Land Cover and Land Use Changes between 1986 and 2018, and Preliminary Carbon Footprint Implications for Manoka Island (Littoral Region of Cameroon)
Abstract
:1. Introduction
2. Methodology
2.1. Spatial Framework of the Study
2.2. Preliminary Contacts with Stakeholders to Understand the Dynamics of the Island
2.3. Remote Sensing and GIS Procedure for the Study
- ⮚
- Satellite images that made it possible to carry out multi-date mapping that met the aims of the study;
- ⮚
- Spectral characteristics that made it possible to distinguish land cover classes.
- -
- The dominant land use classes (inland forest, mangrove, and water) have high precision, i.e., greater than 97.5% for all years studied.
- -
- Classes with a characteristic response and a limited spatial spread such as bare surface, settlement area, and degraded forest for which the determination of the occupancy class on the images was sometimes difficult, have high precision (i.e., >80%) for each of these classes and for the different years.
2.4. Field Data Collection
2.5. Carbon Stock and Flux Assessment
3. Results
3.1. Main Land Cover and Land Uses Currently Found on Manoka Island
3.2. Land Use and Land Cover Change between 1986 and 2018
3.3. Carbon Stock and Flux (Spatial and Temporal Considerations)
4. Discussion
4.1. Direct and Indirect Drivers of Deforestation and Forest Degradation on the Island
4.1.1. Fuelwood Harvesting and Low Energy Efficiency
4.1.2. Urban Development and Infrastructure
4.1.3. Noncompliance with Forestry Legislation and Uncontrolled Logging
4.1.4. Human Pressure Due to Population Growth
4.1.5. Political and Institutional Factors
4.1.6. Economic Factors
4.2. Climatic Implication of Deforestation and Forest Degradation on Manoka Island (Green House Gas Emission and Vulnerability)
4.3. Measures to Reverse the Deforestation and Forest Degradation Trends on the Island
- created dialogue and intersectoral coordination platforms for a Sustainable Management of Mangroves and Coastal Ecosystems;
- developed a specific protocol for environmental and social impact studies;
- set up a mangrove monitoring system to obtain data with statistical details.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate adaptation and mitigation options. In Climate Change 2007: Synthesis; IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Obiefuna, J.N.; Okolie, C.J.; Atagbaza, A.O.; Nwilo, P.C.; Akindeju, F.O. Spatio-temporal land cover dynamics and emerging landscape patterns in western part of Lagos State, Nigeria. Environ. Socio-Econ. Stud. 2021, 9, 53–69. [Google Scholar] [CrossRef]
- Weng, Q.; Hua, L.; Dengsheng, L. Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosyst. 2007, 10, 203–219. [Google Scholar] [CrossRef]
- Amosu, A.O.; Bashorun, O.W.; Babalola, O.O.; Olowu, R.A.; Togunde, K.A. Impact of climate change and anthropogenic activities on renewable coastal resources and biodiversity in Nigeria. J. Ecol. Nat. 2012, 4, 201–211. [Google Scholar] [CrossRef]
- United Nations (UN)—Habitat. Urban Development, Biodiversity and Wetland Management—Expert Workshop Report; Expert Workshop, 16–17 November 2009; Kenya Wildlife Service Training Institute: Naivasha, Kenya; Bioscan (UK) Ltd.: Oxford, UK, 2010. [Google Scholar]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Zenner, E.K.; Jaafari, A.; Bui, D.T. Spatially explicit predictions of changes in the extent of mangroves of Iran at the end of the 21st century. Estuar. Coast. Shelf Sci. 2020, 237, 106644. [Google Scholar] [CrossRef]
