Construction and Restoration of Landscape Ecological Network in Urumqi City Based on Landscape Ecological Risk Assessment
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Sources and Pre-Processing
3. Research Methods
3.1. Landscape Ecological Risk Assessment
3.1.1. Landscape Pattern Index Analysis
3.1.2. Landscape Risk Index Calculation
3.1.3. Spatial Statistical Analysis of Landscape Ecological Risk
3.2. Land Use Prediction Based on FLUS Model
3.3. Construction of Landscape Ecological Network
4. Results and Analysis
4.1. Spatial and Temporal Changes in Land Use
4.2. Future Land Use Forecast of Urumqi City Based on FLUS Model
4.3. Landscape Pattern Index Analysis
4.3.1. Analysis of Traditional Landscape Fragmentation and Diversity
4.3.2. Analysis of Future Landscape Fragmentation and Diversity
4.4. Ecological Network Construction Based on Landscape Ecological Risk
4.4.1. Temporal Change of Landscape Ecological Risk
4.4.2. Ecological Risk Centroid and Standard Deviation Ellipse Analysis
4.4.3. Construction of Landscape Ecological Network
5. Discussion
5.1. Spatial and Temporal Evolution of Ecological Risk Based on Land Use
5.2. Landscape Ecological Network Construction
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Fleskens, L.; Schild, J.; Moolenaar, S.; Wang, F.; Ritsema, C. Impacts of large-scale landscape restoration on spatio-temporal dynamics of ecosystem services in the Chinese Loess Plateau. Landsc. Ecol. 2022, 37, 329–346. [Google Scholar] [CrossRef]
- Barbati, A.; Corona, P.; Salvati, L.; Gasparella, L. Natural forest expansion into suburban countryside: Gained ground for a green infrastructure? Urban For. Urban Green. 2013, 12, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Chakraborty, S.; Goswami, S. Ecological footprint: An indicator of environmental sustainability of a surface coal mine. Environ. Dev. Sustain. 2017, 19, 807–824. [Google Scholar] [CrossRef]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Zong, M.; Hu, Y.; Liu, Y.; Wu, J. Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China. Sustainability 2015, 7, 8312–8334. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Cao, E.; Xie, Y.; Xu, C.; Li, H.; Yan, L. Integrating ecosystem services and landscape ecological risk into adaptive management: Insights from a western mountain-basin area, China. J. Environ. Manag. 2021, 281, 111817. [Google Scholar] [CrossRef]
- Xue, L.; Zhu, B.; Wu, Y.; Wei, G.; Liao, S.; Yang, C.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Sci. Total Environ. 2019, 653, 283–293. [Google Scholar] [CrossRef]
- Ai, J.; Yu, K.; Zeng, Z.; Yang, L.; Liu, Y.; Liu, J. Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecol. Indic. 2022, 137, 108771. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Xie, S.; Sun, R.; Cheng, X. Impacts of landscape multifunctionality change on landscape ecological risk in a megacity, China: A case study of Beijing. Ecol. Indic. 2020, 117, 106681. [Google Scholar] [CrossRef]
- Liu, S.L.; Cui, B.; Dong, S.; Yang, Z.; Yang, M.; Holt, K. Evaluating the influence of road networks on landscape and regional ecological risk—A case study in Lancang River Valley of Southwest China. Ecol. Eng. 2008, 34, 91–99. [Google Scholar] [CrossRef]
- Wei, S.; Pan, J.; Liu, X.J.H.; Journal, E.R.A.A.I. Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: Take Ganzhou District as an example. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 782–806. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Wang, K. Spatial-temporal patterns and influencing factors of ecological land degradation-restoration in Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2021, 794, 148671. [Google Scholar] [CrossRef]
