Combined ERT and GPR Data for Subsurface Characterization of Weathered Hilly Slope: A Case Study in Zhejiang Province, Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methodology
2.2.1. Data Acquisitions
2.2.2. Data Processing
3. Results and Discussion
3.1. ERT Profiles and Interpretations
3.2. GPR Results and Interpretations
3.2.1. Waveforms in Depth Domain and Interpretations
3.2.2. GPR Reflection Profiles and Interpretations
3.3. Comparison between ERT and GPR Results
3.4. Model of Potentially Unstable Body
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.P. Current situation of geological disasters and the prevention measures in Zhejiang Province. J. Catastrophol. 2001, 16, 63–66. (In Chinese) [Google Scholar]
- Yue, L.X.; Wang, Y.; Yu, S.J. Debris fow types and their distribution in Zhejiang province. Bull. Soil Water Conserv. 2010, 30, 185–189. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.P.; Song, J.Y.; Shao, X.L. Case analysis of forecast and evacuation of recent large geological disasters in china. J. Nat. Disasters 2015, 24, 20–27. (In Chinese) [Google Scholar] [CrossRef]
- Zhi, M.; Shang, Y.; Zhao, Y.; Lü, Q.; Sun, H. Investigation and monitoring on a rainfall-induced deep-seated landslide. Arab. J. Geosci. 2016, 9, 182. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, G.; Gao, J.; Wang, S.; Xue, B.; Wang, K.; Yang, J.; Jiang, R.; Lian, J. The rainfall thresholds and soil characteristics of large geological disasters in Zhejiang, China. Arab. J. Geosci. 2022, 15, 559. [Google Scholar] [CrossRef]
- Chen, X.; Ma, T.; Li, C.; Liu, H.; Ding, B.; Peng, W. The catastrophic 13 November 2015 rock-debris slide in Lidong, south-western Zhejiang (China): A landslide triggered by a combination of antecedent rainfall and triggering rainfall. Geomat. Nat. Hazards Risk 2018, 9, 608–623. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, C.J.; Zhao, W.; Xu, Q.; Peng, D.L.; Li, W.L.; Wang, D.P.; Zhou, S.; Hou, S.W. Failure mechanisms and characteristics of the 2016 catastrophic rockslide at Su village, Lishui, China. Landslides 2018, 15, 1391–1400. [Google Scholar] [CrossRef]
- Ouyang, C.J.; Zhao, W.; An, H.; Zhou, S.; Wang, D.; Xu, Q.; Li, W.; Peng, D. Early identification and dynamic processes of ridge-top rockslides: Implications from the Su Village landslide in Suichang County, Zhejiang Province, China. Landslides 2019, 16, 799–813. [Google Scholar] [CrossRef]
- Tian, H.; Gan, J.; Jiang, H.; Tang, C.; Luo, C.; Wan, C.; Xu, B.; Gui, F.; Liu, C.; Liu, N. Failure Mechanism and Kinematics of the Deadly September 28th 2016 Sucun Landslide, Suichang, Zhejiang, China. Adv. Civ. Eng. 2020, 2020, 8828819. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, M.; Yang, L.; Liu, T.; Zhang, T.; Sun, Q.; Wang, B.; Xie, X. Failure mechanisms and dynamics of the Shanzao rockslide in Yongjia County, China on 10 August 2019. Landslides 2021, 18, 2565–2574. [Google Scholar] [CrossRef]
- McCann, D.M.; Forster, A. Reconnaissance geophysical methods in landslide investigations. Eng. Geol. 1990, 29, 59–78. [Google Scholar] [CrossRef]