- Alongi, D.M. Impact of global change on nutrient dynamics in mangrove forests. Forests 2018, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Mustard, J.; DeFries, R.; Fisher, T.; Moran, E.F. Land use and land cover change pathways and impacts. In Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth’s Surface; Cochrane, M.A., Ed.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Olson, J.M.; Alagarswamy, G.; Andresen, J.A.; Campbell, D.J.; Davis, A.Y.; Ge, J.; Huebner, M.; Lofgren, B.M.; Lusch, D.P.; Moore, N.J.; et al. Integrating diverse methods to understand climate and interactions in East Africa. Geoforum 2008, 39, 898–911. [Google Scholar] [CrossRef]
- Etemadi, H.; Smoak, J.M.; Karami, J. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environ. Earth Sci. 2018, 77, 208. [Google Scholar] [CrossRef]
- Breithaupt, J.L.; Hurst, N.; Steinmuller, H.E.; Duga, E.; Smoak, J.M.; Kominoski, J.S.; Chambers, L.G. Biogeo-chemical impacts of storm surge sediments in coastal wetlands: Hurricane Irma and the Florida Everglades. Estuaries Coast. 2019, 43, 1090–1103. [Google Scholar] [CrossRef]
- Sanders, C.J.; Maher, D.T.; Tait, D.R.; Williams, D.; Holloway, C.; Sippo, J.Z.; Santos, I.R. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 2016, 121, 2600–2609. [Google Scholar] [CrossRef]
- Smoak, J.M.; Breithaupt, J.L.; Smith, T.J.; Sanders, C.J. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena 2013, 104, 58–66. [Google Scholar] [CrossRef]
- Sato, I.; Langer, P.; Stolle, F. Enhancing NDCs: Opportunities in the Forest and Land-Use Sector. 2019. Available online: https://www.wri.org/research/ndc-enhancement-opportunities-forest-and-land-use-sector (accessed on 21 February 2022).
- Boehm, S.; Lebling, K.; Levin, K.; Fekete, H.; Jaeger, J.; Waite, R.; Nilsson, A.; Thwaites, J.; Wilson, R.; Geiges, A.; et al. State of Climate Action 2021: Systems Transformations Required to Limit Global Warming to 1.5 °C; World Resources Institute: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- UNEP. Mangroves of Western and Central Africa; UNEP-Regional Seas Programme/UNEP–WCMC, 2007; p. 88. Available online: https://books.google.cm/books?id=xdrMCcDQaaoC (accessed on 21 February 2022).
- MINEPDED. Les Mangroves du Cameroun: État des Lieux et Gestion, 2nd ed.; MINEPDED, 2018; 234p, Available online: https://cm.chm-cbd.net/la-biodiversite-au-cameroun/ecosystemes/ecosysteme-marin-et-cotier/mangrove/les-mangroves-au-cameroun-etat-des-lieux-et-gestion-2nde-edition/download/fr/1/Rapport%20Etat%20des%20lieux%20mangroves%20%20%20%20%20%20Cameroun_Final%20Report_OK-2-R.pdf?action=view (accessed on 21 February 2022).
- MINEPDED-RCM. Les Mangroves du Cameroun: État de Lieux et Gestion; MINEPDED-RCM: Cameroun, 2017; 191p, Available online: https://www.cbd.int/doc/c/a797/8a83/de47bf12e80acf95e215e96b/soiws-2018-01-rapport-etat-fr.pdf (accessed on 21 February 2022).
- Hamilton, L.S.; Snedaker, S.C. (Eds.) Handbook for Mangrove Area Management; UNEP/East West Centre Environment and Policy Institute: Gland, Switzerland; Honolulu, HI, USA, 1984; Available online: https://wedocs.unep.org/20.500.11822/29409 (accessed on 21 February 2022).
- Dahdouh–Guebas, F.; Mathenge, J.; Kairo, J.; Koedem, N. Utilization of mangrove wood products around Mida Creek (Kenya) amongst subsistence and commercial users. Econ. Bot. 2000, 54, 513–527. [Google Scholar] [CrossRef]
- IPCC; Shukla, P.R.; Skea, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 26 March 2022).
