Catalytic Systems in the Reduction of Nitrogen Oxide Emissions in Diesel-Powered Trucks
Abstract
:1. Introduction
2. Pollutant Emission by Diesel Vehicles in Brazil
3. Sensing the Catalytic Activities in the Vehicle Exhaust
3.1. Monitoring by the Temperature Sensor
3.2. Monitoring by NOx Sensor
4. Performance Sensing Proposal of the SCR Catalyst Used in Vehicle Exhausts
- ✓
- SCR, DOC and cDPF (Catalyzed Diesel Particulate Filter) filter devices showing internal or external cracks;
- ✓
- SCR devices, DOC and cDPF filter clogged by soot;
- ✓
- Failure to control the air/fuel mixture;
- ✓
- Low fuel-burning power in the combustion chamber;
- ✓
- Pipe leaks;
- ✓
- Low chemical reaction (which is exothermic) of DOC and SCR.
Computer Simulation of the Monitoring System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, S. Study of gas sensor detection for NOx gas: A review. Mater. Today Proc. 2021, 37, 3709–3712. [Google Scholar] [CrossRef]
- Paleczek, A.; Szafraniak, B.; Fuśnik, Ł.; Brudnik, A.; Grochala, D.; Kluska, S.; Jurzecka-Szymacha, M.; Maciak, E.; Kałużyński, P.; Rydosz, A. The Heterostructures of CuO and SnOx for NO2 Detection. Sensors 2021, 21, 4387. [Google Scholar] [CrossRef]
- Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Carbon Dioxide (CO2) Emissions and Economic Growth: A Systematic Review of Two Decades of Research from 1995 to 2017. Sci. Total Environ. 2019, 649, 31–49. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, J.; Xu, P.; Zhang, Y. Moving towards Sustainability: Road Grades and On-Road Emissions of Heavy-Duty Vehicles—A Case Study. Sustainability 2015, 7, 12644–12671. [Google Scholar] [CrossRef] [Green Version]
- Phugot, S.; Wongchang, T.; Sawatmongkhon, B.; Theinnoi, K. Effect of Diesel—Biodiesel—Ethanol Fuel Blends on Low Temperature NOx Reduction Activity over a Lean NOx Catalyst. In Proceedings of the 2018 Third International Conference on Engineering Science and Innovative Technology (ESIT), Mariott Khaolak, Thailand, 19–22 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Ao, C.; Ruan, S.; He, W.; He, C.; Xu, K.; Zhang, L. Theoretical Investigation of Chemical Reaction Kinetics of CO2 and Vinyl Radical under Catalytic Combustion. Fuel 2021, 305, 121566. [Google Scholar] [CrossRef]
- Li, J.; Yu, Y.; Wang, Y.; Zhao, L.; He, C. Prediction of Transient NOx Emission from Diesel Vehicles Based on Deep-Learning Differentiation Model with Double Noise Reduction. Atmosphere 2021, 12, 1702. [Google Scholar] [CrossRef]
- Reşitoğlu, İ.A.; Altinişik, K.; Keskin, A. The Pollutant Emissions from Diesel-Engine Vehicles and Exhaust Aftertreatment Systems. Clean Technol. Environ. Policy 2015, 17, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Lähde, T.; Schwelberger, M.; Kleinbach, T.; Roske, H.; Teti, E.; van den Bos, T.; Neils, P.; Delacroix, C.; Jakobsson, T.; et al. Particle Number Measurements Directly from the Tailpipe for Type Approval of Heavy-Duty Engines. Appl. Sci. 2019, 9, 4418. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Chen, G.; Zhang, Y.; Liu, S.; Wang, X.; Wang, B.; Hang, J. Integrated Impacts of Turbulent Mixing and NOx-O3 Photochemistry on Reactive Pollutant Dispersion and Intake Fraction in Shallow and Deep Street Canyons. Sci. Total Environ. 2020, 712, 135553. [Google Scholar] [CrossRef]
- Scungio, M.; Stabile, L.; Rizza, V.; Pacitto, A.; Russi, A.; Buonanno, G. Lung Cancer Risk Assessment Due to Traffic-Generated Particles Exposure in Urban Street Canyons: A Numerical Modelling Approach. Sci. Total Environ. 2018, 631, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, B.; Zhou, W.; Jiang, X.; Tan, Z. A Methodology for Predicting Particle Penetration Factor through Cracks of Windows and Doors for Actual Engineering Application. Build. Environ. 2012, 47, 339–348. [Google Scholar] [CrossRef]
