Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience
Abstract
:1. Introduction
2. Characterizing Supplementary Water Sources to Surface Water
3. Technologies for Atmospheric Water Harvesting
3.1. Passive Fog Collectors
3.2. Refrigerated Atmospheric Water Harvesting
3.3. Desiccant-Based Atmospheric Water Harvesting
4. Link between Atmospheric Water Harvesting and Water Supply Resilience
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amorocho-Daza, H.; Cabrales, S.; Santos, R.; Saldarriaga, J. A New Multi-Criteria Decision Analysis Methodology for the Selection of New Water Supply Infrastructure. Water 2019, 11, 805. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water Security in a Changing Environment: Concept, Challenges and Solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Purvis, L.; Dinar, A. Are Intra- and Inter-Basin Water Transfers a Sustainable Policy Intervention for Addressing Water Scarcity? Water Secur. 2020, 9, 100058. [Google Scholar] [CrossRef]
- UN. The United Nations World Water Development Report 2021. Valuing Water 2021. Available online: https://www.unwater.org/publications/un-world-water-development-report-2021/ (accessed on 12 November 2021).
- Curry, J. Climate Change, Extreme Weather, and Electric System Reliability|Climate Etc. Available online: https://judithcurry.com/2021/06/27/climate-change-extreme-weather-and-electric-system-reliability/ (accessed on 6 October 2021).
- Sharifi, A.; Feng, C.; Choryński, A.; Choryński, C.; Pí Nskwar, I.; Graczyk, D.; Krzyżaniak, M. The Emergence of Different Local Resilience Arrangements Regarding Extreme Weather Events in Small Municipalities—A Case Study from the Wielkopolska Region, Poland. Sustainability 2022, 14, 2052. [Google Scholar] [CrossRef]
- Hallema, D.W.; Robinne, F.N.; Bladon, K.D. Reframing the Challenge of Global Wildfire Threats to Water Supplies. Earth’s Future 2018, 6, 772–776. [Google Scholar] [CrossRef]
- Becker, R. Today Wasn’t Day Zero in Cape Town, but the Water Crisis Isn’t over—The Verge. Available online: https://www.theverge.com/2018/5/11/17346276/day-zero-cape-town-south-africa-water-shortage-reservoirs-dams-climate-change (accessed on 25 September 2021).
- Xiang, Z.; Chen, X.; Lian, Y. Quantifying the Vulnerability of Surface Water Environment in Humid Areas Base on DEA Method. Water Resour. Manag. 2016, 30, 5101–5112. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. Clean Water 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Nguyen, D.C.H.; Nguyen, D.C.; Luu, T.T.; Le, T.C.; Kumar, P.; Dasgupta, R.; Nguyen, H.Q. Enhancing Water Supply Resili-ence in a Tropical Island via a Socio-Hydrological Approach: A Case Study in Con Dao Island, Vietnam. Water 2021, 13, 2573. [Google Scholar] [CrossRef]
- López Zavala, M.Á.; Prieto, M.J.C.; Rojas, C.A.R. Rainwater Harvesting as an Alternative for Water Supply in Regions with High Water Stress. Water Supply 2018, 18, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Lee, T.; Choi, B.G.; Hong, S. Rainwater Harvesting System for Contiunous Water Supply to the Regions with High Seasonal Rainfall Variations. Water Resour. Manag. 2015, 29, 961–972. [Google Scholar] [CrossRef]
- Jasim, S.Y.; Saththasivam, J.; Loganathan, K.; Ogunbiyi, O.O.; Sarp, S. Reuse of Treated Sewage Effluent (TSE) in Qatar. J. Water Process Eng. 2016, 11, 174–182. [Google Scholar] [CrossRef]
- Bracher, G.H.; Carissimi, E.; Wolff, D.B.; Graepin, C.; Hubner, A.P. Optimization of an Electrocoagulation-Flotation System for Domestic Wastewater Treatment and Reuse. Environ. Technol. 2021, 42, 2669–2679. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wang, S.W.; Kim, H.; Pan, S.Y.; Fan, C.; Lin, Y.J. Non-Conventional Water Reuse in Agriculture: A Circular Water Economy. Water Res. 2021, 199, 117193. [Google Scholar] [CrossRef]
- Choi, Y.; Ahn, J.; Ji, J.; Lee, E.; Yi, J. Effects of Inter-Basin Water Transfer Project Operation for Emergency Water Supply. Water Resour. Manag. 2020, 34, 2535–2548. [Google Scholar] [CrossRef]
- Chen, Z.; Pei, L. Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization. Sustainability 2018, 10, 1229. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Bai, T.; Huang, Q. Tradeoff Analysis between Economic and Ecological Benefits of the Inter Basin Water Transfer Project under Changing Environment and Its Operation Rules. J. Clean. Prod. 2020, 248, 119294. [Google Scholar] [CrossRef]
- Mu’azu, N.D.; Abubakar, I.R.; Blaisi, N.I. Public Acceptability of Treated Wastewater Reuse in Saudi Arabia: Implications for Water Management Policy. Sci. Total Environ. 2020, 721, 137659. [Google Scholar] [CrossRef]
- Parag, Y.; Opher, T. Bottled Drinking Water. 2011. Available online: https://www.eolss.net/sample-chapters/c03/E2-20A-03-09.pdf (accessed on 21 November 2021).