- Hack, R. Geophysics for slope stability. Surv. Geophys. 2000, 21, 423–448. [Google Scholar] [CrossRef]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Arosio, D.; Deparis, J.; Zanzi, L.; Garambois, S. Fracture characterization with GPR: A comparative study. In Proceedings of the 2016 16th International Conference on Ground Penetrating Radar (GPR), Hong Kong, China, 13–16 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Arosio, D.; Zanzi, L.; Longoni, L.; Papini, M. Fracture thickness from GPR measurements. In Proceedings of the 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Florence, Italy, 7–10 July 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Van den bril, K.; Grégoire, C.; Swennen, R.; Lambot, S. Ground-penetrating radar as a tool to detect rock heterogeneities (channels, cemented layers and fractures) in the Luxembourg Sandstone Formation (Grand-Duchy of Luxembourg). Sedimentology 2007, 54, 949–967. [Google Scholar] [CrossRef]
- Jeannin, M.; Garambois, S.; Grégoire, C.; Jongmans, D. Multiconfiguration GPR measurements for geometric fracture characterization in limestone cliffs (Alps). Geophysics 2006, 71, B85–B92. [Google Scholar] [CrossRef] [Green Version]
- Abbasi Baghbadorani, A.; Hole, J.A.; Baggett, J.; Ripepi, N. Radar imaging of fractures and voids behind the walls of an underground mine. Geophysics 2021, 86, H27–H41. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Gerber, R.; Felix-Henningsen, P.; Behrens, T.; Scholten, T. Applicability of ground-penetrating radar as a tool for nondestructive soil-depth mapping on Pleistocene periglacial slope deposits. J. Plant Nutr. Soil Sci. 2010, 173, 173–184. [Google Scholar] [CrossRef]
- Campbell, S.; Affleck, R.T.; Sinclair, S. Ground-penetrating radar studies of permafrost, periglacial, and near-surface geology at McMurdo Station. Antarctica. Cold Reg. Sci. Technol. 2018, 148, 38–49. [Google Scholar] [CrossRef]
- Lang, J.; Sievers, J.; Loewer, M.; Igel, J.; Winsemann, J. 3D architecture of cyclicstep and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data. Sediment. Geol. 2017, 362, 83–100. [Google Scholar] [CrossRef]
- Khan, M.Y.; Shafique, M.; Turab, S.A.; Ahmad, N. Characterization of an Unstable Slope Using Geophysical, UAV, and Geological Techniques: Karakoram Himalaya, Northern Pakistan. Front. Earth Sci. 2021, 9, 668011. [Google Scholar] [CrossRef]
- Karim, N.I.; Kamaruddin, S.A.; Hasan, R.C. Performance of Soil Water Content Using Ground Penetrating Radar with Different Antenna Frequencies. Int. J. Eng. Technol. 2018, 7, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Song, X.; Wu, H.; Gao, L.; Liu, F.; Yang, S.; Zhang, G. Mapping the response of volumetric soil water content to an intense rainfall event at the field scale using GPR. J. Hydrol. 2020, 583, 124605. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, J.; Huang, P.; Roth, K. Estimating field-scale soil water dynamics at a heterogeneous site using multi-channel GPR. Hydrol. Earth Syst. Sci. 2011, 16, 4361–4372. [Google Scholar] [CrossRef] [Green Version]
- Weihermüller, L.; Huisman, J.A.; Lambot, S.; Herbst, M.; Vereecken, H. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol. 2007, 340, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Jongmans, D.; Garambois, S. Geophysical investigation of landslides: A review. Bull. Soc. Geol. Fr. 2007, 178, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Jongmans, D.; Bièvre, G.; Renalier, F.; Schwartz, S.; Beaurez, N.; Orengo, Y. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng. Geol. 2009, 109, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, G.; Lapenna, V.; Loperte, A.; Perrone, A.; Telesca, L. 2D electrical resistivity tomographies for investigating recent activation landslides in Basilicata Region (Southern Italy). Ann. Geophys. 2008, 51, 275–285. [Google Scholar] [CrossRef]
