Water Footprint as a Tool for Selection of Alternatives (Comments on “Food Recommendations for Reducing Water Footprint”)
Abstract
:1. Introduction
2. Significance of Individual “Color” Components of the Water Footprint in Terms of Food Production Sustainability
3. Criteria for Food Sustainability Assessment from the Water Footprint Perspective
3.1. Green to Blue Water Footprints Ratio
3.2. Blue Water Footprint
3.3. Grey Water Footprint
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gallo, I.; Landro, N.; La Grassa, R.; Turconi, A. Food Recommendations for Reducing Water Footprint. Sustainability 2022, 14, 3833. [Google Scholar] [CrossRef]
- Tompa, O.; Kiss, A.; Maillot, M.; Sarkadi Nagy, E.; Temesi, Á.; Lakner, Z. Sustainable Diet Optimization Targeting Dietary Water Footprint Reduction—A Country-Specific Study. Sustainability 2022, 14, 2309. [Google Scholar] [CrossRef]
- Leach, A.M.; Emery, K.A.; Gephart, J.; Davis, K.F.; Erisman, J.W.; Leip, A.; Pace, M.L.; D’Odorico, P.; Carr, J.; Noll, L.C.; et al. Environmental Impact Food Labels Combining Carbon, Nitrogen, and Water Footprints. Food Policy 2016, 61, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; van Oel, P.R. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water 2017, 9, 438. [Google Scholar] [CrossRef] [Green Version]
- Harris, F.; Moss, C.; Joy, E.J.M.; Quinn, R.; Scheelbeek, P.F.D.; Dangour, A.D.; Green, R. The Water Footprint of Diets: A Global Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 375–386. [Google Scholar] [CrossRef]
- Jalava, M.; Kummu, M.; Porkka, M.; Siebert, S.; Varis, O. Diet Change—A Solution to Reduce Water Use? Environ. Res. Lett. 2014, 9, 074016. [Google Scholar] [CrossRef]
- Tompa, O.; Lakner, Z.; Oláh, J.; Popp, J.; Kiss, A. Is the Sustainable Choice a Healthy Choice?—Water Footprint Consequence of Changing Dietary Patterns. Nutrients 2020, 12, 2578. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water Footprint Assessment: Evolvement of a New Research Field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade—A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade; Value of Water Research Report Series; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2002; p. 120. [Google Scholar]
- Gerbens-Leenes, W.; Berger, M.; Allan, J.A. Water Footprint and Life Cycle Assessment: The Complementary Strengths of Analyzing Global Freshwater Appropriation and Resulting Local Impacts. Water 2021, 13, 803. [Google Scholar] [CrossRef]
- Ansorge, L. Water Footprint: Two Different Methodologies. Tecnura 2020, 24, 119–121. [Google Scholar] [CrossRef]
- Ansorge, L. Comments on “Analysis of Water–Carbon–Ecological Footprints and Resource–Environment Pressure in the Triangle of Central China” by Yizhong Chen, Hongwei Lu, Pengdong Yan, Yiyang Yange, Jing Li and Jun Xia [Ecological Indicators, 125, 107448]. Ecol. Indic. 2021, 127, 107803. [Google Scholar] [CrossRef]
- Matuštík, J.; Kočí, V. What Is a Footprint? A Conceptual Analysis of Environmental Footprint Indicators. J. Clean. Prod. 2021, 285, 124833. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK; Washington, DC, USA, 2011; ISBN 978-1-84971-279-8. [Google Scholar]
- Hess, T.; Andersson, U.; Mena, C.; Williams, A. The Impact of Healthier Dietary Scenarios on the Global Blue Water Scarcity Footprint of Food Consumption in the UK. Food Policy 2015, 50, 1–10. [Google Scholar] [CrossRef]
- Tom, M.S.; Fischbeck, P.S.; Hendrickson, C.T. Energy Use, Blue Water Footprint, and Greenhouse Gas Emissions for Current Food Consumption Patterns and Dietary Recommendations in the US. Env. Syst. Decis. 2016, 36, 92–103. [Google Scholar] [CrossRef]
- Milner, J.; Joy, E.J.M.; Green, R.; Harris, F.; Aleksandrowicz, L.; Agrawal, S.; Smith, P.; Haines, A.; Dangour, A.D. Projected Health Effects of Realistic Dietary Changes to Address Freshwater Constraints in India: A Modelling Study. Lancet Planet. Health 2017, 1, e26–e32. [Google Scholar] [CrossRef] [Green Version]
- Garrido, A.; Llamas, M.R. Water Policy in Spain; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-203-86602-3. [Google Scholar]