- Jain, B.; Singh, A.K.; Susan, M.d.A.B.H. The World Around Bottled Water. In Bottled and Packaged Water; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Wang, T.; Kim, J.; Whelton, A.J. Management of Plastic Bottle and Filter Waste during the Large-Scale Flint Michigan Lead Contaminated Drinking Water Incident. Resour. Conserv. Recycl. 2019, 140, 115–124. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological Cycle and Water Resources in a Changing World: A Review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Silva, L.C.R. From Air to Land: Understanding Water Resources through Plant-Based Multidisciplinary Research. Trends Plant Sci. 2015, 20, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Fathy, M.H.; Awad, M.M.; Zeidan, E.S.B.; Hamed, A.M. Solar Powered Foldable Apparatus for Extracting Water from Atmospheric Air. Renew. Energy 2020, 162, 1462–1489. [Google Scholar] [CrossRef]
- Wang, J.Y.; Liu, J.Y.; Wang, R.Z.; Wang, L.W. Experimental Investigation on Two Solar-Driven Sorption Based Devices to Extract Fresh Water from Atmosphere. Appl. Therm. Eng. 2017, 127, 1608–1616. [Google Scholar] [CrossRef]
- Bagheri, F. Performance Investigation of Atmospheric Water Harvesting Systems. Water Resour. Ind. 2018, 20, 23–28. [Google Scholar] [CrossRef]
- Chandler, D. Water, Water Everywhere Even in the Air|MIT News|Massachusetts Institute of Technology. Available online: https://news.mit.edu/2017/MOF-device-harvests-fresh-water-from-air-0414 (accessed on 6 October 2021).
- Huang, W.; Duan, W.; Chen, Y. Rapidly Declining Surface and Terrestrial Water Resources in Central Asia Driven by Socio-Economic and Climatic Changes. Sci. Total Environ. 2021, 784, 147193. [Google Scholar] [CrossRef] [PubMed]
- Slavikova, P.S.; Popescu, O. Why Is Water Considered a Renewable Resource?|Greentumble. Available online: https://greentumble.com/why-is-water-considered-a-renewable-resource/ (accessed on 6 October 2021).
- Prihatiningtyas, I.; van der Bruggen, B. Nanocomposite Pervaporation Membrane for Desalination. Chem. Eng. Res. Des. 2020, 164, 147–161. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S. mu The State of Desalination and Brine Production: A Global Outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Bundschuh, J.; Kaczmarczyk, M.; Ghaffour, N.; Tomaszewska, B. State-of-the-Art of Renewable Energy Sources Used in Water Desalination: Present and Future Prospects. Desalination 2021, 508, 115035. [Google Scholar] [CrossRef]
- Richards, S.; Rao, L.; Connelly, S.; Raj, A.; Raveendran, L.; Shirin, S.; Jamwal, P.; Helliwell, R. Sustainable Water Resources through Harvesting Rainwater and the Effectiveness of a Low-Cost Water Treatment. J. Environ. Manag. 2021, 286, 112223. [Google Scholar] [CrossRef]
- Monjaiang, P.; Limphitakphong, N.; Kanchanapiya, P.; Tantisattayakul, T.; Chavalparit, O. Assessing Potential of Rainwater Harvesting: Case Study Building in Bangkok. Int. J. Environ. Sci. Dev. 2018, 9, 222–225. [Google Scholar] [CrossRef] [Green Version]
- Bernard, B.; Joyfred, A. Contribution of Rainfall on Rooftop Rainwater Harvesting and Saving on the Slopes of Mt. Elgon, East Africa. Sci. World J. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Make It Rain: US States Embrace “Cloud Seeding” to Try to Conquer Drought | Environment | The Guardian. Available online: https://www.theguardian.com/environment/2021/mar/23/us-stated-cloud-seeding-weather-modification (accessed on 12 June 2022).