- CAM-ECO. Rapport de L’étude de Base sur L’utilisation du Bois Énergie de Mangrove; CAM-ECO: Edéa, Cameroon, 2019; 59p. [Google Scholar]
- Tatuebu Tagne, C. Cartographie de L’occupation/Utilisation des sols en vue de Réduire L’empreinte Carbone du Combustible Énergie sur l’île de Manoka (Cameroun); Rapport D’étude; CIFOR: Yaounde, Cameroon, 2020; 54p. [Google Scholar]
- Yagoub, Y.E.; Bo, Z.; Ding-min, J.; Jahelnabi, A.E.; Fadoul, S.M. Land Use and Land cover change in Northeast Gadarif State: Case of El Rawashda Forest, Sudan. J. Geogr. Inf. Syst. 2015, 7, 140–157. [Google Scholar] [CrossRef] [Green Version]
- Mbevo Fendoung, P. Vulnérabilité et adaptation des populations de cap Cameroun aux risques naturels. In Construire la Ville Portuaire de Demain en Afrique Atlantique; Tchindjang, M., Steck, B., Bopda, A., Eds.; EMS: Havre, France, 2019; pp. 583–625. Available online: http://hdl.handle.net/2268/236530 (accessed on 9 January 2022).
- Tiako Tchanga, A. Caractérisation des Paysages de Mangroves de L’estuaire du Wouri et suivi de Leur Dynamique de 1986 à 2016. Master’s Thesis, Professionnel en Cartographie, Télédétection et SIG, Département de géographie, Université de Yaoundé, Yaoundé, Cameroon, 2019; 103p. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Olaleye, J.B.; Abiodun, O.E.; Igbokwe, Q.C. Land Use Change Detection and Analysis Using Remotely Sensed Data in Lekki Peninsula Area of Lagos Nigeria. TS8B. SIM in Planning and Development, FIG Working Week 2009. Surveyors Key Role in Accelerated Development, Eliat, Israel, 3–8 May 2009. Available online: www.fig.net/pub/fig2009/papers/ts08b (accessed on 26 March 2022).
- Klemas, V. Remote Sensing Techniques for Studying Coastal Ecosystems: An Overview. J. Coast. Res. 2011, 27, 2–17. [Google Scholar]
- Howard, J.; Hoyt, S.; Isensee, K.; Pidgeon, E.; Telszewski, M. (Eds.) Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows; Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature: Arlington, VA, USA, 2014; 184p. [Google Scholar]
- Fossi Fotsi, Y.; Pouvreau, N.; Brenon, I.; Onguene, R.; Etame, J. Evolution du trait de côte de la façade sud de l’ile de Cap Cameroun dans l’estuaire du Wouri (Cameroun). In Proceedings of the Atelier Climat et Impacts à l’Université de Paris-Sud (Orsay), Paris, France, 29–30 November 2018. [Google Scholar]
- Dzalla Ngangué, G.C. Mangrove de L’estuaire du Wouri: Enjeux de L’anthropisation D’un Écosystème Humide Tropical et Impacts Environnementaux. Ph.D. Thesis, Université de Douala, Douala, Cameroon, 2013; 446p. [Google Scholar]
- CAM-ECO. Rapport des Enquêtes Socio-Économiques et Environnementales Réalisées dans la Foret Communautaire de Mangroves de Manoka; CAM-ECO: Douala Edéa, Cameroun, 2016; 27p. [Google Scholar]
- Molua, E.L. Accommodation of Climate Change in Coastal Areas of Cameroon: Selection of Household-Level Protection Options. Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 721. [Google Scholar] [CrossRef]
- Fongnzossie, F.E.; Sonwa, D.J.; Kemeuze, V.; Mengelt, C. Assessing climate change vulnerability and local adaptation strategies in adjacent communities of the Kribi-Campo coastal ecosystems, South Cameroon. Urban Clim. 2018, 24, 1037–1051. [Google Scholar]
