Adult European Seabass (Dicentrarchus labrax) Perform Well on Alternative Circular-Economy-Driven Feed Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Diets
2.3. Measurements and Sampling
2.4. Homogenization of Diets, Whole Body, and Feces
2.5. Chemical Analysis
2.5.1. Moisture, Ash, and Energy Analysis
2.5.2. Crude Fat and Crude Protein Analysis
2.5.3. Mineral Analysis
2.6. Blood Parameters
Lysozyme Activity
2.7. Fillet Analysis
Sensory Analysis
2.8. Calculation and Formulas
2.9. Statistical Analysis
3. Results
3.1. Feed
3.2. Growth and Feed Performance
3.3. Whole-Body Composition
3.4. Mineral Analysis
3.5. Welfare Parameters
3.6. Sensory Analysis
4. Discussion
4.1. Growth and Feed Performance
4.2. Whole-Body Composition
4.3. Mineral Analysis
4.4. Welfare Parameters
4.5. Sensory Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forster, I.; Dominy, W. Use of rendered terrestrial animal by-products in aquatic feeds. In Avances en Nutrición Acuícola VIII, Proceedings of the VIII Simposium Internacional de Nutrición Acuícola, Mazatlán, México, 15–17 November 2006; Suárez, L.E.C., Marie, D.R., Salazar, M.T., López, M.G.N., Cavazos, D.A.V., Ortega, A.C.P.C., Ortega, A.G.O., Eds.; Universidad Autónoma de Nuevo: San Nicolás de los Garza, Mexico.
- FAO. The State of Food and Agriculture 2020. In Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Hodar, A.R.; Vasava, R.J.; Mahavadiya, D.R.; Joshi, N.H. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. J. Exp. Zool. India. 2020, 23, 13–21. [Google Scholar]
- Moutinho, S.; Pedrosa, R.; Magalhaes, R.; Oliva-Teles, A.; Parisi, G.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae larvae meal in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on liver oxidative status and fillet quality traits during shelf-life. Aquaculture 2021, 533, 736080. [Google Scholar] [CrossRef]
- Stevens, J.R.; Newton, R.W.; Tlusty, M.; Little, D.C. The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 2018, 90, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Fraga-Corral, M.; Ronza, P.; Garcia-Oliveira, P.; Pereira, A.G.; Losada, A.P.; Prieto, M.A.; Simal-Gandara, J. Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products. Trends Food Sci. Technol. 2022, 119, 23–35. [Google Scholar] [CrossRef]
- Goda, A.M.S.; Ahmed, S.R.; Nazmi, H.M.; Baromh, M.Z.; Fitzsimmons, K.; Rossi, W., Jr.; El-Haroun, E. Partial replacement of dietary soybean meal by high-protein distiller’s dried grains (HPDDG) supplemented with protease enzyme for European seabass. Dicentrarchus labrax fingerlings. Aquac. Nutr. 2020, 26, 842–852. [Google Scholar] [CrossRef]
- Leduc, A.; Zatylny-Gaudin, C.; Robert, M.; Corre, E.; Le Corguille, G.; Castel, H.; Henry, J. Dietary aquaculture by-product hydrolysates: Impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fishmeal diets. BMC Genom. 2018, 19, 396. [Google Scholar] [CrossRef] [Green Version]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef]
- Malcorps, W.; Kok, B.; van‘t Land, M.; Fritz, M.; van Doren, D.; Servin, K.; Davies, S.J. The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability 2019, 11, 1212. [Google Scholar] [CrossRef] [Green Version]
- Ravi Kanth Reddy, P.; Srinivasa Kumar, D.; Raghava Rao, E.; Venkata Seshiah, C.; Sateesh, K.; Pradeep Kumar Reddy, Y.; Hyder, I. Assessment of eco-sustainability vis-à-vis zoo-technical attributes of soybean meal (SBM) replacement with varying levels of coated urea in Nellore sheep (Ovis aries). PLoS ONE 2019, 14, e0220252. [Google Scholar] [CrossRef] [Green Version]