- Liu, Y.; Wang, M.; Webber, M.; Zhou, C.; Zhang, W. Alternative Water Supply Solutions: China’s South-to-North-Water-Diversion in Jinan. J. Environ. Manag. 2020, 276, 111337. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H. Inter-Basin Water Transfer Supply Chain Coordination with the Fairness Concern under Capacity Constraint and Random Precipitation. Mar. Econ. Manag. 2019, 2, 50–72. [Google Scholar] [CrossRef]
- Rinaudo, J.D.; Barraqué, B. Inter-Basin Transfers as a Supply Option: The End of an Era? Glob. Issues Water Policy 2015, 15, 175–200. [Google Scholar] [CrossRef]
- Shumilova, O.; Tockner, K.; Thieme, M.; Koska, A.; Zarfl, C. Global Water Transfer Megaprojects: A Potential Solution for the Water-Food-Energy Nexus? Front. Environ. Sci. 2018, 6, 150. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Snyder, S.A. Wastewater Treatment and Reuse: Past, Present, and Future. Water 2015, 7, 4887–4895. [Google Scholar] [CrossRef] [Green Version]
- Jerry, A.N. Water Supply System. Available online: https://www.britannica.com/technology/water-supply-system (accessed on 24 September 2021).
- Kılıç, Z. The Importance of Water and Conscious Use of Water. Int. J. Hydrol. 2020, 4, 239–241. [Google Scholar] [CrossRef]
- Halford, B. Can Stripping the Air of Its Moisture Quench the World’s Thirst? Chem. Eng. News 2018, 96, 27–30. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–233. [Google Scholar] [CrossRef]
- Montecinos, S.; Carvajal, D.; Cereceda, P.; Concha, M. Collection Efficiency of Fog Events. Atmos. Res. 2018, 209, 163–169. [Google Scholar] [CrossRef]
- Gido, B.; Friedler, E.; Broday, D.M. Assessment of Atmospheric Moisture Harvesting by Direct Cooling. Atmos. Res. 2016, 182, 156–162. [Google Scholar] [CrossRef]
- Hao, X.; Geng, S.; Yuan, L.; Luo, B. Study of Composite Scheme of Absorption/Desorption Method and Condensation Method for Extracting Water from Air. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 205, pp. 2069–2075. [Google Scholar]
- Dodson, L.L.; Bargach, J. Harvesting Fresh Water from Fog in Rural Morocco: Research and Impact Dar Si Hmad’s Fogwater Project in Aït Baamrane. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 107, pp. 186–193. [Google Scholar]
- Estrela, M.J.; Corell, D.; Valiente, J.A.; Azorin-Molina, C.; Chen, D. Spatio-Temporal Variability of Fog-Water Collection in the Eastern Iberian Peninsula: 2003–2012. Atmos. Res. 2019, 226, 87–101. [Google Scholar] [CrossRef]
- Cruzat, D.; Jerez-Hanckes, C. Electrostatic Fog Water Collection. J. Electrost. 2018, 96, 128–133. [Google Scholar] [CrossRef]
- Carvajal, D.; Silva-Llanca, L.; Larraguibel, D.; González, B. On the Aerodynamic Fog Collection Efficiency of Fog Water Collectors via Three-Dimensional Numerical Simulations. Atmos. Res. 2020, 245, 105123. [Google Scholar] [CrossRef]
- Fernandez, D.M.; Torregrosa, A.; Weiss-Penzias, P.S.; Zhang, B.J.; Sorensen, D.; Cohen, R.E.; McKinley, G.H.; Kleingartner, J.; Oliphant, A.; Bowman, M. Fog Water Collection Effectiveness: Mesh Intercomparisons. Aerosol Air Qual. Res. 2018, 18, 270–283. [Google Scholar] [CrossRef]
- Azeem, M.; Noman, M.T.; Wiener, J.; Petru, M.; Louda, P. Structural Design of Efficient Fog Collectors: A Review. Environ. Technol. Innov. 2020, 20, 101169. [Google Scholar] [CrossRef]
- Batisha, A.F. Feasibility and Sustainability of Fog Harvesting. Sustain. Water Qual. Ecol. 2015, 6, 1–10. [Google Scholar] [CrossRef]
- Knapczyk-Korczak, J.; Szewczyk, P.K.; Ura, D.P.; Berent, K.; Stachewicz, U. Hydrophilic Nanofibers in Fog Collectors for Increased Water Harvesting Efficiency. RSC Adv. 2020, 10, 22335–22342. [Google Scholar] [CrossRef]
- Knapczyk-Korczak, J.; Szewczyk, P.K.; Ura, D.P.; Bailey, R.J.; Bilotti, E.; Stachewicz, U. Improving Water Harvesting Efficiency of Fog Collectors with Electrospun Random and Aligned Polyvinylidene Fluoride (PVDF) Fibers; Elsevier: Amsterdam, The Netherlands, 2020; Volume 25. [Google Scholar]
