Impact of Model Resolution on the Simulation of Precipitation Extremes over China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observational and Model Data
2.2. Methods
3. Results
3.1. Comparison between Models in High-Resolution and Low-Resolution
3.2. Possible Reasons for the Improved Precipitation Extremes Simulation in High-Resolution Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duliè, V.R.; Zhang, Y.; Salathé, E.P. Extreme precipitation and temperature over the U.S. Pacific Northwest: A comparison between observations, reanalysis data, and regional models. J. Clim. 2011, 24, 1950–1964. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Zhu, J.; Guo, Y.; Luo, N.; Fu, Y.; Wang, T. Impact of Land Surface Processes on a Record-Breaking Rainfall Event on May 06–07, 2017, in Guangzhou, China. J. Geophys. Res. Atmos. 2021, 126, e2020JD032997. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Xie, S.P.; Zhang, R. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA 2021, 118, e2022255118. [Google Scholar] [CrossRef] [PubMed]
- Su, A.; Lü, X.; Cui, L.; Li, Z.; Xi, L.; Li, H. The Basic Observational Analysis of “7.20” Extreme Rainstorm in Zhengzhou. Torrential Rain Disasters 2021, 40, 445–454. [Google Scholar]
- Duffy, P.B.; Govindasamy, B.; Lorio, J.P.; Milovich, J.; Sperber, K.R.; Taylor, K.E.; Wehner, M.F.; Thompson, S.L. High-resolution simulations of global climate, Part 1: Present climate. Clim. Dyn. 2003, 21, 371–390. [Google Scholar] [CrossRef]
- Greenberg, D.A.; Dupont, F.; Lyard, F.H.; Lynch, D.R.; Werner, F.E. Resolution issues in numerical models of oceanic and coastal circulation. Cont. Shelf Res. 2007, 27, 1317–1343. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Vidale, P.L.; Hodges, K.; Vannière, B.; Davini, P.; Roberts, M.J.; Strommen, K.; Weisheimer, A.; Plesca, E.; Corti, S. Impact of stochastic physics and model resolution on the simulation of tropical cyclones in climate GCMs. J. Clim. 2021, 34, 4315–4341. [Google Scholar] [CrossRef]
- Guilyardi, E.; Gualdi, S.; Slingo, J.; Navarra, A.; Delecluse, P.; Cole, J.; Madec, G.; Roberts, M.; Latif, M.; Terray, L. Representing El Niño in coupled ocean-atmosphere GCMs: The dominant role of the atmospheric component. J. Clim. 2004, 17, 4623–4629. [Google Scholar] [CrossRef] [Green Version]
- Rauscher, S.A.; Coppola, E.; Piani, C.; Giorgi, F. Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim. Dyn. 2010, 35, 685–711. [Google Scholar] [CrossRef]
- Huang, D.Q.; Zhu, J.; Zhang, Y.C.; Huang, A.N. Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 9035–9047. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Zhou, T.; Roberts, M.J.; Schiemann, R. Added value of high resolution models in simulating global precipitation characteristics. Atmos. Sci. Lett. 2016, 17, 646–657. [Google Scholar] [CrossRef]
- He, S.; Yang, J.; Bao, Q.; Wang, L.; Wang, B. Fidelity of the observational/reanalysis datasets and global climate models in representation of extreme precipitation in East China. J. Clim. 2019, 32, 195–212. [Google Scholar] [CrossRef]
- Demory, M.E.; Vidale, P.L.; Roberts, M.J.; Berrisford, P.; Strachan, J.; Schiemann, R.; Mizielinski, M.S. The role of horizontal resolution in simulating drivers of the global hydrological cycle. Clim. Dyn. 2014, 42, 2201–2225. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Gettelman, A.; Xu, Y.; Wu, C.; Wang, Z.; Rosenbloom, N.; Bates, S.C.; Dong, W. CAM6 simulation of mean and extreme precipitation over Asia: Sensitivity to upgraded physical parameterizations and higher horizontal resolution. Geosci. Model Dev. 2019, 12, 3773–3793. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Ronald, S.; Oceanic, N. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. Discuss. 2015, 8, 10539–10583. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef]