- Mirto, S.; Montalto, V.; Mangano, M.C.M.; Ape, F.; Berlino, M.; La Marca, C.; Sarà, G. The stakeholder’s perception of socio-economic impacts generated by COVID-19 pandemic within the Italian aquaculture systems. Aquaculture 2022, 553, 738127. [Google Scholar] [CrossRef]
- Davis, R.P.; Salze, G.; Fanning, E.; Silbernagel, C.; Rotstein, D.; Davis, D.A.; Drawbridge, M.A. A comparison of growth and taurine retention between plant and animal protein-based diets in juvenile white seabass Atractoscion nobilis. Aquaculture 2021, 533, 736082. [Google Scholar] [CrossRef]
- Hoerterer, C.; Petereit, J.; Lannig, G.; Johansen, J.; Pereira, G.V.; Conceição, L.E.; Buck, B.H. Sustainable fish feeds: Potential of emerging protein sources in diets for juvenile turbot (Scophthalmus maximus) in RAS. Aquac. Int. 2022, 30, 1481–1504. [Google Scholar] [CrossRef]
- Campos, I.; Matos, E.; Marques, A.; Valente, L.M. Hydrolyzed feather meal as a partial fishmeal replacement in diets for European seabass (Dicentrarchus labrax) juveniles. Aquaculture 2017, 476, 152–159. [Google Scholar] [CrossRef]
- Rimoldi, S.; Torrecillas, S.; Montero, D.; Gini, E.; Makol, A.; Valdenegro, V.V.; Terova, G. Assessment of dietary supplementation with galactomannan oligosaccharides and phytogenics on gut microbiota of European sea bass (Dicentrarchus Labrax) fed low fishmeal and fish oil based diet. PLoS ONE 2020, 15, e0231494. [Google Scholar] [CrossRef] [Green Version]
- Bonvini, E.; Bonaldo, A.; Parma, L.; Mandrioli, L.; Sirri, R.; Grandi, M.; Gatta, P.P. Feeding European sea bass with increasing dietary fibre levels: Impact on growth, blood biochemistry, gut histology, gut evacuation. Aquaculture 2018, 494, 1–9. [Google Scholar] [CrossRef]
- Munekata, P.E.; Pateiro, M.; Domínguez, R.; Zhou, J.; Barba, F.J.; Lorenzo, J.M. Nutritional characterization of sea bass processing by-products. Biomolecules 2020, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- Sallam, A.E.; El-feky, M.M.; Ahmed, M.S.; Mansour, A.T. Potential use of whey protein as a partial substitute of fishmeal on growth performance, non-specific immunity and gut histological status of juvenile European seabass, Dicentrarchus labrax. Aquac. Res. 2021, 53, 1527–1541. [Google Scholar] [CrossRef]
- Batista, S.; Pintado, M.; Marques, A.; Abreu, H.; Silva, J.L.; Jessen, F.; Valente, L.M. Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J. Appl. Phycol. 2020, 32, 3429–3446. [Google Scholar] [CrossRef]
- Erkan, N.; Özden, Ö. Proximate composition and mineral contents in aqua cultured sea bass (Dicentrarchus labrax), sea bream (Sparus aurata) analyzed by ICP-MS. Food Chem. 2007, 102, 721–725. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Babbitt, J.K.; Dong, F.M.; Hardy, R.W. Utilization of fish and animal by-product meals in low-pollution feeds for rainbow trout Oncorhynchus mykiss (Walbaum). Aquac. Res. 2000, 31, 585–593. [Google Scholar] [CrossRef]
- Carbonara, P.; Alfonso, S.; Dioguardi, M.; Zupa, W.; Vazzana, M.; Dara, M.; Cammarata, M. Calibrating accelerometer data, as a promising tool for health and welfare monitoring in aquaculture: Case study in European sea bass (Dicentrarchus labrax) in conventional or organic aquaculture. Aquac. Rep. 2021, 21, 100817. [Google Scholar] [CrossRef]