- Mbevo Fendoung, P. Analyse de la Vulnérabilité et des Stratégies D’adaptation aux Changements Climatiques en zone Côtière Camerounaise: Cas de Cap Cameroun Dans L’arrondissement de Douala 6e mémoire. Master’s Thesis, University Yaoundé, Yaoundé, Cameroon, 2016; 173p. [Google Scholar]
- Mbevo Fendoung, P. Gestion des Risques Naturels sur le Littoral Camerounais: Cas de L’érosion Côtière à Cap Cameroun et à Kribi. Master’s Thesis, Spécialisation en Gestion des Risques et Catastrophes, Université de Liège/Belgique, Liège, Belgique, 2019; 119p. [Google Scholar]
- Murdiyarso, D.; Sasmito, S.D.; Sillanpää, M.; MacKenzie, R.; Gaveau, D. Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment. Sci. Rep. 2021, 11, 12325. [Google Scholar] [CrossRef]
- Tsayem Demaze, M. Caractérisation et Suivi de la Déforestation en Milieu Tropical par Télédétection. Application aux Défrichements Agricoles en Guyane Française et au Brésil. Ph.D. Thesis, Université d’Orléans, New Orleans, France, 2002; 242p. [Google Scholar]
- Spalding, M.; Blasco, F.; Field, C. World Mangrove Atlas; The International Society for Mangrove Ecosystems: Okinawa, Japan, 1997; p. 178. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Tekeuchi, W. A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, seagrasses and salt marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef] [Green Version]
- Etemadi, H.; Smoak, J.M.; Abbasi, E. Spatiotemporal pattern of degradation in arid mangrove forests of the Northern Persian Gulf. Oceanologia 2021, 63, 99–114. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; Agrawal, S.; Krishnaveni, M. Time-series analysis of MODIS NDVI data along with ancillary data for land use/land cover mapping of Uttarakhand. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2014, 40, 1491–1500. [Google Scholar] [CrossRef] [Green Version]
- Chesneau, C. Éléments de Classification; Université de Caen, 2016; p. 81. Available online: https://cel.archives-ouvertes.fr/cel-01252973 (accessed on 21 February 2022).
- Jones, T.G.; Ratsimba, H.R.; Ravaoarinorotsihoarana, L.; Glass, L.; Benson, L.; Teoh, M.; Carro, A.; Cripps, G.; Giri, C.; Gandhi, S.; et al. The dynamics, ecological variability and estimated carbon stocks of mangroves in Mahajamba Bay, Madagascar. J. Mar. Sci. Eng. 2015, 3, 793–820. [Google Scholar] [CrossRef] [Green Version]
- Ajonina, G.N.; Kairo, J.; Grimsditch, G.; Sembres, T.; Chuyong, G.; Diyouke, E. Assessment of mangrove carbon stocks in Cameroon, Gabon, the Republic of Congo (RoC) and the Democratic Republic of Congo (DRC) including their potential for reducing emissions from deforestation and forest degradation (REDD+). In The Land/Ocean Interactions in the Coastal Zone of West and Central Africa; Springer: Dordrecht, The Netherlands, 2014; pp. 177–189. [Google Scholar]
- Fousseni, F.; Andrianamenoso, R.M.; Kperkouma, W.; Agbelessessi, W.Y.; Madjouma, K.; Hodabalo, P.; Aniko, P.-A.; Komlan, B.; Koffi, A. Écologie et dynamique spatio-temporelle des mangroves au Togo. VertigO 2017, 17, 3. [Google Scholar] [CrossRef]
- Ajonina, G.; Kairo, J.G.; Grimsditch, G.; Sembres, T.; Chuyong, G.; Mibog, D.E.; Nyambane, A.; FitzGerald, C. Carbon Pools and Multiple Benefits of Mangroves in Central Africa: Assessment for REDD+; 2014; 72p, Available online: https://www.uncclearn.org/wp-content/uploads/library/reddcarbon_lowres_954607.pdf (accessed on 21 February 2022).
