analysis. Environ. Sci. Technol. 2016, 50, 4091–4101. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.L.; Jiang, H.N.; Duan, J. Spatial Pattern Evolution of Global Grain Trade Network since the 21st Century. Econ. Geogr. 2021, 41, 119–127. [Google Scholar] [CrossRef]
- Wu, Z.; Cai, H.; Zhao, R.; Fan, Y.; Di, Z.; Zhang, J. A Topological Analysis of Trade Distance: Evidence from the Gravity Model and Complex Flow Networks. Sustainability 2020, 12, 3511. [Google Scholar] [CrossRef]
- Anderson, J.E.; Van Wincoop, E. Gravity with Gravitas: A Solution to the Border Puzzle. Am. Econ. Rev. 2003, 93, 170–192. [Google Scholar] [CrossRef] [Green Version]
- Mizik, T. Agri-Food Trade Competitiveness: A Review of the Literature. Sustainability 2021, 13, 11235. [Google Scholar] [CrossRef]
- Tadesse, B.; White, R. Does Cultural Distance Hinder Trade in Goods? A Comparative Study of Nine OECD Member Nations. Open Econ. Rev. 2010, 21, 237–261. [Google Scholar] [CrossRef]
- Shi, B.Z. Cultural Identification and International Trade. J. World Econ. 2016, 39, 78–97. [Google Scholar]
- Feng, L.; Xu, H.; Wu, G.; Zhang, W. Service Trade Network Structure and Its Determinants in the Belt and Road Based on the Temporal Exponential Random Graph Model. Pac. Econ. Rev. 2021, 26, 617–650. [Google Scholar] [CrossRef]
- Serrano, R.; Pinilla, V. Causes of World Trade Growth in Agricultural and Food Products, 1951–2000: A Demand Function Approach. Appl. Econ. 2010, 42, 3503–3518. [Google Scholar] [CrossRef] [Green Version]
- Manger, M.S.; Pickup, M.A.; Snijders, T.A.B. A Hierarchy of Preferences. J. Confl. Resolut. 2012, 56, 853–878. [Google Scholar] [CrossRef]
- Anderson, J.E.; Marcouiller, D. Insecurity and the Pattern of Trade: An Empirical Investigation. Rev. Econ. Stat. 2002, 84, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-Y.; Dai, C.; Zhou, M.-Z.; Liu, Z.-J. Research on Global Grain Trade Network Pattern and Its Influencing Factors. J. Nat. Resour. 2021, 36, 1545–1556. [Google Scholar] [CrossRef]
- McCallum, J. National Borders Matter: Canada-U.S. Regional Trade Patterns. Am. Econ. Rev. 1995, 85, 615–623. [Google Scholar]
- Kimura, F.; Lee, H.-H. The Gravity Equation in International Trade in Services. Rev. World Econ. 2006, 142, 92–121. [Google Scholar] [CrossRef]
- Lee, J. Network Effects on International Trade. Econ. Lett. 2012, 116, 199–201. [Google Scholar] [CrossRef]
- Gani, A.; Clemes, M.D. Modeling the Effect of the Domestic Business Environment on Services Trade. Econ. Model. 2013, 35, 297–304. [Google Scholar] [CrossRef]
- Huang, S.Y.; Gou, W.S.; Cai, H.B.; Li, X.M.; Chen, Q.H. Effects of Regional Trade Agreement to Local and Global Trade Purity Relationships. Complexity 2020, 2987217. [Google Scholar] [CrossRef]
- Watkins, M.H.; Linder, S.B. An Essay on Trade and Transformation. Can. J. Econ. Political Sci. 1963, 29, 121. [Google Scholar] [CrossRef]
- Ma, J.; He, C. Structure and Change of International Trade Network of Intermediate Goods: From the Perspective of Trade Costs. Prog. Geogr 2019, 38, 1607–1620. [Google Scholar] [CrossRef]