- Carbonara, P.; Zupa, W.; Bitetto, I.; Alfonso, S.; Dara, M.; Cammarata, M. Evaluation of the Effects of the Enriched-Organic Diets Composition on European Sea Bass Welfare through a Multi-Parametric Approach. J. Mar. Sci. Eng. 2020, 8, 934. [Google Scholar] [CrossRef]
- Barton, B.A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef]
- Prunet, P.; Øverli, Ø.; Douxfils, J.; Bernardini, G.; Kestemont, P.; Baron, D. Fish welfare and genomics. Fish Physiol. Biochem. 2012, 38, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Schreck, C.B.; Tort, L. The concept of stress in fish. In Fish Physiology; Academic Press: Cambridge, MA, USA, 2019; Volume 35, pp. 1–34. [Google Scholar]
- Reyes, M.; Rodríguez, M.; Montes, J.; Barroso, F.G.; Fabrikov, D.; Morote, E.; Sánchez-Muros, M.J. Nutritional and growth effect of insect meal inclusion on seabass (Dicentrarchuss labrax) feeds. Fishes 2020, 5, 16. [Google Scholar] [CrossRef]
- Vandeputte, M.; Gagnaire, P.A.; Allal, F. The European sea bass: A key marine fish model in the wild and in aquaculture. Anim. Genet. 2019, 50, 195–206. [Google Scholar] [CrossRef]
- Arru, B.; Furesi, R.; Gasco, L.; Madau, F.A.; Pulina, P. The introduction of insect meal into the fish diet: The first economic analysis on European sea bass farming. Sustainability 2019, 11, 1697. [Google Scholar] [CrossRef] [Green Version]
- Campos, I.; Matos, E.; Valente, L.M. Ability of European seabass (Dicentrarchus labrax) to digest rendered animal fats from fish, poultry and mammals. Aquac. Nutr. 2019, 25, 729–736. [Google Scholar] [CrossRef]
- Torrecillas, S.; Caballero, M.J.; Mompel, D.; Montero, D.; Zamorano, M.J.; Robaina, L.; Izquierdo, M. Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass (Dicentrarchus labrax) fed low fish meal and fish oil diets. Fish Shellfish. Immunol. 2017, 67, 302–311. [Google Scholar] [CrossRef]
- Milla, S.; Mathieu, C.; Wang, N.; Lambert, S.; Nadzialek, S.; Massart, S.; Henrotte, E.; Douxfils, J.; Mélard, C.; Mandiki, S.N.; et al. Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish Shellfish. Immunol. 2010, 28, 931–941. [Google Scholar] [CrossRef]
- Torrecillas, S.; Montero, D.; Carvalho, M.; Benitez-Santana, T.; Izquierdo, M. Replacement of fish meal by Antarctic krill meal in diets for European sea bass Dicentrarchus labrax: Growth performance, feed utilization and liver lipid metabolism. Aquaculture 2021, 545, 737166. [Google Scholar] [CrossRef]
- Kotzamanis, Y.; Tsironi, T.; Brezas, A.; Grigorakis, K.; Ilia, V.; Vatsos, I.; Kumar, V. High taurine supplementation in plant protein-based diets improves growth and organoleptic characteristics of European seabass (Dicentrarchus labrax). Sci. Rep. 2020, 10, 12294. [Google Scholar] [CrossRef] [PubMed]
- Marengo, M.; Durieux, E.D.; Ternengo, S.; Lejeune, P.; Degrange, E.; Pasqualini, V.; Gobert, S. Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health. Ecotoxicol. Environ. Saf. 2018, 158, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.S.; Watanabe, W.O.; Carroll, P.M.; Rezek, T. Effects of dietary protein and lipid levels on growth performance and body composition of black sea bass Centropristis striata (Linnaeus 1758) during grow-out in a pilot-scale marine recirculating system. Aquac. Res. 2009, 40, 442–449. [Google Scholar] [CrossRef]
