Identifying the Key Big Data Analytics Capabilities in Bangladesh’s Healthcare Sector
Abstract
:1. Introduction
2. Background
3. Methodology
3.1. Research Context
3.2. Research Design
3.3. Data Collection
3.4. Data Analysis
- (1)
- First phase—stage one: Finding a set of BDAC through a literature survey and expert opinions
- (2)
- First phase—stage two: Expert opinion on the relative importance of shortlisted capabilities
- Second Phase: Applying the DEMATEL method
- Step 1:
- Generate the direct relation matrix
- Step 2:
- Compute the normalized direct-relation matrix
- Step 3:
- Compute the total relation matrix
- Step 4:
- Set the threshold value
- Step 5:
- Final output and create a causal diagram
4. Results
4.1. The List of Key BDACs in Bangladesh’s Health Sector
4.2. Highlighting Key BDAC
- -
- Horizontal vector (D + R) represents the degree of importance each factor plays in the entire system. In other words, (D + R) indicates both factor i’s impact on the whole system and other system factors’ impact on the factor. In terms of degree of importance, BDAC9 is ranked in first place and BDAC18, BDAC20, BDAC2, BDAC19, BDAC3, BDAC17, BDAC4, BDAC5, BDAC6, BDAC7, BDAC15, BDAC11, BDAC12, BDAC1, BDAC14, BDAC10, BDAC8, BDAC13 and BDAC16, are ranked in the next places.
- -
- The vertical vector (D-R) represents the degree of a factor’s influence on the system. In general, the positive value of D-R represents a causal variable, and the negative value of D-R represents an effect. In this study, BDAC1, BDAC2, BDAC5, BDAC6, BDAC7, BDAC8, BDAC10, BDAC11, BDAC12, BDAC13, and BDAC15 are considered to be causal variables, BDAC3, BDAC4, BDAC9, BDAC14, BDAC16, BDAC17, BDAC18, BDAC19, and BDAC20 are regarded as effects.
5. Conclusions
5.1. Implications for the Theory
5.2. Implications for Practice
5.3. Limitations of the Study and Further Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Managerial Relevance Statement
Appendix A
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0 | 2.6 | 3.6 | 3 | 2.8 | 3 | 3.4 | 3.2 | 2.6 | 3.6 | 2.2 | 3 | 3.4 | 3 | 3.4 | 3 | 3.2 | 3.4 | 3.6 | 3.8 |
C2 | 3.6 | 0 | 3.6 | 3.8 | 3.4 | 3.4 | 3.4 | 3 | 3.2 | 3.4 | 3 | 3.4 | 3.4 | 3 | 3.4 | 3 | 3.2 | 3.6 | 3.6 | 3.6 |
C3 | 3.8 | 3.2 | 0 | 3.2 | 3.6 | 3.2 | 3.4 | 3 | 3.2 | 3 | 2.4 | 3.4 | 3.2 | 3.2 | 3.2 | 3.4 | 3 | 3.4 | 3.2 | 3.6 |
C4 | 3.2 | 3.4 | 3.4 | 0 | 3.6 | 3.2 | 3 | 2.8 | 3.2 | 2.6 | 2.6 | 3.8 | 3.2 | 3.2 | 2.8 | 3.4 | 3.2 | 3.8 | 3 | 3.6 |
C5 | 3.4 | 4 | 2.8 | 3.4 | 0 | 3.2 | 3 | 3 | 3.6 | 3 | 3 | 3.4 | 2.6 | 3 | 2.8 | 3.4 | 3.2 | 3.4 | 3.4 | 3.4 |
C6 | 3.6 | 3.6 | 3.4 | 3.4 | 3.6 | 0 | 2.8 | 2.8 | 3.6 | 3 | 3 | 3.8 | 3 | 3 | 3.2 | 3.4 | 3 | 3.6 | 3.2 | 3.4 |
C7 | 3.6 | 3.4 | 3 | 3.6 | 2.8 | 2.6 | 0 | 2.8 | 4 | 3.6 | 3.4 | 3.2 | 2.8 | 3.2 | 3.4 | 2.8 | 3.6 | 3.4 | 3.6 | 3.4 |
C8 | 3.6 | 3.8 | 3.4 | 3.2 | 3 | 2.4 | 3 | 0 | 4 | 3.2 | 3.2 | 3.4 | 2.8 | 3 | 3.4 | 3.2 | 3.4 | 3.6 | 3.8 | 3 |
C9 | 3.6 | 3.2 | 3.6 | 3.8 | 3.8 | 3 | 3.4 | 2.6 | 0 | 3 | 4 | 3.2 | 2.8 | 3.2 | 3.4 | 2.6 | 3.6 | 3.6 | 3.4 | 3.2 |
C10 | 2.8 | 3.2 | 2.8 | 3.4 | 2.8 | 3.2 | 3 | 2.8 | 3.8 | 0 | 3.4 | 3 | 2.6 | 3 | 3.4 | 3.2 | 3.2 | 3.6 | 3 | 3.2 |
C11 | 2.4 | 3.6 | 3.4 | 3.2 | 3.4 | 3.2 | 3 | 2.8 | 4 | 3.4 | 0 | 2.8 | 2.8 | 2.8 | 3.2 | 2.8 | 3.4 | 3.4 | 3.6 | 3.6 |
C12 | 3.4 | 3.4 | 3.2 | 3.4 | 3 | 2.8 | 3 | 3 | 3.8 | 3 | 3.8 | 0 | 2.8 | 3 | 2.8 | 2.8 | 3.4 | 3.4 | 3 | 3.2 |
C13 | 2.8 | 3.4 | 3.6 | 3.4 | 3.4 | 2.8 | 3.4 | 2.8 | 3.4 | 3 | 3.2 | 3 | 0 | 2.8 | 3.2 | 2.8 | 3.4 | 3.6 | 3.4 | 3.2 |
C14 | 2.6 | 2.8 | 3.2 | 3.4 | 2.8 | 3.2 | 3.2 | 2.8 | 3.2 | 2.6 | 3.2 | 2.8 | 2.6 | 0 | 3.2 | 3.4 | 3.4 | 3.8 | 3.4 | 3.4 |
C15 | 3 | 2.2 | 3 | 3.2 | 3.2 | 3.2 | 3.2 | 3 | 3.6 | 3 | 3.4 | 3 | 2.8 | 3 | 0 | 3.2 | 3.6 | 3.6 | 3.6 | 3.4 |
C16 | 2 | 2.6 | 2.6 | 3 | 2.2 | 2.2 | 2.2 | 2 | 3.2 | 2.6 | 2.8 | 2.4 | 2 | 3.4 | 3 | 0 | 3.2 | 3.4 | 3.2 | 3.4 |
C17 | 3.4 | 3 | 3.2 | 2.8 | 3.4 | 3.6 | 3.2 | 2.8 | 3 | 3 | 3.2 | 2.8 | 2.8 | 3.2 | 3.2 | 3.2 | 0 | 3.4 | 3.4 | 3.4 |
C18 | 3 | 3.2 | 3.6 | 3.2 | 3.2 | 3.6 | 2.8 | 3 | 3.4 | 3.2 | 3.2 | 3.2 | 2.8 | 3.6 | 2.8 | 3.4 | 3.4 | 0 | 3.2 | 3.4 |
C19 | 3 | 3.2 | 3.2 | 2.8 | 3.6 | 3.4 | 3 | 3.2 | 3.4 | 3 | 3.2 | 2.6 | 2.8 | 3.4 | 3.2 | 3.2 | 3.4 | 3.2 | 0 | 3.4 |
C20 | 2.6 | 3.6 | 3.6 | 3 | 3.2 | 3.6 | 3.4 | 3.4 | 3.6 | 2.8 | 3 | 2.8 | 2.6 | 3.6 | 3.2 | 3.2 | 3.4 | 3.2 | 3.8 | 0 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0 | 0.041 | 0.056 | 0.047 | 0.044 | 0.047 | 0.053 | 0.05 | 0.041 | 0.056 | 0.034 | 0.047 | 0.053 | 0.047 | 0.053 | 0.047 | 0.05 | 0.053 | 0.056 | 0.059 |
C2 | 0.056 | 0 | 0.056 | 0.059 | 0.053 | 0.053 | 0.053 | 0.047 | 0.05 | 0.053 | 0.047 | 0.053 | 0.053 | 0.047 | 0.053 | 0.047 | 0.05 | 0.056 | 0.056 | 0.056 |
C3 | 0.059 | 0.05 | 0 | 0.05 | 0.056 | 0.05 | 0.053 | 0.047 | 0.05 | 0.047 | 0.038 | 0.053 | 0.05 | 0.05 | 0.05 | 0.053 | 0.047 | 0.053 | 0.05 | 0.056 |
