Source Discrimination of Mine Gushing Water Using Self-Organizing Feature Maps: A Case Study in Ningtiaota Coal Mine, Shaanxi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological and Hydrogeological Conditions
2.2. Sample Collection and Analysis
2.3. Self-Organizing Feature Map
2.4. Hydrogeochemical Method
2.5. Fisher Discriminant Analysis
3. Results and Discussion
3.1. SOM and Clustering of Water Samples
3.2. Hydrogeochemical Discrimination
3.3. Source Identification Using FDA
3.4. Method Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.J.; Wang, G.C.; Liang, X.Y.; Cui, L.F.; Ma, L.; Xu, Q.Y. Hydrochemical and Stable Isotope (δD and δ18O) Characteristics of Groundwater and Hydrogeochemical Processes in the Ningtiaota Coalfield, Northwest China. Mine Water Environ. 2018, 37, 119–136. [Google Scholar] [CrossRef]
- Xie, P.; Li, W.P.; Yang, D.D.; Jiao, J.J. Hydrogeological Model for Groundwater Prediction in the Shennan Mining Area, China. Mine Water Environ. 2018, 37, 505–517. [Google Scholar] [CrossRef]
- Hou, E.K.; Wen, Q.; Che, X.Y.; Chen, W.; Wei, J.B.; Ye, Z.N. Study on recognition of mine water sources based on statistical analysis. Arab. J. Geosci. 2019, 13, 5. [Google Scholar] [CrossRef]
- Liu, Z.B.; Zhao, R.J.; Dong, S.N.; Wang, W.K.; Sun, H.F.; Mao, D.Q. Scanning for water hazard threats with sequential water releasing tests in underground coal mines. J. Hydrol. 2020, 590, 125350. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, D.K.; Wang, Y.; Shen, J.J.; Mu, W.P.; Liu, H.L. Method for assessing coal-floor water-inrush risk based on the variable-weight model and unascertained measure theory. Hydrogeol. J. 2017, 25, 2089–2103. [Google Scholar] [CrossRef]
- Zeng, Y.F.; Wu, Q.; Liu, S.Q.; Zhai, Y.L.; Zhang, W.; Liu, Y.Z. Vulnerability assessment of waterbursting from Ordovician limestone into coal mines of China. Environ. Earth Sci. 2016, 75, 1431. [Google Scholar] [CrossRef]
- Zeng, Y.F.; Wu, Q.; Liu, S.Q.; Zhai, Y.L.; Lian, H.Q.; Zhang, W. Evaluation of a coal seam roof water inrush: Case study in the Wangjialing coal mine, China. Mine Water Environ. 2017, 37, 174–184. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, X.L.; Dong, D.L.; Yin, Z.R.; Li, J.M.; Hong, Y.Q.; Zhang, H.J. “Three maps-two predictions” method to evaluate water bursting conditions on roof coal. J. China Coal Soc. 2000, 125, 60–65. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Z.L.; Zhang, S.Y.; Ma, J.F. A new practical methodology of the coal floor water bursting evaluating Ⅱ: The vulnerable index method. J. China Coal Soc. 2007, 132, 1121–1126. (In Chinese) [Google Scholar]
- Wu, Q.; Fan, Z.L.; Liu, S.Q.; Zhang, Y.W.; Sun, W.J. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS: Water-richness index method. J. China Coal Soc. 2011, 136, 1124–1128. [Google Scholar] [CrossRef]
- Liu, H.; Cao, Y. Technologies of Preventing Coal Mine Water Hazards for Sustainable Development in North China. Geotech. Geol. Eng. 2011, 29, 1–5. [Google Scholar] [CrossRef]
- Li, X.B.; Li, D.Y.; Liu, Z.X.; Zhao, G.Y.; Wang, W.H. Determination of the minimum thickness of crown pillar for safe exploitation of a subsea gold mine based on numerical modelling. Int. J. Rock Mech. Min. Sci. 2013, 57, 42–56. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, S.Q.; Zeng, Y.F. The progress of the mine water prevention and control on basic principles in China. Annu. Meet. Int.-Mine-Water-Assoc. (IMWA) 2016, 122–126. (In Chinese) [Google Scholar]