- Chen, L.D.; Li, X.Z.; Fu, B.J.; Xiao, D.N.; Zhao, W.W. Development history and future research priorities of landscape ecology in China. Acta Ecol. Sin. 2014, 34, 3129–3141. [Google Scholar]
- Xu, W.; Wang, J.; Zhang, M.; Li, S. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plann. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Y.; Wang, P.; Lin, C. Construction of urban ecological security pattern and construction land development based on MCR Model. Trans. Chin. Soc. Agric. Eng. 2018, 34, 257–265. [Google Scholar]
- Cui, X.; Deng, W.; Yang, J.; Huang, W.; De Vries, W.T. Construction and optimization of ecological security patterns based on social equity perspective: A case study in Wuhan, China. Ecol. Indic. 2022, 136, 108714. [Google Scholar] [CrossRef]
- Ding, M.; Liu, W.; Xiao, L.; Zhong, F.; Lu, N.; Zhang, J.; Zhang, Z.; Xu, X.; Wang, K. Construction and optimization strategy of ecological security pattern in a rapidly urbanizing region: A case study in central-south China. Ecol. Indic. 2022, 136, 108604. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Ai, B.; Tao, H.; Wu, S.; Liu, T. Multi-agent systems for simulating and planning land use development. Acta Geogr. Sin. 2006, 61, 1101–1112. [Google Scholar]
- Wang, Z.; Zhang, K.; Ding, Z. Delineation of Urban Growth Boundary based on Improved FLUS Model Considering Dynamic Data. J. Geo-Inf. Sci. 2020, 22, 2326–2337. [Google Scholar]
- Zhao, X.; Peng, J.D.; Fan, Z.Y.; Yang, C.; Yang, H. Land use simulation and urban growth boundaries delineation in Wuhan metropolitan area based on FLUS model and “Dual Environment Evaluation”. J. Geo-Inf. Sci 2020, 22, 2212–2226. [Google Scholar]
- Zheng, J. Atmospheric environmental quality assessment for Urumqi with analytical hier-archy process model. J. Arid Land Resour. Environ. 2013, 27, 148–153. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinform. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Duan, H.; Zhou, K.; Alixir, K. Study on Response of Land Surface Temperature to Land Use and Land Cover Change Using Remote Sensing Data: A case on Urumqi, China. J. Desert Res. 2012, 32, 878–884. [Google Scholar]
- Sexton, J.O.; Urban, D.L.; Donohue, M.J.; Song, C. Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sens. Environ. 2013, 128, 246–258. [Google Scholar] [CrossRef]
- Janssen, L.L.; Vanderwel, F.J. Accuracy assessment of satellite derived land-cover data: A review. Photogramm. Eng. Remote Sens. 1994, 60, 410–432. [Google Scholar]
- Zhao, Y. Principles and Methods of Remote Sensing Application Analysis; Science Press: Beijing, China, 2003. [Google Scholar]
- Gao, J.; Gong, J.; Yang, J.; Li, J.; Li, S. Measuring Spatial Connectivity between patches of the heat source and sink (SCSS): A new index to quantify the heterogeneity impacts of landscape patterns on land surface temperature. Landsc. Urban Plan. 2022, 217, 104260. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.Q.; Chen, R. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol. Model. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Guo, S.; Wu, C.; Wang, Y.; Qiu, G.; Zhu, D.; Niu, Q.; Qin, L. Threshold effect of ecosystem services in response to climate change, human activity and landscape pattern in the upper and middle Yellow River of China. Ecol. Indic. 2022, 136, 108603. [Google Scholar] [CrossRef]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Lv, J.; Wang, J.; Wu, Y. Scenario simulation of ecological risk based on land use/cover change—A case study of the Jinghe county, China. Ecol. Indic. 2021, 131, 108176. [Google Scholar] [CrossRef]
- Xie, H.L. Regional Eco-Risk Analysis Based on Landscape Structure and Spatial Statistics. Acta Ecol. Sin. 2008, 10, 5020–5026. [Google Scholar]