- Chen, Y.; Li, E. Spatial Pattern and Evolution of Cereal Trade Networks Among the Belt and Road Countries. Prog. Geogr 2019, 38, 1643–1654. [Google Scholar] [CrossRef]
- Davis, L.S.; Abdurazokzoda, F. Language, Culture and Institutions: Evidence from a New Linguistic Dataset. J. Comp. Econ. 2016, 44, 541–561. [Google Scholar] [CrossRef]
- Walker, S. Cultural Barriers to Market Integration: Evidence from 19th Century Austria. J. Comp. Econ. 2018, 46, 1122–1145. [Google Scholar] [CrossRef]
- Yang, W.L.; Du, D.B.; Ma, Y.H.; Jiao, M.Q. Network Structure and Proximity of the Trade Network in the Belt and Road Region. Geogr. Res. 2018, 37, 2218–2235. [Google Scholar]
- Carrère, C. Revisiting the Effects of Regional Trade Agreements on Trade Flows with Proper Specification of the Gravity Model. Eur. Econ. Rev. 2006, 50, 223–247. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Yamarik, S. Are Regional Trading Arrangements Trade Creating? An Application of Extreme Bounds Analysis. J. Int. Econ. 2004, 63, 369–395. [Google Scholar] [CrossRef]
- Magee, C.S. New Measures of Trade Creation and Trade Diversion. J. Int. Econ. 2008, 75, 349–362. [Google Scholar] [CrossRef]
- Ding, S.H.; He, S.Q. Analysis on the Efficiency and Influence Factors of China’s Agricultural Products Export to the Five Central Asian Countries. Int. Bus. 2019, 13–24, 5. [Google Scholar] [CrossRef]
- Zhen, J.; Wang, X.M. Potential and Influencing Factors of Agricultural Trade Among RCEP members—Empirical Analysis Based on Stochastic Frontier Gravity Model. Xinjiang State Farms Econ. 2019, 8, 28–36, 64. [Google Scholar]
- Dalin, C.; Konar, M.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Evolution of the Global Virtual Water Trade Network. Proc. Natl. Acad. Sci. USA 2012, 109, 5989–5994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, J.-B.; Ji, Q.; Fan, Y. A Dynamic Analysis on Global Natural Gas Trade Network. Appl. Energy 2014, 132, 23–33. [Google Scholar] [CrossRef]
- Borgatti, S.; Everett, M.G. Models of core/Periphery Structures. Soc. Netw. 2000, 21, 375–395. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, Y.; Liu, W.D. Globalization and Regionalizationof Complete Auto’s and Auto parts’ trade. Sci. Geogr. Sin. 2016, 36, 662–670. [Google Scholar] [CrossRef]
- Elliott, A.; Chiu, A.; Bazzi, M.; Reinert, G.; Cucuringu, M. Core–periphery Structure in Directed Networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190783. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, L. The QAP Weighted Network Analysis Method and Its Application in International Services Trade. Phys. A Stat. Mech. Appl. 2016, 448, 91–101. [Google Scholar] [CrossRef]
- Feng, Z.M.; Zhao, X.; Yang, Y.Z. Evolutionary Trends of World Cereal Trade in Recent 50 Years from a View of Spatial-Temporal Patternsand Regional Differences. Resour. Sci. 2010, 32, 2–10. [Google Scholar]
- Molly, E.B.; Edward, R.C.; Kathryn, L.G.; Keith, W.; Christopher, C.F.; Witsanu, A.; Peter, B.; Lawrence, B. Do Markets and Trade Help or Hurt the Global Food System Adapt to Climate change? Food Policy 2017, 68, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-L.; Lin, Y.-P.; Petway, J.R. Global Agricultural Trade Pattern in A Warming World: Regional Realities. Sustainability 2018, 10, 2763. [Google Scholar] [CrossRef] [Green Version]