C4 | 0.05 | 0.053 | 0.053 | 0 | 0.056 | 0.05 | 0.047 | 0.044 | 0.05 | 0.041 | 0.041 | 0.059 | 0.05 | 0.05 | 0.044 | 0.053 | 0.05 | 0.059 | 0.047 | 0.056 |
C5 | 0.053 | 0.062 | 0.044 | 0.053 | 0 | 0.05 | 0.047 | 0.047 | 0.056 | 0.047 | 0.047 | 0.053 | 0.041 | 0.047 | 0.044 | 0.053 | 0.05 | 0.053 | 0.053 | 0.053 |
C6 | 0.056 | 0.056 | 0.053 | 0.053 | 0.056 | 0 | 0.044 | 0.044 | 0.056 | 0.047 | 0.047 | 0.059 | 0.047 | 0.047 | 0.05 | 0.053 | 0.047 | 0.056 | 0.05 | 0.053 |
C7 | 0.056 | 0.053 | 0.047 | 0.056 | 0.044 | 0.041 | 0 | 0.044 | 0.062 | 0.056 | 0.053 | 0.05 | 0.044 | 0.05 | 0.053 | 0.044 | 0.056 | 0.053 | 0.056 | 0.053 |
C8 | 0.056 | 0.059 | 0.053 | 0.05 | 0.047 | 0.038 | 0.047 | 0 | 0.062 | 0.05 | 0.05 | 0.053 | 0.044 | 0.047 | 0.053 | 0.05 | 0.053 | 0.056 | 0.059 | 0.047 |
C9 | 0.056 | 0.05 | 0.056 | 0.059 | 0.059 | 0.047 | 0.053 | 0.041 | 0 | 0.047 | 0.062 | 0.05 | 0.044 | 0.05 | 0.053 | 0.041 | 0.056 | 0.056 | 0.053 | 0.05 |
C10 | 0.044 | 0.05 | 0.044 | 0.053 | 0.044 | 0.05 | 0.047 | 0.044 | 0.059 | 0 | 0.053 | 0.047 | 0.041 | 0.047 | 0.053 | 0.05 | 0.05 | 0.056 | 0.047 | 0.05 |
C11 | 0.038 | 0.056 | 0.053 | 0.05 | 0.053 | 0.05 | 0.047 | 0.044 | 0.062 | 0.053 | 0 | 0.044 | 0.044 | 0.044 | 0.05 | 0.044 | 0.053 | 0.053 | 0.056 | 0.056 |
C12 | 0.053 | 0.053 | 0.05 | 0.053 | 0.047 | 0.044 | 0.047 | 0.047 | 0.059 | 0.047 | 0.059 | 0 | 0.044 | 0.047 | 0.044 | 0.044 | 0.053 | 0.053 | 0.047 | 0.05 |
C13 | 0.044 | 0.053 | 0.056 | 0.053 | 0.053 | 0.044 | 0.053 | 0.044 | 0.053 | 0.047 | 0.05 | 0.047 | 0 | 0.044 | 0.05 | 0.044 | 0.053 | 0.056 | 0.053 | 0.05 |
C14 | 0.041 | 0.044 | 0.05 | 0.053 | 0.044 | 0.05 | 0.05 | 0.044 | 0.05 | 0.041 | 0.05 | 0.044 | 0.041 | 0 | 0.05 | 0.053 | 0.053 | 0.059 | 0.053 | 0.053 |
C15 | 0.047 | 0.034 | 0.047 | 0.05 | 0.05 | 0.05 | 0.05 | 0.047 | 0.056 | 0.047 | 0.053 | 0.047 | 0.044 | 0.047 | 0 | 0.05 | 0.056 | 0.056 | 0.056 | 0.053 |
C16 | 0.031 | 0.041 | 0.041 | 0.047 | 0.034 | 0.034 | 0.034 | 0.031 | 0.05 | 0.041 | 0.044 | 0.038 | 0.031 | 0.053 | 0.047 | 0 | 0.05 | 0.053 | 0.05 | 0.053 |
C17 | 0.053 | 0.047 | 0.05 | 0.044 | 0.053 | 0.056 | 0.05 | 0.044 | 0.047 | 0.047 | 0.05 | 0.044 | 0.044 | 0.05 | 0.05 | 0.05 | 0 | 0.053 | 0.053 | 0.053 |
C18 | 0.047 | 0.05 | 0.056 | 0.05 | 0.05 | 0.056 | 0.044 | 0.047 | 0.053 | 0.05 | 0.05 | 0.05 | 0.044 | 0.056 | 0.044 | 0.053 | 0.053 | 0 | 0.05 | 0.053 |
C19 | 0.047 | 0.05 | 0.05 | 0.044 | 0.056 | 0.053 | 0.047 | 0.05 | 0.053 | 0.047 | 0.05 | 0.041 | 0.044 | 0.053 | 0.05 | 0.05 | 0.053 | 0.05 | 0 | 0.053 |
C20 | 0.041 | 0.056 | 0.056 | 0.047 | 0.05 | 0.056 | 0.053 | 0.053 | 0.056 | 0.044 | 0.047 | 0.044 | 0.041 | 0.056 | 0.05 | 0.05 | 0.053 | 0.05 | 0.059 | 0 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.824 | 0.888 | 0.914 | 0.904 | 0.886 | 0.863 | 0.866 | 0.811 | 0.945 | 0.858 | 0.854 | 0.863 | 0.8 | 0.873 | 0.884 | 0.869 | 0.921 | 0.965 | 0.942 | 0.949 |
C2 | 0.933 | 0.907 | 0.973 | 0.974 | 0.952 | 0.925 | 0.922 | 0.86 | 1.015 | 0.909 | 0.921 | 0.924 | 0.851 | 0.929 | 0.94 | 0.925 | 0.981 | 1.03 | 1.003 | 1.006 |
C3 | 0.904 | 0.921 | 0.886 | 0.932 | 0.921 | 0.89 | 0.89 | 0.83 | 0.98 | 0.872 | 0.881 | 0.892 | 0.818 | 0.899 | 0.905 | 0.898 | 0.943 | 0.991 | 0.962 | 0.971 |
C4 | 0.888 | 0.916 | 0.928 | 0.876 | 0.913 | 0.882 | 0.876 | 0.82 | 0.971 | 0.859 | 0.876 | 0.89 | 0.811 | 0.892 | 0.891 | 0.89 | 0.938 | 0.989 | 0.951 | 0.963 |
C5 | 0.891 | 0.925 | 0.92 | 0.927 | 0.86 | 0.882 | 0.877 | 0.823 | 0.977 | 0.865 | 0.882 | 0.885 | 0.803 | 0.889 | 0.892 | 0.891 | 0.939 | 0.983 | 0.957 | 0.961 |
C6 | 0.912 | 0.938 | 0.948 | 0.946 | 0.932 | 0.853 | 0.892 | 0.837 | 0.997 | 0.883 | 0.9 | 0.908 | 0.825 | 0.907 | 0.916 | 0.909 | 0.955 | 1.006 | 0.974 | 0.98 |
C7 | 0.91 | 0.933 | 0.94 | 0.947 | 0.919 | 0.89 | 0.848 | 0.835 | 1.001 | 0.889 | 0.904 | 0.898 | 0.821 | 0.908 | 0.917 | 0.898 | 0.961 | 1.001 | 0.977 | 0.978 |
C8 | 0.912 | 0.941 | 0.948 | 0.944 | 0.924 | 0.889 | 0.895 | 0.795 | 1.003 | 0.886 | 0.903 | 0.903 | 0.823 | 0.908 | 0.919 | 0.906 | 0.961 | 1.007 | 0.983 | 0.975 |
C9 | 0.921 | 0.942 | 0.96 | 0.961 | 0.944 | 0.907 | 0.909 | 0.843 | 0.954 | 0.891 | 0.923 | 0.909 | 0.831 | 0.919 | 0.927 | 0.906 | 0.973 | 1.016 | 0.986 | 0.987 |
C10 | 0.861 | 0.892 | 0.898 | 0.905 | 0.881 | 0.862 | 0.856 | 0.801 | 0.957 | 0.8 | 0.867 | 0.858 | 0.784 | 0.868 | 0.879 | 0.867 | 0.916 | 0.963 | 0.929 | 0.935 |
C11 | 0.875 | 0.918 | 0.927 | 0.923 | 0.91 | 0.881 | 0.875 | 0.819 | 0.982 | 0.869 | 0.836 | 0.875 | 0.805 | 0.885 | 0.896 | 0.881 | 0.94 | 0.982 | 0.958 | 0.962 |
C12 | 0.881 | 0.907 | 0.916 | 0.917 | 0.895 | 0.867 | 0.867 | 0.814 | 0.969 | 0.856 | 0.884 | 0.824 | 0.797 | 0.879 | 0.882 | 0.872 | 0.931 | 0.973 | 0.941 | 0.947 |
C13 | 0.878 | 0.912 | 0.927 | 0.923 | 0.907 | 0.872 | 0.878 | 0.816 | 0.97 | 0.861 | 0.88 | 0.875 | 0.76 | 0.882 | 0.893 | 0.878 | 0.937 | 0.981 | 0.952 | 0.953 |