- Ghosh, R.; Patra, C.; Singh, P.; Ganguly, R.; Sahu, R.P.; Zhitomirsky, I.; Puri, I.K. Influence of Metal Mesh Wettability on Fog Harvesting in Industrial Cooling Towers. Appl. Therm. Eng. 2020, 181, 115963. [Google Scholar] [CrossRef]
- Rivera, J. de D. Aerodynamic Collection Efficiency of Fog Water Collectors. Atmos. Res. 2011, 102, 335–342. [Google Scholar] [CrossRef]
- Regalado, C.M.; Ritter, A. The Design of an Optimal Fog Water Collector: A Theoretical Analysis. Atmos. Res. 2016, 178–179, 45–54. [Google Scholar] [CrossRef]
- Yan, X.; Jiang, Y. Numerical Evaluation of Thefog Collection Potential of Electrostatically Enhanced Fog Collector. Atmos. Res. 2021, 248, 105251. [Google Scholar] [CrossRef]
- Kogan, B.; Trahtman, A. The moisture from the air as water resource in arid region: Hopes, doubts and facts. J. Arid Environ. 2003, 53, 231–240. [Google Scholar] [CrossRef]
- Shi, W.; Anderson, M.J.; Tulkoff, J.B.; Kennedy, B.S.; Boreyko, J.B. Fog Harvesting with Harps. ACS Appl. Mater. Interfaces 2018, 10, e00191. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; van der Sloot, T.W.; Hart, B.J.; Kennedy, B.S.; Boreyko, J.B. Harps Enable Water Harvesting under Light Fog Conditions. Adv. Sustain. Syst. 2020, 4, 2000040. [Google Scholar] [CrossRef]
- Domen, J.K.; Stringfellow, W.T.; Camarillo, M.K.; Gulati, S. Fog Water as an Alternative and Sustainable Water Resource. Clean Technol. Environ. Policy 2013, 16, 235–249. [Google Scholar] [CrossRef]
- Colli, M.; Lanza, L.G.; Rasmussen, R.; Thériault, J.M. The Collection Efficiency of Shielded and Unshielded Precipitation Gauges. Part I: CFD Airflow Modeling. J. Hydrometeorol. 2016, 17, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Vanderschaeghe, H.; Rongé, J.; Martens, J.A. Energy Performance and Climate Dependency of Technologies for Fresh Water Production from Atmospheric Water Vapour. Environ. Sci. Water Res. Technol. 2020, 6, 2016–2034. [Google Scholar] [CrossRef]
- Seyam, S. Energy and Exergy Analysis of Refrigeration Systems. Low-Temp. Technol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Song, H.; Xu, X.; Shahsafi, A.; Xia, Z.; Ma, Z.; Kats, M.A.; Zhu, J.; Ooi, B.S.; Gan, Q.; et al. Accelerating Vapor Condensation with Daytime Radiative Cooling. In New Concepts in Solar and Thermal Radiation Conversion II; SPIE: Bellingham, WA, USA, 2019. [Google Scholar]
- Zhou, M.; Song, H.; Xu, X.; Shahsafi, A.; Qu, Y.; Xia, Z.; Ma, Z.; Kats, M.A.; Zhu, J.; Ooi, B.S.; et al. Vapor Condensation with Daytime Radiative Cooling. Proc. Natl. Acad. Sci. USA 2021, 118, e2019292118. [Google Scholar] [CrossRef]
- Guadarrama-Cetina, J.; Mongruel, A.; Medici, M.G.; Baquero, E.; Parker, A.R.; Milimouk-Melnytchuk, I.; González-Viñas, W.; Beysens, D. Dew Condensation on Desert Beetle Skin. Eur. Phys. J. E 2014, 37, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Haechler, I.; Park, H.; Schnoering, G.; Gulich, T.; Rohner, M.; Tripathy, A.; Milionis, A.; Schutzius, T.M.; Poulikakos, D. Exploiting Radiative Cooling for Uninterrupted 24-Hour Water Harvesting from the Atmosphere. Am. Assoc. Adv. Sci. 2021, 7, eabf3978. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Wang, R.; Zhang, Y.; Wang, J. Progress and Expectation of Atmospheric Water Harvesting. Joule 2018, 2, 1452–1475. [Google Scholar] [CrossRef] [Green Version]
- Raveesh, G.; Goyal, R.; Tyagi, S.K. Advances in Atmospheric Water Generation Technologies. Energy Convers. Manag. 2021, 239, 114226. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Qiu, J.; Cao, J.; Zou, Y.; Wang, S.; Jia, D.; Zhou, Y. A Facile Bioinspired Strategy for Accelerating Water Collection Enabled by Passive Radiative Cooling and Wettability Engineering. Mater. Des. 2021, 206, 109829. [Google Scholar] [CrossRef]