- Zhang, X.; Shi, P.; Luo, J.; Liu, H.; Wei, W. The ecological risk assessment of arid inland river basin at the landscape scale: A case study on Shiyang River Basin. J. Nat. Resour. 2014, 29, 410–419. [Google Scholar]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Wang, J.; Bai, W.; Tian, G. Spatiotemporal characteristics of landscape ecological risks on the Tibetan Plateau. Resour. Sci. 2020, 42, 1739–1749. [Google Scholar] [CrossRef]
- Li, X.; Li, J. Analysis on regional landscape ecological risk based on GIS—A case study along the lower reaches of the Weihe River. Arid Zone Res. 2008, 25, 899–903. [Google Scholar]
- Peng, J.; Wang, Y.; Zhang, Y.; Wu, J.; Li, W.; Li, Y. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns. Ecol. Indic. 2010, 10, 217–223. [Google Scholar] [CrossRef]
- Gong, J.; Zhao, C.; Xie, Y.; Gao, Y. Ecological risk assessment and its management of Bailongjiang watershed, southern Gansu based on landscape pattern. Ying Yong Sheng Tai Xue Bao 2014, 25, 2041–2048. [Google Scholar]
- Li, S.; Zhao, Y.; Xiao, W.; Zhang, H. Spatial and temporal differentiation of landscape ecological quality in Chaohu river basin. Trans. Chin. Soc. Agric. Mach. 2020, 51, 203–213. [Google Scholar]
- Jin, X.; Jin, Y.; Mao, X. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Huang, X. Introduction to Geographic Information Systems (Revised Edition); Higher Education Press: Beijing, China, 2001. [Google Scholar]
- Zhang, X.; Dong, T.; Du, H. Optimization of landscape pattern in Fujiang River Basin based on landscape ecological risk assessment. Acta Ecol. Sin. 2021, 41, 3940–3951. [Google Scholar]
- Zuo, Z.; Guo, H.; Cheng, J.; Li, Y. How to achieve new progress in ecological civilization construction?–Based on cloud model and coupling coordination degree model. Ecol. Indic. 2021, 127, 107789. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Yao, Y.; Wang, J.; Yu, F.; Liu, J.; Li, J. Dynamics and climatic drivers of evergreen vegetation in the Qinling-Daba Mountains of China. Ecol. Indic. 2022, 136, 108625. [Google Scholar] [CrossRef]
- Gong, J.; Chen, Y.; Zhang, Z. Regional Land Use Change and Its Driving Forces Analysis Based on Multinomial Logistic Regression. Hubei Agric. Sci. 2016, 55, 4545–4550. [Google Scholar]
- Wang, X.W.; Wang, S.J.; Song, Y.; Feng, Z. Changchun land use spatio-temporal variation under the transportation elements’ driving. Econ. Geogr. 2015, 35, 155–161. [Google Scholar]
- Yang, Y.; Alimujiang, k. Relationship between regional transportation advantage and development of reginal economy in Xinjiang under the background of the national strategy of the Belt and Road. Arid Land Geogr. 2017, 40, 680–691. [Google Scholar]
- Shu, B.R.; Li, Y.L.; Qu, Y.; Mei, Y.; Yong, X. Urban Land Expansion Characteristics and Its Forces under Different Stages of Economic Development: A Case Study of Taicang City. Econ. Geogr. 2013, 33, 155–162. [Google Scholar]
- Guo, H.; Cai, Y.; Yang, Z.; Zhu, Z.; Ouyang, Y. Dynamic simulation of coastal wetlands for Guangdong-Hong Kong-Macao Greater Bay area based on multi-temporal Landsat images and FLUS model. Ecol. Indic. 2021, 125, 107559. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Alimujiang, K. Spatial-temporal change of Urumqi urban land use and land cover based on grid cell approach. Trans. Chin. Soc. Agric. Eng. 2018, 34, 210–216. [Google Scholar]
- Fan, C.; Wang, Z.; Tang, N. Construction of ecological network in downtown of Guiyang city based on morphologically spatial pattern and spatially principal component analysis. Acta Ecol. Sin. 2022, 42. [Google Scholar] [CrossRef]
- Zhang, Q.; Shao, Z.; Lin, J.; Meng, L. Transformation of land use function in Urumqi and its ecological service value from the perspective of“production-ecological-living space”. Environ. Poll. Contr. 2022, 44, 218–224, 229. [Google Scholar]