- Janssens, C.; Havlík, P.; Krisztin, T.; Baker, J.; Frank, S.; Hasegawa, T.; Leclère, D.; Ohrel, S.; Ragnauth, S.; Schmid, E.; et al. Global Hunger and Climate Change Adaptation through International Trade. Nat. Clim. Chang. 2020, 10, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Kunimitsu, Y.; Sakurai, G.; Iizumi, T. Systemic Risk in Global Agricultural Markets and Trade Liberalization under Climate Change: Synchronized Crop-Yield Change and Agricultural Price Volatility. Sustainability 2020, 12, 10680. [Google Scholar] [CrossRef]
- Xie, W.; Huang, J.; Wang, J.; Cui, Q.; Robertson, R.; Chen, K. Climate Change Impacts on China’s Agriculture: The Responses from Market and Trade. China Econ. Rev. 2020, 62, 101256. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Y.; Liu, Y.; Liu, Y.; Zhang, Y. Simulated Responses of Global Rice Trade to Variations in Yield under Climate Change: Evidence from Main Rice-Producing Countries. J. Clean. Prod. 2021, 281, 124690. [Google Scholar] [CrossRef]
- Yu, X.; Luo, H.; Wang, H.; Feil, J.-H. Climate Change and Agricultural Trade in Central Asia: Evidence from Kazakhstan. Ecosyst. Heal. Sustain. 2020, 6, 1766380. [Google Scholar] [CrossRef]
Symbol | Description | Data Preprocessing | Data Source |
---|---|---|---|
RESij | national per capita cultivated land area differences. | logarithmic transformation | https://data.worldbank.org/ (accessed on 5 March 2021) |
DISij | spherical geographic distance. | logarithmic transformation | http://www.cepii.fr (accessed on 7 March 2021) |
CONij | whether have a common geographical boundary contiguity. | binaryzation to 1 or 0. | http://www.cepii.fr (accessed on 7 March 2021) |
ECOij | national GDP per capita gaps. | logarithmic transformation | https://data.worldbank.org/ (accessed on 7 March 2021) |
POLij | national political differences. | logarithmic transformation | https://data.worldbank.org/ (accessed on 5 March 2021) |
RTAij | whether sign the regional free trade agreements | binarization to 1 or 0. | http://www.cepii.fr (accessed on 7 March 2021) |
CULij | Whether have a common official language or religious proximity. | binarization to 1 or 0. | http://www.cepii.fr (accessed on 7 March 2021) |
Year | Core Countries | Semi-Core Countries | Semi-Marginal Countries | Marginal Countries |
---|---|---|---|---|
2010 | 5 | 1 | 15 | 175 |
2018 | 6 | 4 | 13 | 173 |
Indicators | 2000 | 2018 |
---|---|---|
LnRESij | 0.05549 ** (6) | 0.07321 ** (5) ↑ |
LnDISij | 0.49405 ** (1) | 0.40154 ** (1) ↓ |
CONij | 0.06416 ** (5) | 0.08368 ** (4) ↑ |
LnECOij | 0.34524 ** (2) | 0.38982 ** (2) ↑ |
LnPOLij | −0.12001 ** (3) | −0.17706 ** (3) ↑ |
RTAij | 0.07089 ** (4) | 0.04597 ** (6) ↓ |
CULij | −0.01824 ** (7) | −0.01047 ** (7) ↓ |
R2 | 0.886 | 0.877 |
AJ-R2 | 0.886 | 0.877 |
Model’s significance | p < 0.001 | p < 0.001 |
Observation items | 38,220 | 38,220 |
Indicators | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
---|---|---|---|---|---|---|---|
LnRESij | 0.03832 ** | 0.04968 ** | 0.04802 ** | 0.04833 ** | 0.04230 ** | 0.05646 ** | |