C14 | 0.852 | 0.88 | 0.898 | 0.899 | 0.875 | 0.856 | 0.853 | 0.795 | 0.942 | 0.833 | 0.858 | 0.849 | 0.779 | 0.818 | 0.87 | 0.864 | 0.913 | 0.959 | 0.928 | 0.931 |
C15 | 0.874 | 0.888 | 0.911 | 0.913 | 0.897 | 0.871 | 0.868 | 0.813 | 0.965 | 0.854 | 0.877 | 0.868 | 0.796 | 0.878 | 0.838 | 0.877 | 0.932 | 0.974 | 0.948 | 0.948 |
C16 | 0.743 | 0.773 | 0.784 | 0.788 | 0.763 | 0.742 | 0.739 | 0.691 | 0.831 | 0.734 | 0.752 | 0.743 | 0.678 | 0.767 | 0.765 | 0.713 | 0.803 | 0.842 | 0.816 | 0.823 |
C17 | 0.877 | 0.897 | 0.912 | 0.905 | 0.897 | 0.875 | 0.866 | 0.808 | 0.954 | 0.852 | 0.871 | 0.862 | 0.794 | 0.879 | 0.884 | 0.874 | 0.876 | 0.968 | 0.942 | 0.946 |
C18 | 0.887 | 0.916 | 0.934 | 0.927 | 0.91 | 0.89 | 0.876 | 0.825 | 0.977 | 0.87 | 0.887 | 0.884 | 0.808 | 0.9 | 0.894 | 0.893 | 0.943 | 0.935 | 0.956 | 0.963 |
C19 | 0.874 | 0.903 | 0.915 | 0.908 | 0.903 | 0.875 | 0.866 | 0.816 | 0.963 | 0.855 | 0.874 | 0.863 | 0.796 | 0.884 | 0.887 | 0.877 | 0.93 | 0.969 | 0.895 | 0.949 |
C20 | 0.888 | 0.928 | 0.94 | 0.93 | 0.917 | 0.896 | 0.891 | 0.837 | 0.987 | 0.87 | 0.89 | 0.884 | 0.811 | 0.906 | 0.906 | 0.896 | 0.95 | 0.99 | 0.972 | 0.919 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0 | 0 | 0.914 | 0.904 | 0 | 0 | 0 | 0 | 0.945 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.921 | 0.965 | 0.942 | 0.949 |
C2 | 0.933 | 0.907 | 0.973 | 0.974 | 0.952 | 0.925 | 0.922 | 0 | 1.015 | 0.909 | 0.921 | 0.924 | 0 | 0.929 | 0.94 | 0.925 | 0.981 | 1.03 | 1.003 | 1.006 |
C3 | 0.904 | 0.921 | 0 | 0.932 | 0.921 | 0 | 0 | 0 | 0.98 | 0 | 0 | 0 | 0 | 0.899 | 0.905 | 0.898 | 0.943 | 0.991 | 0.962 | 0.971 |
C4 | 0 | 0.916 | 0.928 | 0 | 0.913 | 0 | 0 | 0 | 0.971 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.938 | 0.989 | 0.951 | 0.963 |
C5 | 0 | 0.925 | 0.92 | 0.927 | 0 | 0 | 0 | 0 | 0.977 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.939 | 0.983 | 0.957 | 0.961 |
C6 | 0.912 | 0.938 | 0.948 | 0.946 | 0.932 | 0 | 0 | 0 | 0.997 | 0 | 0.9 | 0.908 | 0 | 0.907 | 0.916 | 0.909 | 0.955 | 1.006 | 0.974 | 0.98 |
C7 | 0.91 | 0.933 | 0.94 | 0.947 | 0.919 | 0 | 0 | 0 | 1.001 | 0 | 0.904 | 0.898 | 0 | 0.908 | 0.917 | 0.898 | 0.961 | 1.001 | 0.977 | 0.978 |
C8 | 0.912 | 0.941 | 0.948 | 0.944 | 0.924 | 0 | 0 | 0 | 1.003 | 0 | 0.903 | 0.903 | 0 | 0.908 | 0.919 | 0.906 | 0.961 | 1.007 | 0.983 | 0.975 |
C9 | 0.921 | 0.942 | 0.96 | 0.961 | 0.944 | 0.907 | 0.909 | 0 | 0.954 | 0 | 0.923 | 0.909 | 0 | 0.919 | 0.927 | 0.906 | 0.973 | 1.016 | 0.986 | 0.987 |
C10 | 0 | 0 | 0.898 | 0.905 | 0 | 0 | 0 | 0 | 0.957 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.916 | 0.963 | 0.929 | 0.935 |
C11 | 0 | 0.918 | 0.927 | 0.923 | 0.91 | 0 | 0 | 0 | 0.982 | 0 | 0 | 0 | 0 | 0 | 0.896 | 0 | 0.94 | 0.982 | 0.958 | 0.962 |
C12 | 0 | 0.907 | 0.916 | 0.917 | 0 | 0 | 0 | 0 | 0.969 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.931 | 0.973 | 0.941 | 0.947 |
C13 | 0 | 0.912 | 0.927 | 0.923 | 0.907 | 0 | 0 | 0 | 0.97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.937 | 0.981 | 0.952 | 0.953 |
C14 | 0 | 0 | 0.898 | 0.899 | 0 | 0 | 0 | 0 | 0.942 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.913 | 0.959 | 0.928 | 0.931 |
C15 | 0 | 0 | 0.911 | 0.913 | 0.897 | 0 | 0 | 0 | 0.965 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.932 | 0.974 | 0.948 | 0.948 |
C16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C17 | 0 | 0.897 | 0.912 | 0.905 | 0.897 | 0 | 0 | 0 | 0.954 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.968 | 0.942 | 0.946 |
C18 | 0 | 0.916 | 0.934 | 0.927 | 0.91 | 0 | 0 | 0 | 0.977 | 0 | 0 | 0 | 0 | 0.9 | 0 | 0 | 0.943 | 0.935 | 0.956 | 0.963 |
C19 | 0 | 0.903 | 0.915 | 0.908 | 0.903 | 0 | 0 | 0 | 0.963 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.93 | 0.969 | 0 | 0.949 |
C20 | 0 | 0.928 | 0.94 | 0.93 | 0.917 | 0.896 | 0 | 0 | 0.987 | 0 | 0 | 0 | 0 | 0.906 | 0.906 | 0.896 | 0.95 | 0.99 | 0.972 | 0.919 |
References
- Srinivasan, R.; Swink, M. An Investigation of Visibility and Flexibility as Complements to Supply Chain Analytics: An Organizational Information Processing Theory Perspective. Prod. Oper. Manag. 2018, 27, 1849–1867. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Blome, C.; Papadopoulos, T. Big Data and Predictive Analytics and Manufacturing Performance: Integrating Institutional Theory, Resource-Based View and Big Data Culture. Br. J. Manag. 2019, 30, 341–361. [Google Scholar] [CrossRef]
- Jha, A.K.; Agi, M.A.N.; Ngai, E.W.T. A note on big data analytics capability development in supply chain. Decis. Support Syst. 2020, 138, 113382. [Google Scholar] [CrossRef]
- Gupta, M.; George, J.F. Toward the development of a big data analytics capability. Inf. Manag. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- Chen, C.-H.V.; Chen, Y.-C. Influence of intellectual capital and integration on operational performance: Big data analytical capability perspectives. Chin. Manag. Stud. 2021, 16, 551–570. [Google Scholar] [CrossRef]