- Zhu, X.; Ji, Z.; Wen, X.; Lee, S.Y.; Wei, Z.; Zheng, Z.; Dong, W. Historical and projected climate change over three major river basins in China from Fifth and Sixth Coupled Model Intercomparison Project models. Int. J. Climatol. 2021, 1–19. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Dong, T.; Dong, W. Evaluation of extreme precipitation over Asia in CMIP6 models. Clim. Dyn. 2021, 57, 1751–1769. [Google Scholar] [CrossRef]
- Luo, N.; Guo, Y.; Chou, J.; Gao, Z. Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in. Int. J. Climatol. 2021, 1–17. [Google Scholar] [CrossRef]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Xu, Y.; Li, J.-J.; Han, Z.-Y. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China. Clim. Chang. Res. 2021, 17, 730–743. [Google Scholar]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Acta Geophys. Sin. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- Yin, H.; Donat, M.G.; Alexander, L.V.; Sun, Y. Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int. J. Climatol. 2015, 35, 2809–2827. [Google Scholar] [CrossRef]
- Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol. 2016, 36, 1051–1066. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Xu, C.; Luo, Y.; Xu, Y. Projected changes of precipitation extremes in river basins over China. Quat. Int. 2011, 244, 149–158. [Google Scholar] [CrossRef]
- Zhou, B.; Wen, Q.H.; Xu, Y.; Song, L.; Zhang, X. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Clim. 2014, 27, 6591–6611. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Gao, X.; Shi, Y.; Song, R.; Giorgi, F.; Wang, Y.; Zhang, D. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteorol. Atmos. Phys. 2008, 100, 73–86. [Google Scholar] [CrossRef]
- Zou, L.; Zhou, T. Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci. 2013, 30, 806–818. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, T.; Wu, B.; Li, T.; Luo, J.J. Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv. Atmos. Sci. 2011, 28, 464–476. [Google Scholar] [CrossRef]
- Bao, J.; Feng, J.; Wang, Y. Dynamical downscaling simulation and future projection of precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 8227–8243. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Sun, J.Q.; Chen, H.P.; Zhu, Y.L.; Zhang, Y.; Jiang, D.B.; Lang, X.M.; Fan, K.; Yu, E.T.; Yang, S. Extreme climate in China: Facts, simulation and projection. Meteorol. Z. 2012, 21, 279–304. [Google Scholar] [CrossRef]
- Ganai, M.; Krishna, R.P.M.; Mukhopadhyay, P.; Mahakur, M. The impact of revised simplified Arakawa-Schubert scheme on the simulation of mean and diurnal variability associated with active and break phases of Indian summer monsoon using CFSv2. J. Geophys. Res. 2016, 121, 9301–9323. [Google Scholar] [CrossRef]
- Stephens, G.L.; L’Ecuyer, T.; Forbes, R.; Gettlemen, A.; Golaz, J.C.; Bodas-Salcedo, A.; Suzuki, K.; Gabriel, P.; Haynes, J. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Kim, D.; Xavier, P.; Maloney, E.; Wheeler, M.; Waliser, D.; Sperber, K.; Hendon, H.; Zhang, C.; Neale, R.; Hwang, Y.T.; et al. Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. J. Clim. 2014, 27, 5379–5395. [Google Scholar] [CrossRef]