- Zhao, Y.; Alimujiang, K.; Gao, P.; Liang, H. Quantitative analysis of urban expansion and response factors in Urumqi City based on random forest algorithm and geographical detector. Arid Land Geogr. 2021, 44, 1729–1739. [Google Scholar]
- Zhao, H.; Alimujiang, K. Study on the relationship between thermal environment and underlying surface in the main urban area of Ürümqi. Sci. Surv. Mapp. 2021, 46, 179–187. [Google Scholar]
- Wang, J.; Wu, Z. Evolution on patterns and risk assessment of productive-living-ecological space in Urumqi city during 2000–2018. Bull. Soil Water Conserv. 2021, 41, 318–326, 335. [Google Scholar]
- Jin, M.; Xu, L.; Xu, Q. FLUS-Markov model-based multiscenario evaluation and prediction of the landscape ecological risk in Kezhou, South Xinjiang. Arid Zone Res. 2021, 38, 1793–1804. [Google Scholar]
- Yan, Y.; Yang, L.; Wang, W.; Fang, H.; Zhuang, Q. Analysis of spatial-temporal variation of landscape ecological risk and itsterrain gradient in Ili valley. Ecol. Sci. 2020, 39, 125–136. [Google Scholar]
- Wang, Y.; Ding, J.; Li, X.; Zhang, J.; Ma, G. Impact of LUCC on ecosystem services values in the Yili River Basin based on an intensity analysis model. Acta Ecol. Sin. 2022, 42, 3106–3118. [Google Scholar]
- Wu, Z.; Lei, S.; Yan, Q.; Bian, Z.; Lu, Q. Landscape ecological network construction controlling surface coal mining effect on landscape ecology: A case study of a mining city in semi-arid steppe. Ecol. Indic. 2021, 133, 108403. [Google Scholar] [CrossRef]
- Pan, N.; Du, Q.; Guan, Q.; Tan, Z.; Sun, Y.; Wang, Q. Ecological security assessment and pattern construction in arid and semi-arid areas: A case study of the Hexi Region, NW China. Ecol. Indic. 2022, 138, 108797. [Google Scholar] [CrossRef]
- Halimulati, A.; Alimujiang, K.; Zubaidan, A. Construction and optimization of Urumqi ecological network based on the morphological spatial pattern analysis and MCR model. Sci. Soil Water Conserv. 2021, 19, 106–114. [Google Scholar]
- Zhang, R.; Zhang, L.; Zhong, Q.; Zhang, Q.; Ji, Y.; Song, P.; Wang, Q. An optimized evaluation method of an urban ecological network: The case of the Minhang District of Shanghai. Urban For. Urban Green. 2021, 62, 127158. [Google Scholar] [CrossRef]
- Pei, Y.; Sun, Y.; Yu, Q.; Ma, J.; Wang, H.; Yue, D. Optimization of ecological spatial network in typical mining areas of the Yellow River Basin:Take Ordos and Yulin areas of the Yellow River Basin as examples. J. China Coal Soc. 2021, 46, 1541–1554. [Google Scholar]
- Du, T.F.; Qi, W.; Zhu, X.C.; Wang, X.; Zhang, Y.; Zhang, L. Precise identification and control method of natural resources space based on ecological security pattern in mountainous hilly area. J. Nat. Resourc. 2020, 35, 1190–1200. [Google Scholar]
- Su, C.; Dong, J.; Ma, Z.; Qiao, N.; Peng, J. Identifying priority areas for ecological protection and restoration of mountains-rivers-forests-farmlands-lakes-grasslands based on ecological security patterns: A case study in Huaying Mountain, Sichuan Province. Acta Ecol. Sin. 2019, 39, 8948–8956. [Google Scholar]
- Peng, J.; Li, H.; Liu, Y.; Hu, Y.; Yang, Y. Identification and optimization of ecological security pattern in Xiong’an New Area. Acta Geogr. Sin. 2018, 73, 701–710. [Google Scholar]
Year | Image Selection Time (Year-Month-Day) | Strip Number (Column/Row) | Sensor | Resolution/m |
---|---|---|---|---|
2000 | 2000-09-02 | 142/30 | Landsat 5 TM | 30 |
2000-09-12 | 143/29 | |||
2000-08-08 | 143/30 | |||
2010 | 2010-08-13 | 142/30 | Landsat 5 TM | 30 |
2010-08-20 | 143/29 | |||
2010-08-20 | 143/30 | |||
2020 | 2020-08-24 | 142/30 | Landsat 8 OLI | 30 |
2020-07-14 | 143/29 | |||
2020-09-16 | 143/30 |
Figure | Secondary Classification | |