- Patel, J.; Patel, K.; Mudgal, A.; Panchal, H.; Sadasivuni, K.K. Experimental Investigations of Atmospheric Water Extraction Device under Different Climatic Conditions. Sustain. Energy Technol. Assess. 2020, 38, 100677. [Google Scholar] [CrossRef]
- Liu, S.; He, W.; Hu, D.; Lv, S.; Chen, D.; Wu, X.; Xu, F.; Li, S. Experimental Analysis of a Portable Atmospheric Water Generator by Thermoelectric Cooling Method. In Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 142, pp. 1609–1614. [Google Scholar]
- Cattani, L.; Magrini, A.; Cattani, P. Water Extraction from Air by Refrigeration- Experimental Results from an Integrated System Application. Appl. Sci. 2018, 8, 2262. [Google Scholar] [CrossRef] [Green Version]
- Sleiti, A.K.; Al-Khawaja, H.; Al-Khawaja, H.; Al-Ali, M. Harvesting Water from Air Using Adsorption Material—Prototype and Experimental Results. Sep. Purif. Technol. 2021, 257, 117921. [Google Scholar] [CrossRef]
- Zolfagharkhani, S.; Zamen, M.; Shahmardan, M.M. Thermodynamic Analysis and Evaluation of a Gas Compression Refrigeration Cycle for Fresh Water Production from Atmospheric Air. Energy Convers. Manag. 2018, 170, 97–107. [Google Scholar] [CrossRef]
- Magrini, A.; Cattani, L.; Cartesegna, M.; Magnani, L. Integrated Systems for Air Conditioning and Production of Drinking Water-Preliminary Considerations. In Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 75, pp. 1659–1665. [Google Scholar]
- Joshi, V.P.; Joshi, V.S.; Kothari, H.A.; Mahajan, M.D.; Chaudhari, M.B.; Sant, K.D. Experimental Investigations on a Portable Fresh Water Generator Using a Thermoelectric Cooler. In Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 109, pp. 161–166. [Google Scholar]
- Yao, Y.; Sun, Y.; Sun, D.; Sang, C.; Sun, M.; Shen, L.; Chen, H. Optimization Design and Experimental Study of Thermoelectric Dehumidifier. Appl. Therm. Eng. 2017, 123, 820–829. [Google Scholar] [CrossRef]
- Ibrahim, N.I.; Al-Farayedhi, A.A.; Gandhidasan, P. Experimental Investigation of a Vapor Compression System with Condenser Air Pre-Cooling by Condensate. Appl. Therm. Eng. 2017, 110, 1255–1263. [Google Scholar] [CrossRef]
- Bergmair, D.; Metz, S.J.; de Lange, H.C.; van Steenhoven, A.A. System Analysis of Membrane Facilitated Water Generation from Air Humidity. Desalination 2014, 339, 26–33. [Google Scholar] [CrossRef]
- Solís-Chaves, J.S.; Rocha-Osorio, C.M.; Murari, A.L.L.; Lira, V.M.; Sguarezi Filho, A.J. Extracting Potable Water from Humid Air plus Electric Wind Generation: A Possible Application for a Brazilian Prototype. Renew. Energy 2018, 121, 102–115. [Google Scholar] [CrossRef]
- Kim, H.; Rao, S.R.; LaPotin, A.; Lee, S.; Wang, E.N. Thermodynamic Analysis and Optimization of Adsorption-Based Atmospheric Water Harvesting. Int. J. Heat Mass Transf. 2020, 161, 120253. [Google Scholar] [CrossRef]
- Yilmaz, G.; Meng, F.L.; Lu, W.; Abed, J.; Peh, C.K.N.; Gao, M.; Sargent, E.H.; Ho, G.W. Applied Science Sand Engineering Autonomous Atmospheric Water Seeping MOF Matrix. Sci. Adv. 2020, 6, eabc8605. [Google Scholar] [CrossRef] [PubMed]
- Gado, M.G.; Nasser, M.; Hassan, A.A.; Hassan, H. Adsorption-based atmospheric water harvesting powered by solar energy: Comprehensive review on desiccant materials and systems. Process Saf. Environ. Prot. 2022, 160, 166–183. [Google Scholar] [CrossRef]
- Gordeeva, L.G.; Solovyeva, M.V.; Sapienza, A.; Aristov, Y.I. Potable Water Extraction from the Atmosphere: Potential of MOFs. Renew. Energy 2020, 148, 72–80. [Google Scholar] [CrossRef]