LnDISij | 0.47128 ** | 0.45887 ** | 0.84713 ** | 0.64667 ** | 0.40053 ** | 0.49376 ** | |
CONij | 0.06190 ** | 0.05384 ** | 0.06720 ** | 0.07637 ** | 0.07440 ** | 0.06216 ** | |
LnECOij | 0.33375 ** | 0.75434 ** | 0.35725 ** | 0.27203 ** | 0.42114 ** | 0.34205 ** | |
LnPOLij | −0.11397 ** | −0.21721 ** | −0.14651 ** | −0.07978 ** | −0.15989 ** | −0.11660 ** | |
RTAij | 0.06427 ** | 0.03548 ** | 0.08411 ** | 0.09570 ** | 0.09461 ** | 0.06800 ** | |
CULij | −0.01976 ** | −0.01790 ** | −0.01012 ** | −0.01496 ** | −0.01186 ** | −0.00917 ** | |
R2 | 0.884 | 0.877 | 0.882 | 0.880 | 0.882 | 0.885 | |
AJ-R2 | 0.884 | 0.877 | 0.882 | 0.880 | 0.882 | 0.885 | |
Model’s significance | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Observation items | 38,220 | 38,220 | 38,220 | 38,220 | 38,220 | 38,220 | 38,220 |
Indicators | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | Model 13 | Model 14 |
---|---|---|---|---|---|---|---|
LnRESij | 0.06357 ** | 0.06268 ** | 0.06527 ** | 0.06433 ** | 0.06855 ** | 0.07417 ** | |
LnDISij | 0.37491 ** | 0.32565 ** | 0.79360 ** | 0.65213 ** | 0.32627 ** | 0.40348 ** | |
CONij | 0.07974 ** | 0.07341 ** | 0.08931 ** | 0.10126 ** | 0.08728 ** | 0.08244 ** | |
LnECOij | 0.37053 ** | 0.73467 ** | 0.42639 ** | 0.25749 ** | 0.46590 ** | 0.38695 ** | |
LnPOLij | −0.16940 ** | −0.25540 ** | −0.21765 ** | −0.13003 ** | −0.20275 ** | −0.17506 ** | |
RTAij | 0.04010 ** | 0.01169 ** | 0.05806 ** | 0.08535 ** | 0.08339 ** | 0.04499 ** | |
CULij | −0.01350 ** | −0.01270 ** | 0.00001 | −0.00373 ** | −0.00314 ** | −0.00801 ** | |
R2 | 0.875 | 0.873 | 0.871 | 0.873 | 0.872 | 0.876 | 0.877 |
AJ-R2 | 0.875 | 0.873 | 0.871 | 0.873 | 0.872 | 0.876 | 0.877 |
Model’s significance | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Observation items | 38,220 | 38,220 | 38,220 | 38,220 | 38,220 | 38,220 | 38,220 |
Indicators | 2000 | 2018 |
---|---|---|
LnRESij | 0.04142 ** | 0.06995 ** |
LnDISij | 0.49925 ** | 0.39088 ** |
CONij | 0.07030 ** | 0.08597 ** |
LnECOij | 0.34104 ** | 0.39754 ** |
LnPOLij | −0.10828 ** | −0.17727 ** |
RTAij | 0.06927 ** | 0.04312 ** |
CULij | −0.02331 ** | −0.00844 ** |
R2 | 0.886 | 0.878 |
AJ-R2 | 0.886 | 0.878 |
Model’s significance | p < 0.001 | p < 0.001 |
Observation items | 35,910 | 35,532 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Nie, C.; Wang, Y.; Yan, D.; Xiong, W. Research on Global Grain Trade Network Pattern and Its Driving Factors. Sustainability 2022, 14, 245. https://doi.org/10.3390/su14010245
Duan J, Nie C, Wang Y, Yan D, Xiong W. Research on Global Grain Trade Network Pattern and Its Driving Factors. Sustainability. 2022; 14(1):245. https://doi.org/10.3390/su14010245
Chicago/Turabian StyleDuan, Jian, Changle Nie, Yingying Wang, Dan Yan, and Weiwei Xiong. 2022. "Research on Global Grain Trade Network Pattern and Its Driving Factors" Sustainability 14, no. 1: 245. https://doi.org/10.3390/su14010245
APA StyleDuan, J., Nie, C., Wang, Y., Yan, D., & Xiong, W. (2022). Research on Global Grain Trade Network Pattern and Its Driving Factors. Sustainability, 14(1), 245. https://doi.org/10.3390/su14010245