- Falae, P.O.; Kanungo, D.P.; Chauhan, P.K.; Dash, R.K. Recent Trends in Application of Electrical Resistivity Tomography for Landslide Study. In Renewable Energy and its Innovative Technologies; Springer: Singapore, 2018; pp. 195–204. [Google Scholar] [CrossRef]
- Falae, P.O.; Kanungo, D.P.; Chauhan, P.K.; Dash, R.K. Electrical resistivity tomography (ERT) based subsurface characterisation of Pakhi Landslide, Garhwal Himalayas, India. Environ. Earth Sci. 2019, 78, 430. [Google Scholar] [CrossRef]
- Huntley, D.; Bobrowsky, P.T.; Hendry, M.T.; Macciotta, R.; Elwood, D.E.; Sattler, K.; Best, M.E.; Chambers, J.E.; Meldrum, P.I. Application of multi-dimensional electrical resistivity tomography datasets to investigate a very slow-moving landslide near Ashcroft, British Columbia, Canada. Landslides 2019, 16, 1033–1042. [Google Scholar] [CrossRef]
- Tsai, W.; Chen, C.; Chiang, C.; Chen, P.; Kuo, C.; Wang, K.; Lin, M.; Chen, R. Electrical Resistivity Tomography (ERT) Monitoring for Landslides: Case Study in the Lantai Area, Yilan Taiping Mountain, Northeast Taiwan. Front. Earth Sci. 2021, 9, 737271. [Google Scholar] [CrossRef]
- Bichler, A.; Bobrowsky, P.; Best, M.; Douma, M.; Hunter, J.; Calvert, T.; Burns, R. Three-dimensional mapping of a landslide using a multi-geophysical approach: The Quesnel Forks landslide. Landslides 2004, 1, 29–40. [Google Scholar] [CrossRef]
- Diallo, M.C.; Cheng, L.; Rosa, E.M.; Gunther, C.; Chouteau, M. Integrated GPR and ERT data interpretation for bedrock identification at Cléricy, Québec, Canada. Eng. Geol. 2019, 248, 230–241. [Google Scholar] [CrossRef]
- Imani, P.; Tian, G.; Hadiloo, S.; El-Raouf, A.A. Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China. J. Appl. Geophys. 2021, 184, 104236. [Google Scholar] [CrossRef]
- Huntley, D.; Bobrowsky, P.T.; Hendry, M.T.; Macciotta, R.; Best, M.E. Multi-technique Geophysical Investigation of a Very Slow-moving Landslide near Ashcroft, British Columbia, Canada. J. Environ. Eng. Geophys. 2019, 24, 87–110. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, Y.; Shan, W. Landslide Investigations in the Northwest Section of the Lesser Khingan Range in China Using Combined HDR and GPR Methods. Bull. Eng. Geol. Environ. 2017, 75, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Malehmir, A.; Bastani, M.; Krawczyk, C.M.; Gurk, M.; Ismail, N.; Polom, U.; Persson, L. Geophysical assessment and geotechnical investigation of quick-clay landslides—A Swedish case study. Near Surf. Geophys. 2013, 11, 341–350. [Google Scholar] [CrossRef]
- Su, L.; Xu, X.; Geng, X.; Liang, S. An integrated geophysical approach for investigating hydro-geological characteristics of a debris landslide in the Wenchuan earthquake area. Eng. Geol. 2017, 219, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Chen, X.; Cheng, Q.; Binley, A. Evaluating the joint use of GPR and ERT on mapping shallow subsurface features of karst critical zone in southwest China. Vadose Zone J. 2021, 21, 20172. [Google Scholar] [CrossRef]
- Ebong, E.D.; George, A.M.; Ekwok, S.E.; Akpan, A.E.; Asfahani, J. 2D electrical resistivity inversion and ground penetrating radar investigation of near surface cave in New Netim area, southeastern Nigeria. Acta Geod. Geophys. 2021, 56, 765–780. [Google Scholar] [CrossRef]
- GFDRR; World Bank. Learning from Experience—Insights from China’s Progress in Disaster Risk Management; World Bank Press: Washington, DC, USA, 2020; p. 14. [Google Scholar]
- Bureau of Land and Resources of Wenzhou. Geological Environment Bulletin of Wenzhou. 2001–2020. Available online: http://zrzyj.wenzhou.gov.cn/col/col1341265/index.html (accessed on 30 September 2021).