- Rambhad, K.S.; Walke, P.V.; Tidke, D.J. Solid Desiccant Dehumidification and Regeneration Methods—A Review. Renew. Sustain. Energy Rev. 2016, 59, 73–83. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Alsaedi, M.; Wu, M.; Shi, L.; Wang, P. Hybrid Hydrogel with High Water Vapor Harvesting Capacity for Deployable Solar-Driven Atmospheric Water Generator. Environ. Sci. Technol. 2018, 52, 11367–11377. [Google Scholar] [CrossRef]
- Kallenberger, P.A.; Fröba, M. Water Harvesting from Air with a Hygroscopic Salt in a Hydrogel–Derived Matrix. Commun. Chem. 2018, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fathieh, F.; Kalmutzki, M.J.; Kapustin, E.A.; Waller, P.J.; Yang, J.; Yaghi, O.M. Practical Water Production from Desert Air. Sci. Adv. 2018, 4, eaat3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, M.; Gluesenkamp, K.R.; Bigham, S. Energy-Efficient Sorption-Based Gas Clothes Dryer Systems. Energy Convers. Manag. 2021, 230, 113763. [Google Scholar] [CrossRef]
- Das, A.; Sharma, R.; Thirunavukkarasu, V.; Cheralathan, M. Desiccant-Based Water Production from Humid Air Using Concentrated Solar Energy. J. Therm. Anal. Calorim. 2021, 147, 2641–2651. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Alshammari, F.; Abdullah, A.S.; Elashmawy, M. Basin and Tubular Solar Distillation Systems: A Review. Process Saf. Environ. Prot. 2021, 150, 157–178. [Google Scholar] [CrossRef]
- Siegel, N.P.; Conser, B. A Techno-Economic Analysis of Solar-Driven Atmospheric Water Harvesting. J. Energy Resour. Technol. Trans. ASME 2021, 143, 090907. [Google Scholar] [CrossRef]
- Panchenko, V. Photovoltaic Solar Modules for Autonomous Heat and Power Supply. IOP Conf. Ser. Earth Environ. Sci. 2019, 317, 012002. [Google Scholar] [CrossRef]
- Panchenko, V.; Izmailov, A.; Kharchenko, V.; Lobachevskiy, Y. Photovoltaic Solar Modules of Different Types and Designs for Energy Supply. Int. J. Energy Optim. Eng. (IJEOE) 2020, 9, 74–94. [Google Scholar] [CrossRef]
- Renwick J Water and Climate: More Certainty, More Urgency|Newsroom. Available online: https://www.newsroom.co.nz/ideasroom/water-and-climate-more-certainty-more-urgency (accessed on 6 October 2021).
- Sixth Assessment Report—IPCC. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 23 September 2021).
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.A.; Feng, S.; Gilbertz, S. Water Crisis, Drought, and Climate Change in the Southeast United States. Land Use Policy 2019, 88, 104110. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Payus, C.; Huey, L.A.; Adnan, F.; Rimba, A.B.; Mohan, G.; Chapagain, S.K.; Roder, G.; Gasparatos, A.; Fukushi, K. Impact of Extreme Drought Climate on Water Security in North Borneo: Case Study of Sabah. Water 2020, 12, 1135. [Google Scholar] [CrossRef]
- Sohns, A.; Ford, J.D.; Riva, M.; Robinson, B.; Adamowski, J. Water Vulnerability in Arctic Households: A Literature-Based Analysis. Arctic 2019, 72, 300–316. [Google Scholar] [CrossRef]
- Yulsman, T. Drought in the Western United States Sets a 122-Year Record|Discover Magazine. Available online: https://www.discovermagazine.com/environment/drought-in-the-western-united-states-sets-a-122-year-record (accessed on 25 September 2021).
- Schmidt, N.; Elwazer, S.; Wojazer, B.; Braithwaite, S. Germany Flooding: Huge Rescue Effort in Rhineland-Palatinate as Deadly Floods also Hit Belgium, Netherlands, Luxembourg. Available online: https://www.msn.com/en-us/news/world/europe-floods-leave-dozens-dead/ar-AAMbDv9 (accessed on 25 September 2021).
- Lorenz, I.S.; Pelz, P.F. Optimal Resilience Enhancement of Water Distribution Systems. Water 2020, 12, 2602. [Google Scholar] [CrossRef]
- Rodina, L.; Chan, K.M.A. Expert Views on Strategies to Increase Water Resilience: Evidence from a Global Survey. Ecol. Soc. 2019, 24, 28. [Google Scholar] [CrossRef]
- Ward, J.; Wentworth, J. Water Supply Resilience and Climate Change. Available online: https://post.parliament.uk/research-briefings/post-pb-0040/ (accessed on 23 September 2021).