- Nieuwoudt, W.L.; Backeberg, G.R.; Du Plessis, H.M. The Value of Water in the South African Economy: Some Implications. Agrekon 2004, 43, 162–183. [Google Scholar] [CrossRef] [Green Version]
- Pfister, S.; Hellweg, S. The Water “Shoesize” vs. Footprint of Bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, E93–E94. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Gerbens-Leenes, W.; Meer, T.H. van der Reply to Pfister and Hellweg: Water Footprint Accounting, Impact Assessment, and Life-Cycle Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, E114. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global Impacts of Conversions from Natural to Agricultural Ecosystems on Water Resources: Quantity versus Quality. Water Resour. Res. 2007, 43, W03437. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, F.; Destouni, G. Local Flow Regulation and Irrigation Raise Global Human Water Consumption and Footprint. Science 2015, 350, 1248–1251. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; Gleeson, T.; (Rens) van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P. Environmental Flow Limits to Global Groundwater Pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, M.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.; et al. Long-Term Global Water Projections Using Six Socioeconomic Scenarios in an Integrated Assessment Modeling Framework. Technol. Forecast. Soc. Change 2014, 81, 205–226. [Google Scholar] [CrossRef]
- Gephart, J.A.; Davis, K.F.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; Pace, M.L. The Environmental Cost of Subsistence: Optimizing Diets to Minimize Footprints. Sci. Total Environ. 2016, 553, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanham, D. Water Resources for Sustainable Healthy Diets: State of the Art and Outlook. Water 2020, 12, 3224. [Google Scholar] [CrossRef]
- Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Hijioka, Y.; Nishimori, M. Varying Benefits of Irrigation Expansion for Crop Production Under a Changing Climate and Competitive Water Use Among Crops. Earth’s Future 2018, 6, 1207–1220. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P. Quantifying Blue and Green Virtual Water Contents in Global Crop Production as Well as Potential Production Losses without Irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- World Bank Water in Agriculture. Available online: https://www.worldbank.org/en/topic/water-in-agriculture (accessed on 6 April 2022).
- Sezima, T.; Tušil, P.; Durčák, M.; Mičaník, T.; Kristová, A. Vybrané metody hodnocení životního prostředí. Vodohospodářské Tech. Ekon. Inf. 2018, 60, 22–25. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-Criteria Decision Analysis in Environmental Sciences: Ten Years of Applications and Trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; González-Pachón, J.; Romero, C. Measuring Systems Sustainability with Multi-Criteria Methods: A Critical Review. Eur. J. Oper. Res. 2017, 258, 607–616. [Google Scholar] [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.J.T. The Multi-Attribute Utility Method. In The Measurement and Analysis of Housing Preference and Choice; Jansen, S.J.T., Coolen, H.C.C.H., Goetgeluk, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 101–125. ISBN 978-90-481-8894-9. [Google Scholar]
- Uzun Ozsahin, D.; Gökçekuş, H.; Uzun, B.; LaMoreaux, J. (Eds.) Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering; Professional Practice in Earth Sciences; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-64764-3. [Google Scholar]
- Ansorge, L.; Stejskalová, L.; Dlabal, J. Allocation of Water Loss to Individual Benefits Provided by the Fláje Reservoir—Comparison of Several Procedures. IOP Conf. Ser. Earth Environ. Sci. 2021, 900, 012001. [Google Scholar] [CrossRef]
- Golabi, M.R.; Radmanesh, F. A New Approach to the Allocation of the Blue Water Footprint of Reservoirs Using Fuzzy AHP Model. Model. Earth Syst. Environ. 2020, 6, 793–797. [Google Scholar] [CrossRef]
- Manzardo, A.; Ren, J.; Piantella, A.; Mazzi, A.; Fedele, A.; Scipioni, A. Integration of Water Footprint Accounting and Costs for Optimal Chemical Pulp Supply Mix in Paper Industry. J. Clean. Prod. 2014, 72, 167–173. [Google Scholar] [CrossRef]