- De Moura, L.B.; Diógenes, A.F.; Campelo, D.A.; de Almeida, F.L.; Pousão-Ferreira, P.M.; Furuya, W.M.; Peres, H. Taurine and methionine supplementation as a nutritional strategy for growth promotion of meagre (Argyrosomus regius) fed high plant protein diets. Aquaculture 2018, 497, 389–395. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, K.D. E¡ects of dietary protein and energy levels on the growth, protein utilization and body composition of juvenile masu salmon (Oncorhynchus masou Brevoort). Aquac. Res. 2001, 32 (Suppl. S1), 39–45. [Google Scholar] [CrossRef]
- Coutinho, F.; Simões, R.; Monge-Ortiz, R.; Furuya, W.M.; Pousão-Ferreira, P.; Kaushik, S.; Peres, H. Effects of dietary methionine and taurine supplementation to low-fishmeal diets on growth performance and oxidative status of European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2017, 479, 447–454. [Google Scholar] [CrossRef]
- Monge-Ortiz, R.; Martínez-Llorens, S.; Lemos-Neto, M.J.; Falcó-Giaccaglia, S.L.; Pagán, M.J.; Godoy-Olmos, S.; Tomás-Vidal, A. Growth, sensory and chemical characterization of Mediterranean yellowtail (Seriola dumerili) fed diets with partial replacement of fishmeal by other protein sources. Aquac. Rep. 2020, 18, 100466. [Google Scholar] [CrossRef]
- Ozyilmaz, A.; Miçooğulları, I. Differences in proximate lipid composition, heavy metals, and mineral contents in bogue (Boops boops, Linnaueus, 1758) captured far away and directly at sea bass and sea bream cage farms. J. Appl. Ichthyol. 2020, 36, 901–905. [Google Scholar] [CrossRef]
- Kokou, F.; Bastias, R.; Kokkari, K.; Katharios, P.; Cotou, E.; Seimenis, N.; Rigos, G. Surplus of dietary micronutrients promotes antioxidant defense and improves fin erosions in European seabass (Dicentrarchus labrax) fry. Aquaculture 2020, 523, 735224. [Google Scholar] [CrossRef]
- Campos, I.; Matos, E.; Pintado, A.M.; Valente, L.M.P. Apparent digestibility coefficients of processed agro-food by-products in European seabass (Dicentrarchus labrax) juveniles. Aquac. Nutr. 2018, 24, 1274–1286. [Google Scholar] [CrossRef]
- Sugiura, S.H. Phosphorus, aquaculture, and the environment. Rev. Fish. Sci. Aquac. 2018, 26, 515–552. [Google Scholar] [CrossRef]
- Islam, M.J.; Kunzmann, A.; Bögner, M.; Meyer, A.; Thiele, R.; Slater, M.J. Metabolic and molecular stress responses of European seabass, Dicentrarchus labrax at low and high temperature extremes. Ecol. Indic. 2020, 112, 106118. [Google Scholar] [CrossRef]
- Deilamy Pour, H.; Mousavi, S.M.; Zakeri, M.; Keyvanshokooh, S.; Kochanian, P. Synergistic effects of selenium and magnesium nanoparticles on growth, digestive enzymes, some serum biochemical parameters and immunity of Asian sea bass (Lates calcarifer). Biol. Trace Elem. Res. 2021, 199, 3102–3111. [Google Scholar] [CrossRef]
- Carminato, A.; Pascoli, F.; Trocino, A.; Locatello, L.; Maccatrozzo, L.; Palazzi, R.; Bertotto, D. Productive Results, Oxidative Stress and Contaminant Markers in European Sea Bass: Conventional vs. Organic Feeding. Animals 2020, 10, 1226. [Google Scholar] [CrossRef]
- Tsopelakos, A.; Zogopoulou, E.; Panagiotaki, P.; Miliou, H. Combined effects of dietary n-3 long-chain polyunsaturated fatty acid levels and saturated to monounsaturated fatty acid ratios on growth, fillet composition and blood parameters of European sea bass, Dicentrarchus labrax L. Aquac. Res. 2021, 52, 5213–5228. [Google Scholar] [CrossRef]
- Da Silva Sousa, A. Impact of Defatted Mealworm Larvae Meal on European Seabass (Dicentrarchus labrax) Flesh Quality. 2020. Available online: https://repositorio-aberto.up.pt/bitstream/10216/131834/2/439580.pdf (accessed on 13 June 2021).