- Lin, C.; Kunnathur, A. Strategic orientations, developmental culture, and big data capability. J. Bus. Res. 2019, 105, 49–60. [Google Scholar] [CrossRef]
- Akter, S.; Wamba, S.F.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Shamim, S.; Zeng, J.; Khan, Z.; Zia, N.U. Big data analytics capability and decision making performance in emerging market firms: The role of contractual and relational governance mechanisms. Technol. Forecast. Soc. Change 2020, 161, 120315. [Google Scholar] [CrossRef]
- Yasmin, M.; Tatoglu, E.; Kilic, H.S.; Zaim, S.; Delen, D. Big data analytics capabilities and firm performance: An integrated MCDM approach. J. Bus. Res. 2020, 114, 1–15. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, Y. Big Data Analytics for Improving Financial Performance and Sustainability. J. Syst. Sci. Inf. 2021, 9, 175–191. [Google Scholar] [CrossRef]
- Pitts, J.; Gopal, S.; Ma, Y.; Koch, M.; Boumans, R.M.; Kaufman, L. Leveraging Big Data and Analytics to Improve Food, Energy, and Water System Sustainability. Front Big Data 2020, 3, 13. [Google Scholar] [CrossRef]
- Jeble, S.; Dubey, R.; Childe, S.J.; Papadopoulos, T.; Roubaud, D.; Prakash, A. Impact of big data and predictive analytics capability on supply chain sustainability. Int. J. Logist. Manag. 2018, 29, 513–538. [Google Scholar] [CrossRef]
- Sivarajah, U.; Irani, Z.; Gupta, S.; Mahroof, K. Role of big data and social media analytics for business to business sustainability: A participatory web context. Ind. Mark. Manag. 2020, 86, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Mikalef, P.; Pappas, I.O.; Krogstie, J.; Giannakos, M. Big data analytics capabilities: A systematic literature review and research agenda. Inf. Syst. E-Bus. Manag. 2017, 16, 547–578. [Google Scholar] [CrossRef]
- Cetindamar, D.; Shdifat, B.; Erfani, E. Understanding Big Data Analytics Capability and Sustainable Supply Chains. Inf. Syst. Manag. 2022, 39, 19–33. [Google Scholar] [CrossRef]
- Wang, Y.; Kung, L.; Byrd, T.A. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 2018, 126, 3–13. [Google Scholar] [CrossRef]
- Korherr, P.; Kanbach, D. Human-related capabilities in big data analytics: A taxonomy of human factors with impact on firm performance. Rev. Manag. Sci. 2021, 1–28. [Google Scholar] [CrossRef]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.-F.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hajli, N. Exploring the path to big data analytics success in healthcare. J. Bus. Res. 2017, 70, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Nations, U. World Economic Situation and Prospects 2014; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Song, M.; Zhang, H.; Heng, J. Creating Sustainable Innovativeness through Big Data and Big Data Analytics Capability: From the Perspective of the Information Processing Theory. Sustainability 2020, 12, 1984. [Google Scholar] [CrossRef] [Green Version]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. The role of information governance in big data analytics driven innovation. Inf. Manag. 2020, 57, 103361. [Google Scholar] [CrossRef]
- Arunachalam, D.; Kumar, N.; Kawalek, J.P. Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 416–436. [Google Scholar] [CrossRef]
- Bag, S.; Wood, L.C.; Xu, L.; Dhamija, P.; Kayikci, Y. Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. Resour. Conserv. Recycl. 2020, 153, 104559. [Google Scholar] [CrossRef]
- Yu, W.; Wong, C.Y.; Chavez, R.; Jacobs, M.A. Integrating big data analytics into supply chain finance: The roles of information processing and data-driven culture. Int. J. Prod. Econ. 2021, 236, 108135. [Google Scholar] [CrossRef]
- Kiron, D.; Prentice, P.K.; Ferguson, R.B. The Analytics Mandate. In MITSloan Management Review; MIT Sloan School of Management: Cambridge, MA, USA, 2014. [Google Scholar]
- Dubey, R.; Gunasekaran, A.; Childe, S.J. Big data analytics capability in supply chain agility. Manag. Decis. 2019, 57, 2092–2112. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Roubaud, D.; Wamba, S.F.; Giannakis, M.; Foropon, C. Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain. Int. J. Prod. Econ. 2019, 210, 120–136. [Google Scholar] [CrossRef]
- Gupta, S.; Chen, H.; Hazen, B.T.; Kaur, S.; Gonzalez, E.D.R.S. Circular economy and big data analytics: A stakeholder perspective. Technol. Forecast. Soc. Change 2019, 144, 466–474. [Google Scholar] [CrossRef]
- George, G.; Haas, M.R.; Pentland, A. Big Data and Management. Acad. Manag. J. 2014, 57, 321–326. [Google Scholar] [CrossRef]
- Ramadan, M.; Shuqqo, H.; Qtaishat, L.; Asmar, H.; Salah, B. Sustainable Competitive Advantage Driven by Big Data Analytics and Innovation. Appl. Sci. 2020, 10, 6784. [Google Scholar] [CrossRef]