- Yang, W.F.; Xia, X.H.; Pan, B.L.; Gu, C.S.; Yue, J.G. The fuzzy comprehensive evaluation of water and sand inrush risk during underground mining. J. Intell. Fuzzy Syst. 2016, 30, 2289–2295. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, S.Y.; Yang, C.W. Analysis of hydrochemical evolution in main discharge aquifers under mining disturbance and water source identification. Environ. Sci. Pollut. Res. 2021, 28, 26784–26793. [Google Scholar] [CrossRef]
- Sakizadeh, M.; Mirzaei, R.; Ghorbani, H. Geochemical influences on the quality of groundwater in eastern part of Semnan Province, Iran. Environ. Earth Sci. 2016, 75, 917. [Google Scholar] [CrossRef]
- Li, Y.P.; Shen, J.; Tao, J.J. Water source identification of the drained-produced horizons for the coalbed methane well based on support vector machine. Pet. Geol. Oilfield Dev. Daqing 2018, 37, 171–174. (In Chinese) [Google Scholar]
- Dong, D.L.; Chen, Z.Y.; Lin, G.; Li, X.; Zhang, R.M.; Ji, Y. Combining the Fisher Feature Extraction and Support Vector Machine Methods to Identify the Water Inrush Source: A Case Study of the Wuhai Mining Area. Mine Water Environ. 2019, 38, 855–862. [Google Scholar] [CrossRef]
- Mao, Z.Y.; Cui, P.J.; Huang, C.J.; Han, R.Y. KPCA-CS-SVM discrimination model of mine water inrush source. J. Liaoning Tech. Univ. 2021, 40, 104–111. (In Chinese) [Google Scholar]
- Zhang, H.; Xing, H.F.; Yao, D.X.; Liu, L.L.; Xue, D.R.; Guo, F. The multiple logistic regression recognition model for mine water inrush source based on cluster analysis. Environ. Geol. 2019, 78, 612. [Google Scholar] [CrossRef]
- Duan, X.L.; Ma, F.S.; Gu, H.Y.; Guo, J.; Zhao, H.J.; Liu, G.W.; Liu, S.Q. Identification of Mine Water Sources Based on the Spatial and Chemical Characteristics of Bedrock Brines: A Case Study of the Xinli Gold Mine. Mine Water Environ. 2022, 41, 126–142. [Google Scholar] [CrossRef]
- Jiang, C.L.; An, Y.Q.; Zheng, L.G.; Huang, W.W. Water Source Discrimination in a Multiaquifer Mine Using a Comprehensive Stepwise Discriminant Method. Mine Water Environ. 2021, 40, 442–455. [Google Scholar] [CrossRef]
- Hao, Q.; Wu, X.; Mu, W.P.; Deng, R.C.; Hu, B.Y.; Gao, Y. Groundwater source determination of mine inflow or inrush using a random forest model. Sci. Technol. Eng. 2020, 20, 6411–6418. (In Chinese) [Google Scholar]
- Bouzourra, H.; Bouhlila, R.; Elango, L.; Slama, F.; Ouslati, N. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, Gis, and hydrogeochemical investigations. Environ. Sci. Pollut. Res. 2015, 22, 2643–2660. [Google Scholar] [CrossRef] [PubMed]
- Najib, S.; Fadili, A.; Mehdi, K. Conntribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco. J. Contam. Hydrol. 2017, 198, 24–36. [Google Scholar] [CrossRef]
- Kuroda, K.; Hayashi, T.; Do, T.D.; Canh, C.V.; Nga, T.T.V.; Funabiki, A.; Takizawa, S. Groundwater recharge in suburban areas of Hanoi, Vietnam: Effect of decreasing surface water bodies and land-use change. Hydrogeol. J. 2017, 25, 727–742. [Google Scholar] [CrossRef]
- Xu, Z.M.; Sun, Y.J.; Gao, S.; Zhao, X.M.; Duan, R.Q.; Yao, M.H.; Liu, Q. Groundwater Source Discrimination and Proportion Determination of Mine Inflow Using Ion Analyses: A Case Study from the Longmen Coal Mine, Henan Province, China. Mine Water Environ. 2018, 37, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Petitta, M.; Primavera, P.; Tuccimei, P. Interaction between deep and shallow groundwater systems in areas affected by Quatemary tectonics (Central Italy): A geochemical and isotope approach. Environ. Earth Sci. 2011, 63, 11–30. [Google Scholar] [CrossRef]