- Calanche Morales, J.B.; Tomás-Vidal, A.; Cusiyunca Phoco, E.R.; Martínez-Llorens, S.; Marquina, P.L.; Jover-Cerdá, M.; Beltrán, J.A. An Approach to the Spanish Consumer’s Perception of the Sensory Quality of Environmentally Friendly Seabass. Foods 2021, 10, 2694. [Google Scholar] [CrossRef]
- Cantillo, J.; Martín, J.C.; Román, C. A Best–Worst Measure of Attitudes toward Buying Seabream and Seabass Products: An Application to the Island of Gran Canaria. Foods 2021, 10, 90. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
Temperature (°C) | pH | Salinity | Oxygen (%) | Ammonium (mg/L) | Nitrite (mg/L) | Nitrate (mg/L) |
---|---|---|---|---|---|---|
20.0 ± 0.9 | 7.62 ± 0.04 | 36.3 ± 0.1 | 95.2 ± 6.7 | 0.096 ± 0.055 | 0.198 ± 0.11 | 127.9 ± 38 |
Ingredients, % | Control | NO PAP | PAP | NO PAP+ | PAP− |
---|---|---|---|---|---|
Fishmeal Super Prime | 10.00 | 15.00 | |||
Fishmeal 60 (by-products) | 5.00 | ||||
Krill meal | 5.00 | ||||
Fish protein hydrolysate | 3.00 | ||||
FPH-trout-head | 0.50 | 0.50 | 0.50 | 0.50 | |
FPH-trout-tf | 0.50 | 0.50 | 0.50 | 0.50 | |
FPH-turbot-head | 0.25 | 0.25 | 0.25 | 0.25 | |
FPH-turbot-tf | 0.75 | 0.75 | 0.75 | 0.75 | |
FPH-salmon-head | 0.50 | 0.50 | 0.50 | 0.50 | |
FPH-salmon-tf | 0.50 | 0.50 | 0.50 | 0.50 | |
Feather meal hydrolysate | 5.00 | 10.00 | |||
Porcine blood meal | 2.25 | 5.00 | |||
Poultry meal | 10.00 | 14.00 | 20.00 | ||
Insect meal (Hermetia illucens) | 15.00 | 10.00 | 10.00 | ||
Fermentation biomass (Corynebacterium glutamicum) | 5.00 | 5.00 | 2.50 | ||
Fermentation biomass | |||||
(Methylococcus capsulatus) | 15.00 | 10.00 | 10.00 | ||
Soy protein concentrate | 4.40 | ||||
Pea protein concentrate | 2.50 | 3.50 | |||
Wheat gluten | 6.00 | 1.50 | 1.50 | ||
Corn gluten meal | 6.00 | 1.50 | 1.50 | ||
Soybean meal 48 | 15.00 | ||||
Sunflower meal 40 | 9.10 | 6.00 | 13.60 | ||
Wheat meal | 11.40 | 5.70 | 5.70 | 5.70 | 5.70 |
Whole peas | 4.00 | 11.13 | 16.36 | 9.14 | 14.44 |
Pea starch (raw) | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Vit. and Min. Premix—WITH I and Se | 1.00 | ||||
Vit. and Min. Premix—NO I and Se | 1.00 | 1.00 | 1.00 | 1.00 | |
GAIN Macroalgae SHP | 2.50 | 2.50 | 2.50 | 2.50 | |
GAIN Macroalgae SHP Se-rich | 0.10 | 0.10 | 0.10 | 0.10 | |
GAIN Microalgae WUR Se-rich | 0.20 | 0.20 | 0.20 | 0.20 | |
Vitamin E50 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Betaine HCl | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Antioxidant | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Sodium propionate | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Monoammonium phosphate | 1.30 | 2.65 | 1.85 | 1.45 | 1.60 |
L-Histidine | 0.10 | ||||
L-Tryptophan | 0.10 | 0.10 | 0.10 | 0.25 | |
DL-Methionine | 0.20 | 0.40 | 0.30 | 0.10 | 0.30 |