- Gu, V.C.; Zhou, B.; Cao, Q.; Adams, J. Exploring the relationship between supplier development, big data analytics capability, and firm performance. Ann. Oper. Res. 2021, 302, 151–172. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, G.; Liu, Q.; Song, Y. Role of big data analytics capability in developing integrated hospital supply chains and operational flexibility: An organizational information processing theory perspective. Technol. Forecast. Soc. Change 2021, 163, 120417. [Google Scholar] [CrossRef]
- Behl, A. Antecedents to firm performance and competitiveness using the lens of big data analytics: A cross-cultural study. Manag. Decis. 2020, 60, 368–398. [Google Scholar] [CrossRef]
- Benzidia, S.; Makaoui, N.; Bentahar, O. The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technol. Forecast. Soc. Change 2021, 165, 120557. [Google Scholar] [CrossRef]
- Shamim, S.; Zeng, J.; Shariq, S.M.; Khan, Z. Role of big data management in enhancing big data decision-making capability and quality among Chinese firms: A dynamic capabilities view. Inf. Manag. 2019, 56, 103135. [Google Scholar] [CrossRef]
- Raut, R.D.; Mangla, S.K.; Narwane, V.S.; Dora, M.; Liu, M. Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains. Transp. Res. Part E Logist. Transp. Rev. 2021, 145, 102170. [Google Scholar] [CrossRef]
- Belhadi, A.; Zkik, K.; Cherrafi, A.; Yusof, S.r.M.; El fezazi, S. Understanding Big Data Analytics for Manufacturing Processes: Insights from Literature Review and Multiple Case Studies. Comput. Ind. Eng. 2019, 137, 10609. [Google Scholar] [CrossRef]
- Kim, G.; Shin, B.; Kwon, O. Investigating the Value of Sociomaterialism in Conceptualizing IT Capability of a Firm. J. Manag. Inf. Syst. 2014, 29, 327–362. [Google Scholar] [CrossRef]
- Xiao, X.; Tian, Q.; Mao, H. How the Interaction of Big Data Analytics Capabilities and Digital Platform Capabilities Affects Service Innovation: A Dynamic Capabilities View. IEEE Access 2020, 8, 18778–18796. [Google Scholar] [CrossRef]
- Upadhyay, P.; Kumar, A. The intermediating role of organizational culture and internal analytical knowledge between the capability of big data analytics and a firm’s performance. Int. J. Inf. Manag. 2020, 52, 102100. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics and firm performance: Findings from a mixed-method approach. J. Bus. Res. 2019, 98, 261–276. [Google Scholar] [CrossRef]
- Anfer, O.; Wamba, S.F. Big Data Analytics and Strategic Marketing Capabilities: Impact on Firm Performance. In New Knowledge in Information Systems and Technologies; Springer: Berlin, Germany, 2019; pp. 633–640. [Google Scholar]
- Arias-Pérez, J.; Coronado-Medina, A.; Perdomo-Charry, G. Big data analytics capability as a mediator in the impact of open innovation on firm performance. J. Strategy Manag. 2021, 15, 1–15. [Google Scholar] [CrossRef]
- Ashrafi, A.; Zare Ravasan, A.; Trkman, P.; Afshari, S. The role of business analytics capabilities in bolstering firms’ agility and performance. Int. J. Inf. Manag. 2019, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Edwin Cheng, T.C.; Kamble, S.S.; Belhadi, A.; Ndubisi, N.O.; Lai, K.; Kharat, M.G. Linkages between big data analytics, circular economy, sustainable supply chain flexibility, and sustainable performance in manufacturing firms. Int. J. Prod. Res. 2021, 1–15. [Google Scholar] [CrossRef]
- Ferraris, A.; Mazzoleni, A.; Devalle, A.; Couturier, J. Big data analytics capabilities and knowledge management: Impact on firm performance. Manag. Decis. 2019, 57, 1923–1936. [Google Scholar] [CrossRef]
- Khai Loon, L.; Cean Peing, L. Big Data and Predictive Analytics Capabilities: A Review of Literature on Its Impact on Firm’s Financial Performance. KnE Soc. Sci. 2019, 1057–1073. [Google Scholar] [CrossRef]
- Liu, C.-H.; Mehandjiev, N. The Effect of Big Data Analytics Capability on Firm Performance: A Pilot Study in China. In Information Systems; Springer: Berlin, Germany, 2020; pp. 594–608. [Google Scholar]
- Singh, S.K.; Del Giudice, M. Big data analytics, dynamic capabilities and firm performance. Manag. Decis. 2019, 57, 1729–1733. [Google Scholar] [CrossRef]
- Suoniemi, S.; Meyer-Waarden, L.; Munzel, A.; Zablah, A.R.; Straub, D. Big data and firm performance: The roles of market-directed capabilities and business strategy. Inf. Manag. 2020, 57, 103365. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Zhang, W. Corporate social responsibility, Green supply chain management and firm performance: The moderating role of big-data analytics capability. Res. Transp. Bus. Manag. 2020, 37, 100557. [Google Scholar] [CrossRef]
- Raut, R.D.; Yadav, V.S.; Cheikhrouhou, N.; Narwane, V.S.; Narkhede, B.E. Big data analytics: Implementation challenges in Indian manufacturing supply chains. Comput. Ind. 2021, 125, 103368. [Google Scholar] [CrossRef]
- Alalawneh, A.A.F.; Alkhatib, S.F. The barriers to big data adoption in developing economies. Electron. J. Inf. Syst. Dev. Ctries. 2020, 87, e12151. [Google Scholar] [CrossRef]