- Singh, A.; Lou, H.H. Hierarchical Pareto Optimization for the Sustainable Development of Industrial Ecosystems. Ind. Eng. Chem. Res. 2006, 45, 3265–3279. [Google Scholar] [CrossRef]
- Balezentis, T.; Chen, X.; Galnaityte, A.; Namiotko, V. Optimizing Crop Mix with Respect to Economic and Environmental Constraints: An Integrated MCDM Approach. Sci. Total Environ. 2020, 705, 135896. [Google Scholar] [CrossRef]
- Allan, J.A. ‘Virtual Water’: A Long Term Solution for Water Short Middle Eastern Economies? University of Leeds: London, UK, 1997. [Google Scholar]
- Yang, H.; Pfister, S.; Bhaduri, A. Accounting for a Scarce Resource: Virtual Water and Water Footprint in the Global Water System. Curr. Opin. Environ. Sustain. 2013, 5, 599–606. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M. The Scarcity-Weighted Water Footprint Provides Unreliable Water Sustainability Scoring. Sci. Total Environ. 2021, 756, 143992. [Google Scholar] [CrossRef]
- Herath, I.; Deurer, M.; Horne, D.; Singh, R.; Clothier, B. The Water Footprint of Hydroelectricity: A Methodological Comparison from a Case Study in New Zealand. J. Clean. Prod. 2011, 19, 1582–1589. [Google Scholar] [CrossRef]
- Grubert, E.A. Water Consumption from Hydroelectricity in the United States. Adv. Water Resour. 2016, 96, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Bakken, T.H.; Killingtveit, Å.; Alfredsen, K. The Water Footprint of Hydropower Production—State of the Art and Methodological Challenges. Glob. Chall. 2017, 1, 1600018. [Google Scholar] [CrossRef]
- Ansorge, L. Net Consumption Method Does Not Provide Helpful Insights Regarding the Blue Water Footprint of Hydroelectricity. Ecol. Indic. 2021, 126, 107681. [Google Scholar] [CrossRef]
- Tamea, S.; Tuninetti, M.; Soligno, I.; Laio, F. Virtual Water Trade and Water Footprint of Agricultural Goods: The 1961–2016 CWASI Database. Earth Syst. Sci. Data Discuss. 2021, 13, 2025–2051. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- World Economic Forum. Water Security: The Water-Food-Energy-Climate Nexus; Island Press: Washington, DC, USA, 2011; ISBN 978-1-61091-026-2. [Google Scholar]
- Hoff, H. Understanding the Nexus: Background Paper for the Bonn2011 Nexus Conference; SEI: Stockholm, Sweden, 2011. [Google Scholar]
- Al-Saidi, M.; Elagib, N.A. Towards Understanding the Integrative Approach of the Water, Energy and Food Nexus. Sci. Total Environ. 2017, 574, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The Healthiness and Sustainability of National and Global Food Based Dietary Guidelines: Modelling Study. BMJ 2020, 370, m2322. [Google Scholar] [CrossRef]
- Jones, A.D.; Hoey, L.; Blesh, J.; Miller, L.; Green, A.; Shapiro, L.F. A Systematic Review of the Measurement of Sustainable Diets. Adv. Nutr. 2016, 7, 641–664. [Google Scholar] [CrossRef] [Green Version]
- Steenson, S.; Buttriss, J.L. Healthier and More Sustainable Diets: What Changes Are Needed in High-Income Countries? Nutr. Bull. 2021, 46, 279–309. [Google Scholar] [CrossRef]
- Skoet, J.; Fabi, C.; Cattaneo, A. Measuring Food Loss and Waste: An FAO Perspective. EuroChoices 2020, 19, 22–23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansorge, L.; Stejskalová, L. Water Footprint as a Tool for Selection of Alternatives (Comments on “Food Recommendations for Reducing Water Footprint”). Sustainability 2022, 14, 6317. https://doi.org/10.3390/su14106317
Ansorge L, Stejskalová L. Water Footprint as a Tool for Selection of Alternatives (Comments on “Food Recommendations for Reducing Water Footprint”). Sustainability. 2022; 14(10):6317. https://doi.org/10.3390/su14106317
Chicago/Turabian StyleAnsorge, Libor, and Lada Stejskalová. 2022. "Water Footprint as a Tool for Selection of Alternatives (Comments on “Food Recommendations for Reducing Water Footprint”)" Sustainability 14, no. 10: 6317. https://doi.org/10.3390/su14106317
APA StyleAnsorge, L., & Stejskalová, L. (2022). Water Footprint as a Tool for Selection of Alternatives (Comments on “Food Recommendations for Reducing Water Footprint”). Sustainability, 14(10), 6317. https://doi.org/10.3390/su14106317