- Ngoufo, R.; Zapfack, L.; Tiomo Dongfack, E.; Tsafack Ngoufo, L.; Matsaguim Guimdo, C. Évaluation et spatialisation du carbone stocké dans le massif forestier de Ngog-Mapubi (Cameroun). In Proceedings of the Conférence OSFACO: Des images Satellites pour la Gestion Durable des Territoires en Afrique, Cotonou, Bénin, 13–15 March 2019. [Google Scholar]
- Nasi, R.; Mayaux, P.; Devers, D.; Bayol, N.E.; Mugnier, A.; Cassagne, B.; Billand, A.; Sonwa, D.J. Un aperçu des stocks de carbone et leurs variations dans les forêts du bassin du Congo. In Les forêts du bassin du Congo: État des forêts 2008; De Wasseige, C., Devers, D., de Marcken, P., Eba’a Atyi, R., Nasi, R., Mayaux, P., Eds.; Office des Publications de l’Union Européenne: Luxembourg, 2009; pp. 199–216. Available online: https://www.cifor.org/knowledge/publication/2888 (accessed on 21 February 2022).
- Feka, N.Z.; Chuyong, G.B.; Ajonina, G.N. Sustainable utilization of mangroves using improved fish smoking systems: A management perspective from the Douala-Edea wildlife reserve, Cameroon. Trop. Conserv. Sci. 2009, 2, 450–468. [Google Scholar] [CrossRef] [Green Version]
- Din, N.; Saenger, P.; Priso, R.J.; Siegfried, D.D.; Blasco, F. Logging activities in mangrove forests: A case study of Douala Cameroon. Afr. J. Environ. Sci. Technol. 2008, 2, 22–30. [Google Scholar]
- Zogning Lontsi, F.R.; Tchawa, P.; Happy, J.Y. Mangrove dynamics near Douala International Airport (Cameroon Coastal). Open Access Libr. J. 2021, 8, e8184. [Google Scholar] [CrossRef]
- Diop, S. (Ed.) Conservation and Sustainable Utilization of Mangrove Forests in Latin America and Africa Regions; Mangrove Ecosystems Technical Report 3. Part II Africa; ISME/UNESCO: Paris, France, 1993. [Google Scholar]
- Gabche, C.E. An Appraisal of Fisheries Activities and Evaluation of Economic Potentials of the Fish Trade in the Douala-Edea Reserve, Cameroon; Cameroon Wildlife Conservation Society: Yaoundé, Cameroon, 1997. [Google Scholar]
- Bassene, A.O.; Cubizolle, H.; Cormier-Salem, M.C.; Boubou, A.S. L’impact des changements démographiques et socio-économiques sur la perception et la gestion de la mangrove en basse Casamance (Sénégal). Géocarrefour 2013, 88, 299–315. [Google Scholar] [CrossRef]
- Orekan, V.; Plagbeto, H.; Edea, E.; Sossou, M. Évolution Actuelle des Écosystèmes de Mangrove Dans le Littoral Béninois; HAL: 2019; 16p. Available online: https://archives-ouvertes.fr/ (accessed on 27 March 2022).
- Kana, C.E.; Chrétien, N.; Alexandra, C.T.T.; René, B.J.T. Potentiel de l’imagerie multi-capteur dans le suivi des mangroves de l’estuaire du Wouri-Cameroun. In Proceedings of the Conférence OSFACO: Des Images Satellites Pour la Gestion Durable des Territoires en Afrique, Cotonou, Benin, 13–15 March 2019; 25p. [Google Scholar]
- BUCREP. Troisième Recensement Général de la Population: Rapport de Présentation des Résultats Définitifs; BUCREP: Yaoundé, Cameroon, 2005; 65p. [Google Scholar]
- Lambin, E.; Geist, H.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Feka, N.Z. Socio-Economic and Cultural Benefits of Coastal Habitats and Marine Protected Areas in West-Central Africa; UNEP-WCMC, Biodiversity Chevening Programme Protected Areas Unit: Cambridge, UK, 2007. [Google Scholar]
- Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Jamsranjav, B.; Fukuda, M.; Troxler, T. (Eds.) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands—Methodological Guidance on Lands with Wet and Drained Soils, and Constructed Wetlands for Wastewater Treatment; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; Available online: https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-fornational-greenhouse-gas-inventories-wetlands/ (accessed on 28 March 2022).