- Delponte, L.; Grigolini, M.; Moroni, A.; Vignetti, S. ICT in the Developing World; European Parliament: Strasbourg, France, 2015. [Google Scholar]
- Ahmed, S.M.; Alam, B.B.; Anwar, I.; Begum, T.; Huque, R.; Khan, J.A.; Nababan, H.; Osman, F.A. Bangladesh Health System Review; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Kraus, S.; Breier, M.; Dasí-Rodríguez, S. The art of crafting a systematic literature review in entrepreneurship research. Int. Entrep. Manag. J. 2020, 16, 1023–1042. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-W. Segmenting critical factors for successful knowledge management implementation using the fuzzy DEMATEL method. Appl. Soft Comput. 2012, 12, 527–535. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, G. An analysis of barriers affecting the implementation of e-waste management practices in India: A novel ISM-DEMATEL approach. Sustain. Prod. Consum. 2018, 14, 36–52. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Güleryüz, S. An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey. Int. J. Prod. Econ. 2016, 182, 435–448. [Google Scholar] [CrossRef]
- Sharma, V.; Dixit, A.R.; Qadri, M.A. Empirical assessment of the causal relationships among lean criteria using DEMATEL method. Benchmarking Int. J. 2014, 23, 1834–1839. [Google Scholar] [CrossRef]
- DeJonckheere, M.; Vaughn, L.M. Semistructured interviewing in primary care research: A balance of relationship and rigour. Fam. Med. Community Health 2019, 7, e000057. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.; Chang, C.-W.; Wu, C.-H. Fuzzy DEMATEL method for developing supplier selection criteria. Expert Syst. Appl. 2011, 38, 1850–1858. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Shyu, J.Z.; Tzeng, G.-H. Reconfiguring the innovation policy portfolios for Taiwan’s SIP Mall industry. Technovation 2007, 27, 744–765. [Google Scholar] [CrossRef]
- Shieh, J.-I.; Wu, H.-H.; Huang, K.-K. A DEMATEL method in identifying key success factors of hospital service quality. Knowl.-Based Syst. 2010, 23, 277–282. [Google Scholar] [CrossRef]
- Tong, A.; Flemming, K.; Mclnnes, E.; Olvier, S.; Craig, J. Enhancing transparency in reporting the synthesis of qualitative research: ENTREQ. BMC Med. Res. Methodolgy 2012, 12, 181. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cao, Q.; Zhou, L. Research on the influencing factors in coal mine production safety based on the combination of DEMATEL and ISM. Saf. Sci. 2018, 103, 51–61. [Google Scholar] [CrossRef]
- Dubey, R.; Bryde, D.J.; Foropon, C.; Tiwari, M.; Dwivedi, Y.; Schiffling, S. An investigation of information alignment and collaboration as complements to supply chain agility in humanitarian supply chain. Int. J. Prod. Res. 2020, 59, 1586–1605. [Google Scholar] [CrossRef]
- AlNuaimi, B.K.; Khan, M.; Ajmal, M.M. The role of big data analytics capabilities in greening e-procurement: A higher order PLS-SEM analysis. Technol. Forecast. Soc. Change 2021, 169, 120808. [Google Scholar] [CrossRef]
- Henao-García, E.; Arias-Pérez, J.; Lozada, N. Fostering big data analytics capability through process innovation: Is management innovation the missing link? Bus. Inf. Rev. 2021, 38, 28–39. [Google Scholar] [CrossRef]
- Aljumah, A.I.; Nuseir, M.T.; Alam, M.M. Organizational performance and capabilities to analyze big data: Do the ambidexterity and business value of big data analytics matter? Bus. Process Manag. J. 2021, 27, 1088–1107. [Google Scholar] [CrossRef]
- Belhadi, A.; Kamble, S.S.; Zkik, K.; Cherrafi, A.; Touriki, F.E. The integrated effect of Big Data Analytics, Lean Six Sigma and Green Manufacturing on the environmental performance of manufacturing companies: The case of North Africa. J. Clean. Prod. 2020, 252, 119903. [Google Scholar] [CrossRef]
- Li, Y.; Mathiyazhagan, K. Application of DEMATEL approach to identify the influential indicators towards sustainable supply chain adoption in the auto components manufacturing sector. J. Clean. Prod. 2018, 172, 2931–2941. [Google Scholar] [CrossRef]
- Su, X.; Zeng, W.; Zheng, M.; Jiang, X.; Lin, W.; Xu, A. Big data analytics capabilities and organizational performance: The mediating effect of dual innovations. Eur. J. Innov. Manag. 2021. ahead of print. [Google Scholar] [CrossRef]
- Ciampi, F.; Demi, S.; Magrini, A.; Marzi, G.; Papa, A. Exploring the impact of big data analytics capabilities on business model innovation: The mediating role of entrepreneurial orientation. J. Bus. Res. 2021, 123, 1–13. [Google Scholar] [CrossRef]
- Grover, V.; Chiang, R.H.L.; Liang, T.; Zhang, D. Creating Strategic Business Value from Big Data Analytics: A Research Framework. J. Manag. Inf. Syst. 2018, 35, 388–423. [Google Scholar] [CrossRef]