- Lawrence, A.J.; Masih, A.; Taneja, A. Indoor/Outdoor Relationships of Carbon Monoxide and Oxides of Nitrogen in Domestic Homes with Roadside, Urban and Rural Locations in a Central Indian Region. Indoor Air 2005, 15, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Salonen, H.; Salthammer, T.; Morawska, L. Human Exposure to NO2 in School and Office Indoor Environments. Environ. Int. 2019, 130, 104887. [Google Scholar] [CrossRef] [PubMed]
- De Melo, J.V.S.; Trichês, G. Evaluation of the Influence of Environmental Conditions on the Efficiency of Photocatalytic Coatings in the Degradation of Nitrogen Oxides (NOx). Build. Environ. 2012, 49, 117–123. [Google Scholar] [CrossRef]
- Hakki, A.; Yang, L.; Wang, F.; Elhoweris, A.; Alhorr, Y.; Macphee, D.E. Photocatalytic Functionalized Aggregate: Enhanced Concrete Performance in Environmental Remediation. Buildings 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Anenberg, S.C.; Miller, J.; Minjares, R.; Du, L.; Henze, D.K.; Lacey, F.; Malley, C.S.; Emberson, L.; Franco, V.; Klimont, Z.; et al. Impacts and Mitigation of Excess Diesel-Related NO x Emissions in 11 Major Vehicle Markets. Nature 2017, 545, 467–471. [Google Scholar] [CrossRef]
- Vressner, A.; Gabrielsson, P.; Gekas, I.; Senar-Serra, E. Meeting the EURO VI NOx Emission Legislation Using a EURO IV Base Engine and a SCR/ASC/DOC/DPF Configuration in the World Harmonized Transient Cycle. SAE Tech. Pap. 2010. [Google Scholar] [CrossRef]
- Majidi-Jirandehi, A.A.; Soleymani, M.M.; Dehghani, H. Determine the Useful Life of Catalytic Converter and Standard Revision of Technical Inspection Centers. Automot. Sci. Eng. 2021, 11, 3614–3619. [Google Scholar] [CrossRef]
- Dey, S.; Mehta, N.S. Automobile Pollution Control Using Catalysis. Resour. Environ. Sustain. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Han, L.; Hou, Y.; Bao, W.; Zhang, C.; Feng, G.; Chang, L.; Huang, Z.; Wang, J. Improved Activity and SO Resistance by Sm-Modulated Redox of MnCeSmTiOxMesoporous Amorphous Oxides for Low-Temperature NH3-SCR of NO. ACS Catal. 2020, 10, 9034–9045. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Feng, G.; Chang, L.; Bao, W. In Situ Synthesis of CuSAPO-34/Cordierite and Its Selective Catalytic Reduction of Nitrogen Oxides in Vehicle Exhaust: The Effect of HF. Fuel 2013, 109, 101–109. [Google Scholar] [CrossRef]
- Kurzydym, D.; Żmudka, Z.; Perrone, D.; Klimanek, A. Experimental and Numerical Investigation of Nitrogen Oxides Reduction in Diesel Engine Selective Catalytic Reduction System. Fuel 2022, 313, 122971. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Tan, D.; Feng, Z.; Luo, J.; Tan, Y.; Huang, Y. The Effects of Fe2O3 Based DOC and SCR Catalyst on the Combustion and Emission Characteristics of a Diesel Engine Fueled with Biodiesel. Fuel 2021, 290, 120039. [Google Scholar] [CrossRef]
- McCaffery, C.; Zhu, H.; Tang, T.; Li, C.; Karavalakis, G.; Cao, S.; Oshinuga, A.; Burnette, A.; Johnson, K.C.; Durbin, T.D. Real-World NOx Emissions from Heavy-Duty Diesel, Natural Gas, and Diesel Hybrid Electric Vehicles of Different Vocations on California Roadways. Sci. Total Environ. 2021, 784, 147224. [Google Scholar] [CrossRef]
- Vieira, F.; Ribeiro, M.; Francisco, A.; Gonçalves Lenzi, G. Influence of Extreme Events in Electric Energy Consumption and Gross Domestic Product. Sustainability 2019, 11, 672. [Google Scholar] [CrossRef] [Green Version]
- Policarpo, N.A.; Silva, C.; Lopes, T.F.A.; dos Santos Araújo, R.; Cavalcante, F.S.Á.; Pitombo, C.S.; de Oliveira, M.L.M. Road Vehicle Emission Inventory of a Brazilian Metropolitan Area and Insights for Other Emerging Economies. Transp. Res. Part D Transp. Environ. 2018, 58, 172–185. [Google Scholar] [CrossRef]