L-Taurine | 0.17 | 0.09 | 0.01 | 0.06 | |
Yttrium oxide | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Lecithin | 0.25 | 0.25 | 0.25 | ||
Fish oil | 5.40 | 2.70 | 2.70 | 2.70 | 2.70 |
Salmon oil | 9.00 | 9.00 | 13.60 | 9.00 | |
Algae oil | 1.00 | 1.00 | 1.00 | 1.00 | |
Rapeseed oil | 12.70 | 5.90 | 5.10 | 4.80 | |
total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Feed | Control | PAP | NOPAP | PAP− | NOPAP+ | p Value |
---|---|---|---|---|---|---|
Ash (%) | 7.98 b | 8.10 ab | 8.23 a | 8.06 b | 8.04 b | 0.039 |
Moisture (%) | 8.10 c | 8.88 d | 8.88 d | 10.19 b | 11.30 a | <0.001 |
Gross energy (MJ kg−1) | 23.16 a | 21.58 b | 22.88 a | 23.08 a | 23.14 a | <0.001 |
Crude protein (%) | 37.9 | 39.0 | 38.5 | 35.8 | 41.0 | 0.406 |
Crude fat (%) | 22.2 | 22.2 | 21.8 | 21.2 | 21.5 | 0.406 |
Apparent digestibility coefficient | ||||||
Dry matter (%) | 79.18 ± 0.93 ac | 77.59 ± 1.13 bce | 76.24 ± 1.88 acd | 76.14 ± 2.56 de | 80.52 ± 1.01 ab | 0.032 |
Gross energy (%) | 74.95 ± 1.46 | 75.143 ± 1.17 | 73.60 ± 1.46 | 73.43 ± 1.53 | 70.48 ± 6.56 | 0.440 |
Feed | Control | PAP | NOPAP | PAP− | NOPAP+ |
---|---|---|---|---|---|
Calcium (Ca; g/kg−1) | 16.68 | 18.12 | 17.75 | 16.70 | 17.07 |
Potassium (K; g/kg−1) | 6.72 | 6.43 | 6.51 | 5.41 | 6.44 |
Magnesium (Mg; g/kg−1) | 1.82 | 1.71 | 1.77 | 1.57 | 1.67 |
Sodium (Na; g/kg−1) | 4.04 | 3.73 | 3.85 | 2.31 | 4.47 |
Phosphorus (P; g/kg−1) | 13.27 | 13.42 | 13.47 | 13.58 | 13.02 |
Ca/P ratio | 1.26 | 1.35 | 1.32 | 1.23 | 1.31 |
Copper (Cu; mg/kg−1) | 17.36 | 17.50 | 18.86 | 18.87 | 17.42 |
Iron (Fe; mg/kg−1) | 346.04 | 198.41 | 180.04 | 259.99 | 162.49 |
Manganese (Mn; mg/kg−1) | 34.73 | 32.38 | 34.39 | 37.78 | 25.51 |
Zinc (Zn; mg/kg−1) | 173.97 | 161.39 | 171.89 | 181.72 | 179.55 |
Feed | Control | PAP | NOPAP | PAP− | NOPAP+ | p Value |
---|---|---|---|---|---|---|
Total feed intake (g) | 261.92 ± 16.11 | 254.55 ± 5.76 | 247.27 ± 10.87 | 242.97 ± 8.22 | 258.85± 4.23 | 0.349 |
FCR | 1.74 ± 0.04 | 1.96 ±0.16 | 1.67 ± 0.07 | 1.92 ± 0.17 | 1.79 ± 0.14 | 0.213 |
CF | 1.20 ± 0.03 | 1.19 ± 0.02 | 1.19 ±0.03 | 1.19 ±0.01 | 1.21 ±0.02 | 0.817 |
Feed | Control | PAP | NOPAP | PAP− | NOPAP+ | p Value |
---|---|---|---|---|---|---|
Weight gain (g) | 159.90 ± 127.9 a | 148.20 ± 129.2 a | 144.00 ± 118.6 bc | 138.55 ± 116.5 bc | 144.50 ± 125.6 ac | 0.035 |
HSI (%) | 1.52 ± 0.37 | 1.41 ± 0.25 | 1.46 ± 0.26 | 1.47 ± 0.35 | 1.63 ± 0.32 | 0.438 |
VSI (%) | 9.33 ± 1.52 a | 8.97 ± 1.82 a | 8.54 ± 1.42 a | 8.30 ± 1.18 b | 9.73 ± 1.77 a | 0.009 |
BW final (g) | 466.30 ± 105.22 | 475.68 ± 102.95 | 460.18 ± 88.28 | 459.33 ± 104.01 | 474.78 ± 101.47 | 0.847 |
RGR (%/day) | 0.52 ± 0.13 a | 0.48 ± 0.13 b | 0.46 ± 0.09 b | 0.45 ± 0.11 b | 0.47 ± 0.09 b | 0.009 |