- Sun, S.; Cegielski, C.G.; Jia, L.; Hall, D.J. Understanding the Factors Affecting the Organizational Adoption of Big Data. J. Comput. Inf. Syst. 2016, 58, 193–203. [Google Scholar] [CrossRef]
- Singh, R.; Bhanot, N. An integrated DEMATEL-MMDE-ISM based approach for analysing the barriers of IoT implementation in the manufacturing industry. Int. J. Prod. Res. 2019, 58, 2454–2476. [Google Scholar] [CrossRef]
- Braga, I.F.B.; Ferreira, F.A.F.; Ferreira, J.J.M.; Correia, R.J.C.; Pereira, L.F.; Falcão, P.F. A DEMATEL analysis of smart city determinants. Technol. Soc. 2021, 66, 101687. [Google Scholar] [CrossRef]
- Yadegaridehkordi, E.; Hourmand, M.; Nilashi, M.; Shuib, L.; Ahani, A.; Ibrahim, O. Influence of big data adoption on manufacturing companies’ performance: An integrated DEMATEL-ANFIS approach. Technol. Forecast. Soc. Change 2018, 137, 199–210. [Google Scholar] [CrossRef]
- Khan, M.I.; Khan, S.; Khan, U.; Haleem, A. Modeling the Big Data challenges in context of smart cities—An integrated fuzzy ISM-DEMATEL approach. Int. J. Build. Pathol. Adapt. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Chin, J.M.; Lutsky, M.; Dror, I.E. The Biases of Experts: An Empirical Analysis of Expert Witness Challenges. Manit. Law J. 2018, 42, 21. [Google Scholar]
Reference | Total Number of Constructs Defining BDAC | Major BDACs Listed |
---|---|---|
[25,31,32,33,34] | 4 | Advanced Analytical Techniques, Data Visualization Techniques, Use of Dashboard, Deploying Dashboard across Manager’s Devices |
[1,27,28,35] | 5 | Advanced Analytical Techniques, Multiple Data Sources, Data Visualization Techniques, Use of Dashboard, Deploying Dashboard across Manager’s Devices |
[8,36,37] | 8 | Parallel Computing, Real-time access to data, Capability to handle semi-structured data, Accuracy of data, Data-driven intelligence, Good infrastructure, Interchangeability of services, Proficient technical experts |
[9] | 15 | Infrastructure capability with five sub capabilities such as flexibility; Talent capability; Management capability |
[6] | 16 | Data capabilities such as identifying data sources; technology capabilities such as having the latest technology; talent capabilities such as having expertise in data analytics; business capabilities such as relying on big data to enhance innovativeness |
[38] | 18 | BDA infrastructure capability; BDA Management Skills; BDA technical skills; Organization learning capability; and Data-driven decision-making capability. |
[4] | 32 | Tangible assets such as basic resources; Human skills such as technical skills; Intangible assets such as Data-driven culture. |
[7,18,39,40] | 49 | BDA infrastructure capability and BDAC talent capability |
Variable | Frequency | Percentage |
---|---|---|
Age | ||
18–26 | 15 | 28.3 |
27–35 | 12 | 22.64 |
36–43 | 17 | 32.07 |
43–50 | 6 | 11.32 |
50+ | 3 | 5.66 |
Gender | ||
Male | 41 | 77.36 |
Female | 12 | 22.64 |
Education | ||
No Formal Education | 0 | 0 |
Primary Education | 0 | 0 |
Secondary Education | 1 | 1.88 |
College qualification | 2 | 3.77 |
Undergraduate Degree | 26 | 49.05 |
Postgraduate Degree | 24 | 45.28 |
Experience | ||
Less than one year | 0 | 0 |
2–5 years | 2 | 3.77 |
6–10 years | 14 | 26.41 |
11–15 years | 21 | 39.62 |
16–20 years | 7 | 13.20 |
Over 20 years | 9 | 16.98 |
Industry | ||
Administrative and support service activities | 3 | 5.66 |
Education | 4 | 7.54 |
Utility Services | 2 | 3.77 |
Financial and Insurance Services | 4 | 7.54 |
ICT | 11 | 20.75 |
Manufacturing | 6 | 11.32 |
Professional, Scientific and technical activities | 6 | 11.32 |
Public administration and defense | 10 | 18.86 |
Real estate activities | 4 | 7.54 |
Other service activities | 3 | 5.66 |
Firm Size (employees) | ||
1–20 | 1 | 1.88 |
20–50 | 12 | 22.64 |
50–100 | 7 | 13.2 |
101–250 | 12 | 22.64 |
251–500 | 6 | 11.32 |
501–1000 | 3 | 5.66 |
1001–3000 | 6 | 11.32 |
3001–6000 | 5 | 9.43 |
6000+ | 1 | 1.88 |
R | D | D + R | D − R | |
---|---|---|---|---|
BDAC1 | 17.583 | 17.679 | 35.263 | 0.096 |
BDAC2 | 18.124 | 18.88 | 37.004 | 0.756 |
BDAC3 | 18.376 | 18.185 | 36.562 | −0.191 |
BDAC4 | 18.349 | 18.021 | 36.37 | −0.328 |
BDAC5 | 18.007 | 18.03 | 36.036 | 0.023 |
BDAC6 | 17.468 | 18.418 | 35.886 | 0.949 |
BDAC7 | 17.41 | 18.375 | 35.785 | 0.966 |
BDAC8 | 16.288 | 18.425 | 34.713 | 2.137 |
BDAC9 | 19.34 | 18.608 | 37.948 | −0.732 |
BDAC10 | 17.165 | 17.577 | 34.742 | 0.411 |
BDAC11 | 17.52 | 17.999 | 35.519 | 0.479 |
BDAC12 | 17.454 | 17.82 | 35.274 | 0.366 |
BDAC13 | 15.991 | 17.934 | 33.926 | 1.943 |
BDAC14 | 17.672 | 17.45 | 35.122 | −0.221 |
BDAC15 | 17.784 | 17.789 | 35.573 | 0.005 |
BDAC16 | 17.586 | 15.292 | 32.878 | −2.293 |
BDAC17 | 18.645 | 17.738 | 36.383 | −0.906 |
BDAC18 | 19.523 | 18.073 | 37.596 | −1.45 |
BDAC19 | 18.972 | 17.802 | 36.773 | −1.17 |
BDAC20 | 19.048 | 18.209 | 37.257 | −0.839 |
Code | Capability | Source |
---|---|---|