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marba, N.; et al. Estimating Global ‘Blue Carbon’ Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [Green Version]
ID Scenes | Satellite Sensor | Altitude | Spatial Resolution | Number of Bands | Cloud Cover Level | Date |
---|---|---|---|---|---|---|
L11XXX1173032090101_HDF. 181171701 | MSS | 705 km | 60 m | 4 | Medium | 1 February 1973 |
LT05_L1TP_186057_19861221_ 20170215_01_T1 | TM | 705 km | 30 m | 6 | Low | 21 December 1986 |
LE07_L1TP_186057_19991217_ 20170215_01_T1 | ETM+ | 705 km | 30 m | 7 | Medium | 17 December 1999 |
LC81860572013109LGN01 | OLI | 705 km | 30 m | 7 | Medium | 6 March 2013 |
LC08_L1TP_187057_20181220_ 20181227_01_T1 | OLI | 705 km | 30 m | 7 | Low | 20 December 2018 |
Occupancy Class | Field Overview | Image Preview | Coordinates |
---|---|---|---|
Undisturbed mangrove | Lat: 3°49′19′′ Long: 9°36′11′′ | ||
Degraded mangrove | Lat: 3°51′51′′ Long: 9°37′29′′ | ||
Settlement | Lat: 3°51′41′′ Long: 9°38′02′′ | ||
Bare surface | Lat: 3°52′04′′ Long: 9°37′18′′ | ||
Inland forest | Lat: 3°50′45′′ Long: 9°36′34′′ | ||
Water | Lat: 3°51′33′′ Long: 9°38′26′′ |
Classification | Accuracy | Kappa Index | Class with More Errors |
---|---|---|---|
1986 | 92.90% | 0.89 | Mangrove, water |
1999 | 98.82% | 0.98 | Inland forest, mangrove |
2013 | 98.98% | 0.98 | Settlement, degraded forest |
2018 | 99.15% | 0.98 | Settlement, degraded forest, bare surface |
Forest Type | Land Use Type | Emission Factors (Aboveground Live Biomass) tc/ha | Sources |
---|---|---|---|
Mangrove forest | Greatly exploited | 41.60 | [19,51] |
Moderately exploited | 126.24 | ||
Undisturbed | 557.3 | ||
Inland forest | Greatly exploited | 85.38 | [52,53] |
Moderately exploited | 89.86 | ||
Undisturbed | 164.20 |
Class Name | Area (Ha) | Percentage (%) |
---|---|---|
Bare surface | 39.38 | 0.3658668 |
Degraded inland forest | 101.44 | 0.94244612 |
Degraded mangrove | 442.11 | 4.10750055 |
Settlement | 90.47 | 0.84052741 |
Undisturbed inland forest | 3814.85 | 35.4425335 |
Undisturbed mangrove | 5740.48 | 53.3329369 |
Water | 534.75 | 4.96818873 |
Total | 10,763.48 | 100 |
1986 | Bare Surface | Degraded Inland Forest | Degraded Mangrove | Settlement | Undisturbed Inland Forest | Undisturbed Mangrove | Water | Total | Total (%) | |
---|---|---|---|---|---|---|---|---|---|---|
2018 | ||||||||||
Bare surface | 0.71 | 1.44 | 0.63 | 36.6 | 39.38 | 0.36 | ||||
Degraded inland forest | 0.09 | 17.65 | 3.43 | 80.18 | 0.09 | 101.44 | 0.94 | |||
Degraded mangrove | 6.53 | 77.06 | 10.23 | 4.56 | 270.28 | 73.45 | 442.11 | 4.10 | ||