Feed | Control | PAP | NOPAP | PAP− | NOPAP+ | p Value |
---|---|---|---|---|---|---|
Moisture (%) | 37.69 ± 2.33 | 37.45 ± 3.92 | 36.57 ± 2.83 | 38.61 ± 2.04 | 41.49 ± 7.05 | 0.296 |
Ash (%) | 10.29 ± 1.10 | 10.42 ± 0.83 | 10.20 ± 0.64 | 10.45 ± 0.57 | 11.28 ± 3.71 | 0.845 |
Energy (MJ kg−1) | 25.40 ± 1.37 b | 25.11 ± 1.09 b | 26.44 ± 1.92 ab | 25.10 ± 1.31 b | 29.90 ± 5.95 a | 0.046 |
Crude fat (mg/kg) | 16.47 ± 0.72 | 15.6 ± 0.7 | 16.37 ± 1.10 | 15.87 ± 2.20 | 15.45 ± 0.35 | 0.841 |
Crude protein (mg/kg) | 18.03 ± 0.15 a | 18.03 ± 0.15 a | 18.57 ± 0.21 b | 17.83 ± 0.40 a | 17.75 ± 0.07 a | 0.022 |
PER | 1.56 ± 0.05 | 1.35 ± 0.11 | 1.56 ± 0.08 | 1.48 ± 0.11 | 1.36 ± 0.12 | 0.057 |
Feed | Control | PAP | NOPAP | PAP− | NOPAP+ | p Value |
---|---|---|---|---|---|---|
As (mg/kg) | 0.0004 ± 0.00 | 0.0001 ± 0.00 | 0.0003± 0.00 | 0.0003 ± 0.00 | 0.0002 ± 0.00 | 0.075 |
Ca (g/kg) | 29.67 ± 2.61 | 28.67 ± 3.36 | 30.42 ± 0.45 | 33.61 ± 5.95 | 26.45 ± 4.14 | 0.287 |
Cu (mg/kg) | 0.003 ± 0.000 | 0.003 ± 0.000 | 0.003 ± 0.000 | 0.002 ± 0.001 | 0.003 ± 0.000 | 0.124 |
Fe (mg/kg) | 29.47 ± 3.69 | 30.59 ± 2.37 | 28.82 ± 7.44 | 28.96 ± 4.02 | 23.55 ± 6.33 | 0.522 |
K (g/kg) | 9.26 ± 0.65 | 9.23 ± 0.25 | 9.00 ± 0.31 | 9.12 ± 0.53 | 9.26 ± 0. 15 | 0.924 |
Mg (g/kg) | 1.06 ± 0.07 | 1.08 ± 0.03 | 1.04 ± 0.04 | 1.08 ± 0.11 | 1.03 ± 0.05 | 0.825 |
Mn (mg/kg) | 6.42 ± 0.85 | 6.01 ± 0.79 | 5.71 ± 0.51 | 6.60 ± 1.30 | 5.12 ± 0.93 | 0.349 |
Na (g/kg) | 3.12 ± 0.29 | 3.05 ± 0.13 | 2.99 ± 0.15 | 3.21 ± 0.23 | 3.03 ± 0.01 | 0.646 |
P (g/kg) | 18.85 ± 1.58 | 18.48 ± 1.58 | 18.34 ± 1.09 | 20.55 ± 3.18 | 17.25 ± 1.95 | 0.422 |
Zn (mg/kg) | 37.43 ± 0.83 | 36.54 ± 1.80 | 37.75 ± 2.89 | 37.84 ± 2.54 | 34.15 ± 2.57 | 0.302 |
Apparent Availability (%) | Control | PAP | NOPAP | PAP− | NOPAP+ | p Value |
---|---|---|---|---|---|---|
Calcium (Ca) | 21.33 ± 8.3 | 27.47 ± 11.92 | 34.22 ± 14.58 | 26.60 ± 12.90 | 14.54 ± 7.20 | 0.346 |
Potassium (K) | 87.79 ±1.33 | 88.19 ± 0.29 | 88.04 ± 0.91 | 85.96 ± 1.83 | 87.82 ± 0.59 | 0.180 |
Magnesium (Mg) | −130.35 ± 0.81 | −145.74 ± 29.20 | −120.79 ± 22.04 | −164.99 ± 32.26 | −149.89 ± 2.85 | 0.193 |
Sodium (Na) | −298.73 ± 46.47 a | −295.86 ± 13.90 a | −276.14 ± 18.36 a | −545.01 ± 92.41 b | −229.73 ± 19.68 a | <0.001 |
Phosphorus (P) | 55.59 ± 1.70 | 60.35 ± 8.20 | 60.62 ± 7.25 | 66.40 ± 7.70 | 59.47 ± 6.08 | 0.438 |
Copper (Cu) | 67.26 ± 4.10 | 63.22 ± 5.75 | 67.03 ± 5.18 | 69.12 ± 7.85 | 65.17 ± 5.40 | 0.770 |
Iron (Fe) | 23.82 ± 22.54 a | −2.84 ± 5.56 bc | 7.75 ± 6.47 ac | 25.66 ± 6.35 a | −5.07 ± 5.79 bc | 0.021 |
Manganese (Mn) | 31.59 ± 12.67 | 37.67 ± 19.18 | 43.48 ± 15.18 | 55.45 ± 10.1 | 23.29 ± 6.01 | 0.112 |
Zinc (Zn) | 19.99 ± 3.24 a | 31.45 ± 11.75 ab | 26.40 ± 11.24 a | 46.11 ± 9.78 b | 21.22 ± 9.16 a | 0.043 |