- De Melo, C.A.; Jannuzzi, G.D.M.; Santana, P.H.D.M. Why Should Brazil to Implement Mandatory Fuel Economy Standards for the Light Vehicle Fleet? Renew. Sustain. Energy Rev. 2018, 81, 1166–1174. [Google Scholar] [CrossRef]
- Carvalho, V.S.B.; Freitas, E.D.; Martins, L.D.; Martins, J.A.; Mazzoli, C.R.; de Fatima Andrade, M. Air Quality Status and Trends over the Metropolitan Area of São Paulo, Brazil as a Result of Emission Control Policies. Environ. Sci. Policy 2015, 47, 68–79. [Google Scholar] [CrossRef]
- Szwarcfiter, L.; Mendes, F.E.; La Rovere, E.L. Enhancing the Effects of the Brazilian Program to Reduce Atmospheric Pollutant Emissions from Vehicles. Transp. Res. Part. D Transp. Environ. 2005, 10, 153–160. [Google Scholar] [CrossRef]
- Benvenutti, L.M.; Uriona-Maldonado, M.; Campos, L.M.S. The Impact of CO2 Mitigation Policies on Light Vehicle Fleet in Brazil. Energy Policy 2019, 126, 370–379. [Google Scholar] [CrossRef]
- CONAMA. Resolução CONAMA No 490 de 16 de Novembro de 2018. 2018. Available online: http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=767 (accessed on 4 May 2022).
- Dominski, F.H.; Lorenzetti Branco, J.H.; Buonanno, G.; Stabile, L.; Gameiro da Silva, M.; Andrade, A. Effects of Air Pollution on Health: A Mapping Review of Systematic Reviews and Meta-Analyses. Environ. Res. 2021, 201, 111487. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Cai, Y.; Wang, J. Experimental Studies on the Diesel Engine Urea-SCR System Using a Double NOx Sensor System. Environ. Eng. Res. 2015, 20, 397–402. [Google Scholar] [CrossRef]
- Bonfils, A.; Creff, Y.; Lepreux, O.; Petit, N. Closed-Loop Control of a SCR System Using a NOx Sensor Cross-Sensitive to NH3. J. Process. Control 2014, 24, 368–378. [Google Scholar] [CrossRef]
- Aliramezani, M.; Koch, C.R.; Hayes, R.E.; Patrick, R. Amperometric Solid Electrolyte NOx Sensors—The Effect of Temperature and Diffusion Mechanisms. Solid State Ion. 2017, 313, 7–13. [Google Scholar] [CrossRef]
- Motroniuk, I.; Stober, R.; Fischerauer, G. Transmitter Power Influence in a Wireless-Signal-Based System Used to Monitor Catalyst States. In Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 507–511. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Z.; Zhu, R.; Zhou, Y.; Li, X. Modeling and analysis of pumping cell of NOx sensor—Part I: Main oxygen pumping cell. Sens. Actuators B Chem. 2020, 359, 131622. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.; Andrade, D.I.; Fuziki, M.E.K.; de Almeida, L.N.B.; Colpini, L.M.S.; Lenzi, G.G.; Tusset, A.M. Catalytic Systems in the Reduction of Nitrogen Oxide Emissions in Diesel-Powered Trucks. Sustainability 2022, 14, 6662. https://doi.org/10.3390/su14116662
Ferreira J, Andrade DI, Fuziki MEK, de Almeida LNB, Colpini LMS, Lenzi GG, Tusset AM. Catalytic Systems in the Reduction of Nitrogen Oxide Emissions in Diesel-Powered Trucks. Sustainability. 2022; 14(11):6662. https://doi.org/10.3390/su14116662
Chicago/Turabian StyleFerreira, Jessimon, Dana I. Andrade, Maria E. K. Fuziki, Lariana N. B. de Almeida, Leda M. S. Colpini, Giane G. Lenzi, and Angelo M. Tusset. 2022. "Catalytic Systems in the Reduction of Nitrogen Oxide Emissions in Diesel-Powered Trucks" Sustainability 14, no. 11: 6662. https://doi.org/10.3390/su14116662
APA StyleFerreira, J., Andrade, D. I., Fuziki, M. E. K., de Almeida, L. N. B., Colpini, L. M. S., Lenzi, G. G., & Tusset, A. M. (2022). Catalytic Systems in the Reduction of Nitrogen Oxide Emissions in Diesel-Powered Trucks. Sustainability, 14(11), 6662. https://doi.org/10.3390/su14116662