Settlement | 2.24 | 21.77 | 17.8 | 1.26 | 31.57 | 8.3 | 7.53 | 90.47 | 0.84 | |
Undisturbed inland forest | 0.27 | 4.26 | 3810.32 | 3814.85 | 35.44 | |||||
Undisturbed mangrove | 0.27 | 4.41 | 5648.65 | 87.15 | 5740.48 | 53.33 | ||||
Water | 0.45 | 3.26 | 0.09 | 79.84 | 451.11 | 534.75 | 4.96 | |||
Total | 10.56 | 43.68 | 103.97 | 15.01 | 3926.63 | 6007.7 | 655.93 | 10,763.48 | ||
Total (%) | 0.098 | 0.40 | 0.96 | 0.13 | 36.48 | 55.81 | 6.09 | 100 |
Forest Type | Land Use Type | Emission Factors (Aboveground Live Biomass) tc/ha | Area 1986 (ha) | Carbon Stock (tc) in 1986 | Area 2018 (ha) | Carbon Stock (tc) in 2018 | Carbon Stock, Difference between 1986 and 2018 (tc) |
---|---|---|---|---|---|---|---|
Mangrove forest | Moderately exploited | 126.24 | 103.97 | 13,125.172 | 442.11 | 55,811.96 | |
Undisturbed | 557.3 | 6007.7 | 3,347,701.1 | 5740.48 | 3,199,169.50 | ||
Inland forest | Intensely exploited | 85.38 | 43.68 | 3729.40 | 101.44 | 8660.94 | |
Moderately exploited | 89.86 | / | / | ||||
Undisturbed | 164.20 | 3926.63 | 644,752.64 | 3814.85 | 626,398.37 | ||
Total | 4,009,308.31 | 9645.14 | 3,890,040.77 | −119,267.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatuebu Tagne, C.; Sonwa, D.J.; Awono, A.; Mama, M.N.; Fongnzossie, E.; Ngala Mbiybe, R.; Essamba à Rim, L.F.; Ntja, R.D. Land Cover and Land Use Changes between 1986 and 2018, and Preliminary Carbon Footprint Implications for Manoka Island (Littoral Region of Cameroon). Sustainability 2022, 14, 6301. https://doi.org/10.3390/su14106301
Tatuebu Tagne C, Sonwa DJ, Awono A, Mama MN, Fongnzossie E, Ngala Mbiybe R, Essamba à Rim LF, Ntja RD. Land Cover and Land Use Changes between 1986 and 2018, and Preliminary Carbon Footprint Implications for Manoka Island (Littoral Region of Cameroon). Sustainability. 2022; 14(10):6301. https://doi.org/10.3390/su14106301
Chicago/Turabian StyleTatuebu Tagne, Claude, Denis Jean Sonwa, Abdon Awono, Moustapha Njayou Mama, Evariste Fongnzossie, Riddley Ngala Mbiybe, Lydie Flora Essamba à Rim, and Rufin Dominique Ntja. 2022. "Land Cover and Land Use Changes between 1986 and 2018, and Preliminary Carbon Footprint Implications for Manoka Island (Littoral Region of Cameroon)" Sustainability 14, no. 10: 6301. https://doi.org/10.3390/su14106301
APA StyleTatuebu Tagne, C., Sonwa, D. J., Awono, A., Mama, M. N., Fongnzossie, E., Ngala Mbiybe, R., Essamba à Rim, L. F., & Ntja, R. D. (2022). Land Cover and Land Use Changes between 1986 and 2018, and Preliminary Carbon Footprint Implications for Manoka Island (Littoral Region of Cameroon). Sustainability, 14(10), 6301. https://doi.org/10.3390/su14106301