- Mauryaa, P.; Kumaria, R.; Mukherjeeb, S. Hydrochemistry in integration with stable isotopes (δ18O and δD) to assess seawater intrusion in coastal aquifers of Kachchh district, Gujarat, India. J. Geochem. Explor. 2019, 196, 42–56. [Google Scholar] [CrossRef]
- Potot, C.; Féraud, G.; Schärer, U. Groundwater and river baselinequality using major, trace elements, organic carbon and Sr–Pb–Oisotopes in a Mediterranean catchment: The case of the lower VarValley (south-eastern France). J. Hydrol. 2012, 472, 126–147. [Google Scholar] [CrossRef]
- Wu, Q.; Mu, W.P.; Xing, Y.; Qian, C.; Shen, J.J.; Wang, Y.; Zhao, D.K. Source discrimination of mine water inrush using multiple methods: A case study from the Beiyangzhuang Mine, Northern China. Bull. Eng. Geol. Environ. 2019, 78, 469–482. [Google Scholar] [CrossRef]
- Ma, L.; Qian, J.Z.; Zhao, W.D. An approach for quickly identifying water-inrush source of mine based on GIS and groundwater chemistry and temperature. Coal Geol. Explor. 2014, 42, 49–53. [Google Scholar]
- Yan, P.C.; Zhou, M.R.; Liu, Q.M.; Wang, R.; Liu, J. Research on the Source Identification of Mine Water Inrush Based on LIF Technology and SIMCA Algorithm. Spectrosc. Spectr. Anal. 2016, 36, 243–247. [Google Scholar] [CrossRef]
- Wu, Y.L. Mining-Induced Environmental Engineering Geological Pattern Zoning in Yushen Coal Mining Area, Northern Shaanxi; China University of Mining & Technology: Beijing, China, 2017. [Google Scholar]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Kohonen, T.; Schroeder, M.R.; Huang, T.S. Self-Organizing Maps; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Zhu, G. Characteristics of Groundwater Environment and Heavy Metals Transport in a Typical Metal Mine in Tongling, Anhui Province; China University of Geosciences: Beijing, China, 2018. [Google Scholar]
- Baghanam, A.H.; Nourani, V.; Aslani, H.; Taghipour, H. Spatiotemporal variation of water pollution near landfill site: Application of clustering methods to assess the admissibility of LWPI. J. Hydrol. 2020, 591, 125581. [Google Scholar] [CrossRef]
- Cereghino, R.; Park, Y.S. Review of the Self-Organizing Map (SOM) approach in water resources: Commentary. Environ. Model. Softw. 2009, 24, 945–947. [Google Scholar] [CrossRef]
- Wu, C.; Fang, C.; Wu, X.; Zhu, G.; Zhang, Y.Z. Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area, Ordos Basin, NW China. Geosci. Front. 2020, 12, 781–790. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Q.M.; Chai, H.C.; Zhang, M.; Xie, Z.G. Identification of water inrush source based on fisher discriminant method and centroid distance theroy. Sci. Technol. Eng. 2020, 20, 3552–3556. (In Chinese) [Google Scholar]
- Xiao, Y.; Hao, Q.C.; Zhang, Y.H.; Zhu, Y.C.; Yin, S.Y.; Qin, L.M.; Li, X.H. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Total Environ. 2021, 802, 149909. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.C.; Xiao, D.; Zhu, Y.C.; Yin, S.Y.; Zhang, Y.H. Hydrogeochemical insights into the signatures, genesis and sustainable perspective of nitrate enriched groundwater in the piedmont of Hutuo watershed, China. Catena 2022, 212, 106020. [Google Scholar] [CrossRef]