- Deng, Y. Building Disaster Resilience of Water Supply with Household Water Treatment. Water Environ. Res. 2021, 93, 1154–1156. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Escamilla, J.A.; Hernandez-Rangel, F.J.; Cruz-Alcántar, P.; Saavedra-Leos, M.Z.; Morales-Morales, J.; Figueroa-Diaz, R.A.; Valencia-Castillo, C.M.; Martinez-Lopez, F.J. A Feasibility Study on the Use of an Atmospheric Water Generator (AWG) for the Harvesting of Fresh Water in a Semi-Arid Region Affected by Mining Pollution. Appl. Sci. 2019, 9, 3278. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, C.M.; Garfí, M.; Milà, C.; Olmos, S.; Ferrer, I.; Tonne, C. Health and Environmental Impacts of Drinking Water Choices in Barcelona, Spain: A Modelling Study. Sci. Total Environ. 2021, 795, 148884. [Google Scholar] [CrossRef]
- Runze, D.; Qingfen, M.; Hui, L.; Gaoping, W.; Wei, Y.; Guangfu, C.; Yifan, C. Experimental Investigations on a Portable Atmospheric Water Generator for Maritime Rescue. J. Water Reuse Desalination 2020, 10, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.; Patel, J.; Raval, H. Potential Study of Atmospheric Water Generator (AWG) for Humid Climatic Conditions of Eastern States in India. In Smart Innovation, Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2020; Volume 161. [Google Scholar]
- Jawarneh, A.M.; AL-Oqla, F.M.; Jadoo, A.A. Transient Behavior of Non-Toxic Natural and Hybrid Multi-Layer Desiccant Composite Materials for Water Extraction from Atmospheric Air. Environ. Sci. Pollut. Res. 2021, 28, 45609–45618. [Google Scholar] [CrossRef]
- Kwan, T.H.; Shen, Y.; Hu, T.; Pei, G. The Fuel Cell and Atmospheric Water Generator Hybrid System for Supplying Grid-Independent Power and Freshwater. Appl. Energy 2020, 279, 115780. [Google Scholar] [CrossRef]
- Rhodes, C.J. Solving the Plastic Problem: From Cradle to Grave, to Reincarnation. Sci. Prog. 2019, 102, 218–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhbarizadeh, R.; Dobaradaran, S.; Amouei Torkmahalleh, M.; Saeedi, R.; Aibaghi, R.; Faraji Ghasemi, F. Suspended Fine Particulate Matter (PM2.5), Microplastics (MPs), and Polycyclic Aromatic Hydrocarbons (PAHs) in Air: Their Possible Relationships and Health Implications. Environ. Res. 2021, 192, 110339. [Google Scholar] [CrossRef] [PubMed]
- Mehlhaf, N. New Technology Creates Clean Drinking Water from Vapor in the Air | Kgw.Com. Available online: https://www.kgw.com/article/news/local/technology/clean-drinking-water-source-global/283-64710547-ceef-4c61-a4ef-a38268a55566 (accessed on 10 October 2021).
- Divon, M.M. UAE: Machines That Produce Water from Air Placed in Parks, Beaches in Abu Dhabi—News|Khaleej Times. Available online: https://www.khaleejtimes.com/news/uae-machines-that-produce-water-from-air-placed-in-parks-beaches-in-abu-dhabi (accessed on 25 September 2021).
- Zhou, X.; Zhang, P.; Zhao, F.; Yu, G. Super Moisture Absorbent Gels for Sustainable Agriculture via Atmospheric Water Irrigation. ACS Mater. Lett. 2020, 2, 1419–1422. [Google Scholar] [CrossRef]
- Chen, G.F.; Cai, D.S. Water Harvested from the Air Combined with Solar Power, Shade and Light Providing System: Conception of Water-Saving Irrigation. Procedia Environ. Sci. 2012, 13, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Lord, J.; Thomas, A.; Treat, N.; Forkin, M.; Bain, R.; Dulac, P.; Behroozi, C.H.; Mamutov, T.; Fongheiser, J.; Kobilansky, N.; et al. Global Potential for Harvesting Drinking Water from Air Using Solar Energy. Nature 2021, 598, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Fessehaye, M.; Abdul-Wahab, S.A.; Savage, M.J.; Kohler, T.; Gherezghiher, T.; Hurni, H. Fog-Water Collection for Community Use. Renew. Sustain. Energy Rev. 2014, 29, 52–62. [Google Scholar] [CrossRef]
- Larrain, H.; Velásquez, F.; Cereceda, P.; Espejo, R.; Pinto, R.; Osses, P.; Schemenauer, R.S. Fog Measurements at the Site “Falda Verde” North of Chañaral Compared with Other Fog Stations of Chile. Atmos. Res. 2002, 64, 273–284. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Bai, Z.; Zhu, J.; Gao, C.; Liu, X.; Wagaye, B.T.; Li, J.; Zhang, B.; Guo, J. Three-Dimensional Multilayer Vertical Filament Meshes for Enhancing Efficiency in Fog Water Harvesting. ACS Omega 2021, 6, 3910–3920. [Google Scholar] [CrossRef]