- Zhang, C.Y.; Zhang, M.; Zhang, T.L.; Dai, Z.W.; Wang, L.Q. Influence of intrusive granite dyke on rainfall-induced soil slope failure. Bull. Eng. Geol. Environ. 2020, 79, 5259–5276. [Google Scholar] [CrossRef]
- GB/T50123-2019; Standard for Soil Test Method. China Planning Press: Beijing, China, 2019; pp. 29–43. (In Chinese)
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997; p. 378. [Google Scholar]
- Duc, D.M. Rainfall-triggered large landslides on 15 December 2005 in Van Canh District, Binh Dinh Province, Vietnam. Landslides 2012, 10, 219–230. [Google Scholar] [CrossRef] [Green Version]
- SL/T 291.1-2021; Code for Exploration of Water Resources and Hydropower Projects Part 1: Geophysical Exploration. China Water&Power Press: Beijing, China, 2021; pp. 6–10, 15–56, 143. (In Chinese)
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; Wiley & Sons: Chichester, UK, 2011; p. 806. [Google Scholar]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Loke, M.H. Least-squares inversion of large 3D resistivity data sets using auxiliary storage. In Proceedings of the 58th EAGE Conference and Exhibition, Amsterdam, The Netherlands, 3–7 June 1996. [Google Scholar] [CrossRef]
- Pellicer, X.M.; Gibson, P. Electrical resistivity and ground penetrating radar for the characterisation of the internal architecture of quaternary sediments in the midlands of Ireland. J. Appl. Geophys. 2011, 75, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Kaplanvural, İ.; Özkap, K.; Pekșen, E. Influence of water content investigation on GPR wave attenuation for early age concrete in natural air-drying condition. Constr. Build. Mater. 2021, 297, 123783. [Google Scholar] [CrossRef]
Soil Sample | Atterberg Limits (%) | Particle Size Distribution (mm, %) | ||||
---|---|---|---|---|---|---|
Liquid Limit (%) | Plastic Limit (%) | Clay (<0.005) | Silt (0.005–0.075) | Sand (0.075–2) | Gravel (>2) | |
ZK1 | 42.4 | 23.2 | 47 | 28 | 20 | 5 |
ZK2 | 39.7 | 20.8 | 41 | 30 | 22 | 7 |
ZK3 | 40.9 | 21.5 | 44 | 27 | 25 | 4 |
Rock Sample | Whole Rock (%) | Clay (%) | Resistivity (Ωm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Mica | Clay | I | K | C | Weathered | Fresh | |
ZK1 | 34 | 8 | 6 | 52 | 56 | 23 | 21 | 785 | 1432 |
ZK2 | 36 | 8 | 5 | 51 | 55 | 26 | 19 | 801 | 1365 |
ZK3 | 34 | 7 | 9 | 50 | 53 | 22 | 25 | 812 | 1309 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Yan, Y.; Zhao, G.; Zhou, Y.; Wang, Z. Combined ERT and GPR Data for Subsurface Characterization of Weathered Hilly Slope: A Case Study in Zhejiang Province, Southeast China. Sustainability 2022, 14, 7616. https://doi.org/10.3390/su14137616
Yan Y, Yan Y, Zhao G, Zhou Y, Wang Z. Combined ERT and GPR Data for Subsurface Characterization of Weathered Hilly Slope: A Case Study in Zhejiang Province, Southeast China. Sustainability. 2022; 14(13):7616. https://doi.org/10.3390/su14137616
Chicago/Turabian StyleYan, Yajing, Yongshuai Yan, Guizhang Zhao, Yanfang Zhou, and Zhoufeng Wang. 2022. "Combined ERT and GPR Data for Subsurface Characterization of Weathered Hilly Slope: A Case Study in Zhejiang Province, Southeast China" Sustainability 14, no. 13: 7616. https://doi.org/10.3390/su14137616
APA StyleYan, Y., Yan, Y., Zhao, G., Zhou, Y., & Wang, Z. (2022). Combined ERT and GPR Data for Subsurface Characterization of Weathered Hilly Slope: A Case Study in Zhejiang Province, Southeast China. Sustainability, 14(13), 7616. https://doi.org/10.3390/su14137616