- Yu, H.; Gui, H.; Zhao, H.; Wang, M.; Li, J.; Fang, H.; Jiang, Y.; Zhang, Y. Hydrochemical characteristics and water quality evaluation of shallow groundwater in Suxian mining area, Huaibei coalfield, China. Int. J. Coal Sci. Technol. 2020, 7, 825–835. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Han, J.; Jiang, B.; Gao, J. Understanding of mineral change mechanisms in coal mine groundwater reservoir and their influences on effluent water quality: A experimental study. Int. J. Coal Sci. Technol. 2020, 8, 154–167. [Google Scholar] [CrossRef]
- Lewińska-Preis, L.; Szram, E.; Fabiańska, M.J.; Nádudvari, Á.; Misz-Kennan, M.; Abramowicz, A.; Kruszewski, Ł.; Kita, A. Selected ions and major and trace elements as contaminants in coal-waste dump water from the Lower and Upper Silesian Coal Basins (Poland). Int. J. Coal Sci. Technol. 2021, 8, 790–814. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Hao, Q.C.; Li, Y.S.; Xiao, D.; Zhang, Y.J. Occurrence, Controlling Factors and Health Hazards of Fluoride-Enriched Groundwater in the Lower Flood Plain of Yellow River, Northern China. Expo. Health 2022, 14, 345–358. [Google Scholar] [CrossRef]
- Qiu, H.; Gui, H.; Fang, P.; Li, G. Groundwater contamination and human health risk based on Monte Carlo simulation in a typical mining area in Northern Anhui Province, China. Int. J. Coal Sci. Technol. 2021, 8, 1118–1129. [Google Scholar] [CrossRef]
- Mursito, A.T.; Widodo; Arifin, D.N. Characterization of bio-coal briquettes blended from low quality coal and biomass waste treated by Garant® bio-activator and its application for fuel combustion. Int. J. Coal Sci. Technol. 2020, 7, 796–806. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Fan, L.; Xia, Y.; Li, C.; Chen, J.; Gao, S.; Wu, B.; Peng, J.; Ji, Y. Impact of coal mining on groundwater of Luohe Formation in Binchang mining area. Int. J. Coal Sci. Technol. 2021, 8, 88–102. [Google Scholar] [CrossRef]
Gushing Water | Distance to the Centroid of P | Distance to the Centroid of J2z | Distance to the Centroid of J2y | Distance to the Centroid of S |
---|---|---|---|---|
G1 | 11.074 | 13.244 | 12.042 | 10.618 |
G2 | 2.253 | 2.937 | 1.934 | 1.648 |
G3 | 17.700 | 18.937 | 18.306 | 16.066 |
G4 | 5.665 | 9.105 | 7.157 | 7.609 |
G5 | 27.634 | 27.463 | 27.674 | 24.761 |
G6 | 3.645 | 3.941 | 3.455 | 1.313 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Zeng, Y.; Wu, Q.; Du, X.; Gao, S.; Mei, A.; Zhao, H.; Zhang, Z.; Zhang, X. Source Discrimination of Mine Gushing Water Using Self-Organizing Feature Maps: A Case Study in Ningtiaota Coal Mine, Shaanxi, China. Sustainability 2022, 14, 6551. https://doi.org/10.3390/su14116551
Zhao D, Zeng Y, Wu Q, Du X, Gao S, Mei A, Zhao H, Zhang Z, Zhang X. Source Discrimination of Mine Gushing Water Using Self-Organizing Feature Maps: A Case Study in Ningtiaota Coal Mine, Shaanxi, China. Sustainability. 2022; 14(11):6551. https://doi.org/10.3390/su14116551
Chicago/Turabian StyleZhao, Di, Yifan Zeng, Qiang Wu, Xin Du, Shuai Gao, Aoshuang Mei, Haonan Zhao, Zhihao Zhang, and Xiaohui Zhang. 2022. "Source Discrimination of Mine Gushing Water Using Self-Organizing Feature Maps: A Case Study in Ningtiaota Coal Mine, Shaanxi, China" Sustainability 14, no. 11: 6551. https://doi.org/10.3390/su14116551
APA StyleZhao, D., Zeng, Y., Wu, Q., Du, X., Gao, S., Mei, A., Zhao, H., Zhang, Z., & Zhang, X. (2022). Source Discrimination of Mine Gushing Water Using Self-Organizing Feature Maps: A Case Study in Ningtiaota Coal Mine, Shaanxi, China. Sustainability, 14(11), 6551. https://doi.org/10.3390/su14116551