- Feng, J.; Zhong, L.; Guo, Z. Sprayed Hieratical Biomimetic Superhydrophilic-Superhydrophobic Surface for Efficient Fog Harvesting. Chem. Eng. J. 2020, 388, 124283. [Google Scholar] [CrossRef]
- Xiao, L.; Li, G.; Cai, Y.; Cui, Z.; Fang, J.; Cheng, H.; Zhang, Y.; Duan, T.; Zang, H.; Liu, H.; et al. Programmable 3D Printed Wheat Awn-like System for High-Performance Fogdrop Collection. Chem. Eng. J. 2020, 399, 125139. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, J.; Lian, Z.; Xu, J. Superhydrophilic Surfaces with Hierarchical Groove Structure for Efficient Fog Collection. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 628, 127241. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Wang, W.; Du, F.; Ren, L. A Bio-Inspired Superhydrophobic Surface for Fog Collection and Directional Water Transport. J. Alloy. Compd. 2020, 819, 152968. [Google Scholar] [CrossRef]
- Feng, R.; Song, F.; Xu, C.; Wang, X.L.; Wang, Y.Z. A Quadruple-Biomimetic Surface for Spontaneous and Efficient Fog Harvesting. Chem. Eng. J. 2021, 422, 130119. [Google Scholar] [CrossRef]
- Li, D.; Huang, J.; Han, G.; Guo, Z. A Facile Approach to Achieve Bioinspired PDMS@Fe3O4 Fabric with Switchable Wettability for Liquid Transport and Water Collection. J. Mater. Chem. A 2018, 6, 22741–22748. [Google Scholar] [CrossRef]
- Entezari, A.; Ejeian, M.; Wang, R. Modifying Water Sorption Properties with Polymer Additives for Atmospheric Water Harvesting Applications. Appl. Therm. Eng. 2019, 161, 114109. [Google Scholar] [CrossRef]
- Ejeian, M.; Entezari, A.; Wang, R.Z. Solar Powered Atmospheric Water Harvesting with Enhanced LiCl /MgSO4/ACF Composite. Appl. Therm. Eng. 2020, 176, 115396. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Wu, M.; Hong, S.; Wang, P. Improving Atmospheric Water Production Yield: Enabling Multiple Water Harvesting Cycles with Nano Sorbent. Nano Energy 2020, 67, 104255. [Google Scholar] [CrossRef]
- Xu, J.; Li, T.; Chao, J.; Wu, S.; Yan, T.; Li, W.; Cao, B.; Wang, R. Efficient Solar-Driven Water Harvesting from Arid Air with Metal–Organic Frameworks Modified by Hygroscopic Salt. Angew. Chem. - Int. Ed. 2020, 59, 5202–5210. [Google Scholar] [CrossRef]
- Gong, F.; Li, H.; Zhou, Q.; Wang, M.; Wang, W.; Lv, Y.; Xiao, R.; Papavassiliou, D.V. Agricultural Waste-Derived Moisture-Absorber for All-Weather Atmospheric Water Collection and Electricity Generation. Nano Energy 2020, 74, 104922. [Google Scholar] [CrossRef]
- Watergen|Water from Air. Available online: https://www.watergen.com/ (accessed on 24 September 2021).
- Pure & Sustainable Water—Drinkableair Technologies. Available online: https://drinkableair.tech/ (accessed on 24 September 2021).
- WEDEW—SkySource. Available online: https://www.skysource.org/wedew (accessed on 24 September 2021).
- Drupps|Atmospheric Water for All. Available online: https://drupps.com/ (accessed on 24 September 2021).
- AquaBoy Pro II. Available online: http://www.atmosphericwatersolutions.com/store/p1/AquaBoy_Pro_II.html (accessed on 8 October 2021).
- GEN-M|Water from Air Generator|Watergen USA. Available online: https://us.watergen.com/commercial/gen-m/ (accessed on 24 September 2021).
- Renewable Drinking Water|SOURCE Water. Available online: https://www.source.co/ (accessed on 12 October 2021).
- CloudFisher|Fognetalliance. Available online: https://www.fognetalliance.org/cloudfisher (accessed on 24 September 2021).
- Drupps Sells to Thailand—Drupps. Available online: https://news.cision.com/drupps/r/drupps-sells-to-thailand,c3418869 (accessed on 24 September 2021).
- Zhao, F.; Zhou, X.; Liu, Y.; Shi, Y.; Dai, Y.; Yu, G. Super Moisture-Absorbent Gels for All-Weather Atmospheric Water Harvesting. Adv. Mater. 2019, 31, 1806446. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, R.; Li, Y. Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience. Sustainability 2022, 14, 7783. https://doi.org/10.3390/su14137783
Zhang M, Liu R, Li Y. Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience. Sustainability. 2022; 14(13):7783. https://doi.org/10.3390/su14137783
Chicago/Turabian StyleZhang, Mengbo, Ranbin Liu, and Yaxuan Li. 2022. "Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience" Sustainability 14, no. 13: 7783. https://doi.org/10.3390/su14137783
APA StyleZhang, M., Liu, R., & Li, Y. (2022). Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience. Sustainability, 14(13), 7783. https://doi.org/10.3390/su14137783