---|---|---|
Number | Type | |
Built-up Land | 11 | Cities and towns |
12 | Industrial and mining | |
13 | Transport land | |
14 | Residential | |
Green Land | 21 | Woodland |
22 | Grassland | |
23 | Arable land | |
Water Bodies | 31 | Reservoirs |
32 | Lakes | |
Bare Ground | 41 | Mountainous areas without vegetation cover |
42 | Unused land |
Index Name | Abbreviations | Index Classification | Application Scale | Index Description |
---|---|---|---|---|
Number of patches | NP | Area/Density/Edge Index | Class metrics/landscape metrics | Summary and statistical distribution of individual patch features at the patch-type and landscape level |
Largest patch index | LPI | Class metrics/landscape metrics | ||
Shannon diversity index | SHDI | Diversity Index | landscape metrics | Reflects landscape heterogeneity and is especially sensitive to the unbalanced distribution of patchwork types in the landscape |
Landscape division index | DIVISION | Aggregation/Dispersion Index | Class metrics/landscape metrics | Spatial relationships between patch types and patches or patch types at the landscape level |
Aggregation index | AI | Class metrics/landscape metrics |
Exponential | Symbol | Formula |
---|---|---|
Landscape Fragmentation | where ni is the number of patches of landscape type i, and Ai is the area of landscape type i. | |
Landscape Separation | . In the formula, li is the distance index of landscape type i, and A is the total area of landscape type i. | |
Landscape Fractal Dimension Index | where Pi is the perimeter of landscape type i. | |
Landscape Disturbance | . In the formula, a, b, c are the weights of the corresponding landscape indices, and a + b + c = 1. | |
Landscape Vulnerability | After normalization, the vulnerability index of each landscape type is obtained. | |
Landscape Loss |
Table | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area/km2 | Percentage/% | Area/km2 | Percentage/% | Area/km2 | Percentage/% | |
Built-up Land | 241.43 | 1.70 | 542.73 | 3.82 | 877.86 | 6.18 |
Green Land | 5795.47 | 40.82 | 4818.91 | 33.94 | 5446.31 | 38.36 |
Bare ground | 7728.13 | 54.43 | 8608.12 | 60.63 | 7568.68 | 53.31 |
Water bodies | 433.13 | 3.05 | 228.4 | 1.61 | 305.31 | 2.15 |
Total | 14,198.16 | 100 | 14,198.16 | 100 | 14,198.16 | 100 |
2000 Principal Component Score Load Matrix | ||||||
---|---|---|---|---|---|---|
Indicator | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
DEM | 0.296 | 0 | 0.578 | 0.697 | 0.168 | 0.248 |
Slope | 0.233 | −0.666 | 0.185 | −0.434 | 0.363 | 0.384 |
NDVI | 0.519 | −0.454 | 0 | 0.106 | −0.482 | −0.531 |
Land Using | 0.54 | 0.371 | −0.133 | −0.156 | 0.618 | −0.383 |
Annual mean temperature | 0.491 | 0.153 | −0.562 | 0 | −0.251 | 0.589 |
Average annual precipitation | 0.236 | 0.433 | 0.545 | −0.529 | −0.403 | 0.129 |
Characteristic value | 1.392 | 0.146 | 1.042 | 0.941 | 0.65 | 0.597 |
Cumulative contribution rate | 0.323 | 0.542 | 0.723 | 0.87 | 0.941 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Kasimu, A.; Liang, H.; Reheman, R. Construction and Restoration of Landscape Ecological Network in Urumqi City Based on Landscape Ecological Risk Assessment. Sustainability 2022, 14, 8154. https://doi.org/10.3390/su14138154
Zhao Y, Kasimu A, Liang H, Reheman R. Construction and Restoration of Landscape Ecological Network in Urumqi City Based on Landscape Ecological Risk Assessment. Sustainability. 2022; 14(13):8154. https://doi.org/10.3390/su14138154
Chicago/Turabian StyleZhao, Yongyu, Alimujiang Kasimu, Hongwu Liang, and Rukeya Reheman. 2022. "Construction and Restoration of Landscape Ecological Network in Urumqi City Based on Landscape Ecological Risk Assessment" Sustainability 14, no. 13: 8154. https://doi.org/10.3390/su14138154