- Holloway, C.E.; Neelin, D.J. Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci. 2009, 66, 1665–1683. [Google Scholar] [CrossRef] [Green Version]
Institute | High | Resolution | Low | Resolution |
---|---|---|---|---|
National Centre for Meteorological Research, France | CNRM-CM6-1-HR | 0.5° × 0.5° | CNRM-CM6-1 | 1.4° × 1.4° |
EC-Earth consortium | EC-Earth3-Veg | 0.7° × 0.7° | EC-Earth3-Veg-LR | 1.125° × 1.25° |
Met Office Hadley Centre, UK | HadGEM3-GC31-MM | 0.556° × 0.833° | HadGEM3-GC31-LL | 1.25° × 1.875° |
Max Planck Institute for Meteorology, Germany | MPI-ESM1-2-HR | 0.94° × 0.94° | MPI-ESM1-2-LR | 1.9° × 1.9° |
NorESM Climate modelling Consortium consisting of CICERO | NorESM2-MM | 0.94° × 1.25° | NorESM2-LM | 1.9° × 2.5° |
Label | Index Definition | Units |
---|---|---|
PRCPTOT | Annual total precipitation on wet days (RR ≥ 1 mm) | mm |
WD | Annual mean count of wet days (RR ≥ 1 mm) | days |
SDII | Mean precipitation on wet days (RR ≥ 1 mm) | mm/day |
CDD | Annual count of maximum number of consecutive dry days (RR < 1 mm) | days |
R95p | Accumulated precipitation amounts when RR > 95th percentile | mm |
R20mm | Annual count of days when RR ≥ 20 mm | days |
Model | D1 | D2 | D3 | ||||||
---|---|---|---|---|---|---|---|---|---|
PRCPTOT | WD | SDII | PRCPTOT | WD | SDII | PRCPTOT | WD | SDII | |
CNRM-CM6-1-HR | +292.7 | −15.6 | +2.3 | +53.1 | −8.9 | +0.8 | +17.1 | −11.7 | +1.4 |
CNRM-CM6-1 | +814.0 | +31.6 | +3.1 | +159.4 | −11.0 | +1.7 | −38.2 | −19.5 | +1.8 |
High–Low | −521.3 | −47.2 | −0.8 | −106.3 | +2.1 | −0.9 | +55.3 | +7.8 | −0.4 |
EC-Earth3-Veg | +351.7 | +31.9 | +0.75 | −47.1 | +25.4 | −1.7 | −6.0 | +9.8 | −1.0 |
EC-Earth3-Veg-LR | +433.7 | +46.9 | +0.65 | −145.7 | +20.2 | −2.0 | −4.2 | +14.3 | −1.3 |
High–Low | −82.0 | −15 | +0.1 | +98.6 | +5.2 | +0.3 | −1.8 | −4.5 | +0.3 |
HadGEM3-GC31-MM | +406.0 | +14.9 | +1.8 | +383.6 | +5.9 | +2.0 | +77.2 | −0.9 | +0.9 |
HadGEM3-GC31-LL | +667.6 | +40.6 | +2.1 | +532.8 | +8.8 | +2.7 | +191.9 | +2.0 | +1.7 |
High–Low | −261.6 | −25.7 | −0.3 | −149.2 | −2.9 | −0.7 | −114.7 | −2.9 | −0.8 |
MPI-ESM1-2-HR | +520.1 | +14.5 | +2.5 | −220.4 | −6.6 | −1.0 | +113.9 | +9.5 | +0.2 |
MPI-ESM1-2-LR | +798.5 | +55.3 | +2.1 | −186.0 | +17.8 | −2.1 | +151.2 | +24.4 | −0.6 |
High–Low | −278.4 | −40.8 | +0.4 | −34.4 | −24.4 | +1.1 | −37.3 | −14.9 | +0.8 |
NorESM2-MM | +520.7 | +16.5 | +2.4 | −60.6 | −4.4 | −0.1 | +192.1 | +24.2 | −0.4 |
NorESM2-LM | +685.4 | +34.0 | +2.5 | −85.7 | −8.1 | −0.02 | +321.8 | +27.4 | +0.5 |
High–Low | −164.7 | −17.5 | −0.1 | +25.1 | +3.7 | −0.08 | −129.7 | −3.2 | −0.9 |
High | +418.2 | +12.4 | +1.9 | +21.7 | +2.2 | +0.01 | +78.9 | +6.2 | +0.2 |
Low | +679.8 | +41.7 | +2.1 | +55.0 | +5.5 | +0.07 | +124.5 | +9.7 | +0.4 |
High–Low | −261.6 | −29.3 | −0.2 | −33.3 | −3.3 | −0.06 | −45.6 | −3.5 | −0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, N.; Guo, Y. Impact of Model Resolution on the Simulation of Precipitation Extremes over China. Sustainability 2022, 14, 25. https://doi.org/10.3390/su14010025
Luo N, Guo Y. Impact of Model Resolution on the Simulation of Precipitation Extremes over China. Sustainability. 2022; 14(1):25. https://doi.org/10.3390/su14010025
Chicago/Turabian StyleLuo, Neng, and Yan Guo. 2022. "Impact of Model Resolution on the Simulation of Precipitation Extremes over China" Sustainability 14, no. 1: 25. https://doi.org/10.3390/su14010025
APA StyleLuo, N., & Guo, Y. (2022). Impact of Model Resolution on the Simulation of Precipitation Extremes over China. Sustainability, 14(1), 25. https://doi.org/10.3390/su14010025