BDAC1 | Organization uses advanced analytical techniques to improve decision making | [1,5,6,68] |
BDAC2 | Organization combines and integrates information from many data sources for use in our decision making | [1,4,5,8,25,42,68,69,70] |
BDAC3 | Organizations routinely use data visualization techniques to assist users or decision-makers in understanding complex information | [1,4,5,25,68,69,70] |
BDAC4 | Organization’s dashboards facilitate decomposing information to help root cause analysis and continuous improvement | [1,5,25,68] |
BDAC5 | Our organization utilizes open systems network mechanisms to boost analytics connectivity. | [18,71] |
BDAC6 | All branches or units are connected to the central office for sharing analytics insights. | [8,9,18,71] |
BDAC7 | Software applications can be easily used across multiple analytics platforms | [18,37,71] |
BDAC8 | Organization’s analytics workforce is highly capable in technology such as programming, distributed computing, decision support systems, artificial intelligence, and data management. | [4,8,11,18,37,69,70,71,72] |
BDAC9 | Organization has access to very large, unstructured, or fast-moving data for analysis | [4,8,42,69,70] |
BDAC10 | Organization’s analytics personnel are very capable of interpreting business problems and developing appropriate solutions. | [9,18,71] |
BDAC11 | Organization has explored or adopted parallel computing approaches to big data processing | [4,37,69,70] |
BDAC12 | Organization has explored or adopted cloud-based services for processing data and performing analytics | [4,69,70] |
BDAC13 | Organization has explored or adopted open-source software for big data analytics | [4,69,70] |
BDAC14 | Organization’s big data analytics projects are adequately funded | [4,70] |
BDAC15 | Organization’s big data analytics projects are given enough time to achieve their objectives | [4,70] |
BDAC16 | Organization provides big data analytics training to employees | [4,11,69,70] |
BDAC17 | Organization’s big data analytics managers can coordinate big data-related activities in ways that support other functional managers, suppliers, and customers | [4,11,69,70] |
BDAC18 | Organization’s big data analytics managers can anticipate the future business needs of functional managers, suppliers, and customers | [4,11,69,70] |
BDAC19 | Organization’s big data analytics managers have a good sense of where to apply big data | [4,11,69,70] |
BDAC20 | Organization relies on data rather than on instinct while making a decision | [4,11,37,69,70,72] |
Code | Capability | Source |
---|---|---|
BDAC1 | Organization uses advanced analytical techniques to improve decision making | [1,5,6,68] |
BDAC2 | Organization combines and integrates information from many data sources for use in our decision making | [1,4,5,8,25,42,68,69,70] |
BDAC5 | Organization utilizes open systems network mechanisms to boost analytics connectivity. | [18,71] |
BDAC6 | All branches or units are connected to the central office for sharing analytics insights. | [8,9,18,71] |
BDAC7 | Software applications can be easily used across multiple analytics platforms | [18,37,71] |
BDAC8 | Organization analytics workforce is highly capable in technology such as programming, distributed computing, decision support systems, artificial intelligence, and data management. | [4,8,11,18,37,69,70,71,72] |
BDAC10 | Organization’s analytics personnel are very capable of interpreting business problems and developing appropriate solutions. | [9,18,71] |
BDAC11 | Organization has explored or adopted parallel computing approaches to big data processing | [4,37,69,70] |
BDAC12 | Organization has explored or adopted cloud-based services for processing data and performing analytics | [4,69,70] |
BDAC13 | Organization has explored or adopted open-source software for big data analytics | [4,69,70] |
BDAC15 | Organization’s big data analytics projects are given enough time to achieve their objectives | [4,70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin Murad, M.A.; Cetindamar, D.; Chakraborty, S. Identifying the Key Big Data Analytics Capabilities in Bangladesh’s Healthcare Sector. Sustainability 2022, 14, 7077. https://doi.org/10.3390/su14127077
Uddin Murad MA, Cetindamar D, Chakraborty S. Identifying the Key Big Data Analytics Capabilities in Bangladesh’s Healthcare Sector. Sustainability. 2022; 14(12):7077. https://doi.org/10.3390/su14127077
Chicago/Turabian StyleUddin Murad, Md Ahsan, Dilek Cetindamar, and Subrata Chakraborty. 2022. "Identifying the Key Big Data Analytics Capabilities in Bangladesh’s Healthcare Sector" Sustainability 14, no. 12: 7077. https://doi.org/10.3390/su14127077
APA StyleUddin Murad, M. A., Cetindamar, D., & Chakraborty, S. (2022). Identifying the Key Big Data Analytics Capabilities in Bangladesh’s Healthcare Sector. Sustainability, 14(12), 7077. https://doi.org/10.3390/su14127077