Feed | Control | PAP | NOPAP | PAP− | NOPAP+ | p Value |
---|---|---|---|---|---|---|
Lactatdehy-drogenase (U/L) | 46.44 ± 32.49 | 51.84 ± 32.52 | 43.88 ± 33.51 | 57.58 ± 28.53 | 41.76 ± 27.43 | 0.226 |
Glucose (mmol/L) | 91.36 ± 26.60 | 95.72 ± 24.06 | 87.67 ± 17.69 | 85.96 ± 23.29 | 94.24 ± 29.36 | 0.384 |
Total protein (g/L) | 41.68 ± 4.08 a | 40.07 ± 4.13 ac | 40.07 ± 3.36 ac | 38.68 ± 3.59 bc | 36.76 ± 3.44 b | 0.001 |
Lysozyme (U/mL) | 290.33 ± 34.46 | 270.67 ± 49.53 | 275.96 ± 44.33 | 276.17 ± 77.07 | 294.77 ± 70.16 | 0.169 |
Feed/Fatty Acid (mg/g) | Control | PAP | NOPAP | PAP− | p Value |
---|---|---|---|---|---|
Palmitinacid (16:0) | 27.73 ± 13.67 | 25.29 ± 20.65 | 29.22 ± 24.86 | 27.90 ± 11.8 | 0.950 |
Oleic acid (18:1n–9) | 46.86 ± 28.64 a | 22.84 ± 10.17 bc | 36.47 ± 28.64 ac | 48.01 ± 18.36 a | 0.016 |
Linoleicacid (18:2) | 19.30 ± 10.69 | 16.79 ± 14.92 | 18.89 ± 11.48 | 19.80 ± 8.46 | 0.899 |
Linolenic acid(18:3) | 4.97 ± 3.69 | 4.36 ± 4.54 | 5.53 ± 3.84 | 5.41 ± 2.84 | 0.830 |
EPA (20:5) | 7.12 ± 2.55 | 5.53 ± 1.98 | 6.25 ± 2.19 | 5.51 ± 1.43 | 0.123 |
DHA (22:6) | 8.72 ± 3.46 | 8.53 ± 2.08 | 10.07 ± 3.31 | 8.26 ± 1.76 | 0.306 |
Feed | Control | PAP | NOPAP | PAP− | NOPAP+ | p Value |
---|---|---|---|---|---|---|
Filet weight (%) | 37.89 ± 2.18 b | 39.24 ± 2.87 b | 37.60 ± 2.51 b | 39.03 ± 2.02 b | 41.20 ± 2.15 a | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petereit, J.; Hoerterer, C.; Bischoff-Lang, A.A.; Conceição, L.E.C.; Pereira, G.; Johansen, J.; Pastres, R.; Buck, B.H. Adult European Seabass (Dicentrarchus labrax) Perform Well on Alternative Circular-Economy-Driven Feed Formulations. Sustainability 2022, 14, 7279. https://doi.org/10.3390/su14127279
Petereit J, Hoerterer C, Bischoff-Lang AA, Conceição LEC, Pereira G, Johansen J, Pastres R, Buck BH. Adult European Seabass (Dicentrarchus labrax) Perform Well on Alternative Circular-Economy-Driven Feed Formulations. Sustainability. 2022; 14(12):7279. https://doi.org/10.3390/su14127279
Chicago/Turabian StylePetereit, Jessica, Christina Hoerterer, Adrian A. Bischoff-Lang, Luís E. C. Conceição, Gabriella Pereira, Johan Johansen, Roberto Pastres, and Bela H. Buck. 2022. "Adult European Seabass (Dicentrarchus labrax) Perform Well on Alternative Circular-Economy-Driven Feed Formulations" Sustainability 14, no. 12: 7279. https://doi.org/10.3390/su14127279
APA StylePetereit, J., Hoerterer, C., Bischoff-Lang, A. A., Conceição, L. E. C., Pereira, G., Johansen, J., Pastres, R., & Buck, B. H. (2022). Adult European Seabass (Dicentrarchus labrax) Perform Well on Alternative Circular-Economy-Driven Feed Formulations. Sustainability, 14(12), 7279. https://doi.org/10.3390/su14127279