Core Elements Affecting the Circularity of Materials
Abstract
:1. Introduction
2. The Evidence of Material Circularity in Linear and Circular Models
- (1)
- Closing of resource loops: A circularity of materials occurs when processing closes the loop between use and production.
- (2)
- Slowing stock loops: t. y. service loops adapt the design of services and products and extend the life of products when goods are repaired or recycled, thus slowing down resource flow. These several approaches differ from the last one aiming to reduce the flows of materials.
- (3)
- Minimization of resource flows (or the increase of the efficiency of resources) per product loop aims to increase material productivity, improve asset utilization and use fewer materials.
3. Material Circularity under the Concepts of Closed and Open Loops
4. Recycling Activity Is Preferred for Material Circularity
5. Elements Affecting Circularity
- product sustainability, reuse, improvement and repair, removal of hazardous chemicals from products, energy and resource efficiency;
- increasing the number of processed products, ensuring their operation and safety;
- creating conditions for re-production and quality processing;
- reducing carbon footprints in the environment;
- restriction of single-time use products and prevention of premature aging;
- introduction of a ban on the destruction of unsold durable goods;
- maintaining the ownership or responsibility of manufacturers for the operation of the product throughout its life cycle;
- product digitization, involving such solutions as digital passports, marking, and watermarks.
6. Materials
- Manufacturers who select which materials to use in commodities and to what extent, what production methods should be used;
- Consumers who use sorting and product reuse practices;
- Waste collection service providers sort the waste and identify circular materials.
- (1)
- Trade-in recyclable raw materials;
- (2)
- Patents focusing on recycling and secondary raw materials;
- (3)
- Private investments, jobs, and gross value added related to circular activity sectors;
- (4)
- The recycling rate of e-waste;
- (5)
- The recycling rate of municipal waste;
- (6)
- Other recycling and general waste generation indicators.
7. Methods
- Transforming the time series to help determine the dependent variable;
- The dynamic relationships with the regressors is defined;
- The model is constructed and validated by using Durbin-Watson statistics.
8. Results
9. Discussion
10. Conclusions
10.1. Practical Implications
10.2. Limitation of Research
10.3. Future Direction of Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sayadi-Gmada, S.; Rodríguez-Pleguezuelo, C.R.; Rojas-Serrano, F.; Parra-López, C.; Parra-Gómez, S.; García-García, M.d.C.; García-Collado, R.; Lorbach-Kelle, M.B.; Manrique-Gordillo, T. Inorganic Waste Management in Greenhouse Agriculture in Almeria (SE Spain): Towards a Circular System in Intensive Horticultural Production. Sustainability 2019, 11, 3782. [Google Scholar] [CrossRef] [Green Version]
- Vasilescu, L.; Tudor, S. Greener Smes-Initatives for Competitivness and Efficiency. Manag. Mark. J. 2015, 13, 359–366. [Google Scholar]
- Colasante, A.; D’Adamo, I.; Morone, P.; Rosa, P. Assessing the circularity performance in a European cross-country comparison. Environ. Impact Assess. Rev. 2022, 93, 106730. [Google Scholar] [CrossRef]
- Allwood, J.M. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies. In Handbook of Recycling; Elsevier: Amsterdam, The Netherlands, 2014; pp. 445–477. [Google Scholar]
- Wijkman, A.; Skånberg, K. The Circular Ecsonomy and Benefits for Society; Club of Rome: Zurich, Switzerland, 2015. [Google Scholar]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Schröder, P.; Lemille, A.; Desmond, P. Making the circular economy work for human development. Resour. Conserv. Recycl. 2020, 156, 104686. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects. 2019. Available online: https://population.un.org/wpp/Graphs/Probabilitic/POP/TOT/900 (accessed on 25 March 2022).
- Ayres, R.U. Sustainability economics: Where do we stand? Ecol. Econ. 2008, 67, 281–310. [Google Scholar] [CrossRef]
- Sariatli, F. Linear Economy Versus Circular Economy: A Comparative and Analyzer Study for Optimization of Economy for Sustainability. Visegrad J. Bioecon. Sustain. Dev. 2017, 6, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Velenturf, A.P.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Rodríguez, C.; Florido, C.; Jacob, M. Circular Economy Contributions to the Tourism Sector: A Critical Literature Review. Sustainability 2020, 12, 4338. [Google Scholar] [CrossRef]
- McDonough, W.; Braungart, M. Towards a sustaining architecture for the 21st century: The promise of cradle-to-cradle design. Ind. Environ. 2003, 26, 13–16. [Google Scholar]
- Mentink, B. Circular Business Model Innovation; Technical University Delft: Dutch, The Netherlands, 2014. [Google Scholar]
- Di Maio, F.; Rem, P.C. A Robust Indicator for Promoting Circular Economy through Recycling. J. Environ. Prot. 2015, 06, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, P.B. From the Linear Economy to the Circular Economy: A Basic Model. Finanz-Archiv 2018, 74, 71–87. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; de Pauw, I.; Bakker, C.; van der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Mostaghel, R.; Chirumalla, K. Role of customers in circular business models. J. Bus. Res. 2021, 127, 35–44. [Google Scholar] [CrossRef]
- Elisha, O.D. Moving beyond take-make-dispose to take-make-use for sustainable economy. Int. J. Sci. Res. Educ. 2020, 13, 497–516. [Google Scholar]
- Zucchella, A.; Previtali, P. Circular business models for sustainable development: A “waste is food” restorative ecosystem. Bus. Strat. Environ. 2018, 28, 274–285. [Google Scholar] [CrossRef]
- Moreno, M.; De los Rios, C.; Rowe, Z.; Charnley, F. A Conceptual Framework for Circular Design. Sustainability 2016, 8, 937. [Google Scholar] [CrossRef] [Green Version]
- Oghazi, P.; Mostaghel, R. Circular Business Model Challenges and Lessons Learned—An Industrial Perspective. Sustainability 2018, 10, 739. [Google Scholar] [CrossRef] [Green Version]
- Michelini, G.; Moraes, R.N.; Cunha, R.N.; Costa, J.M.; Ometto, A.R. From Linear to Circular Economy: PSS Conducting the Transition. Procedia CIRP 2017, 64, 2–6. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Europe Innova. Guide to Resource Efficiency in Manufacturing; Europe Innova: Rome, Italy, 2012. [Google Scholar]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and Its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Ritala, P.; Huotari, P. The Circular Economy: Exploring the Introduction of the Concept among S & P 500 Firms. J. Ind. Ecol. 2017, 21, 487–490. [Google Scholar] [CrossRef]
- Stahel, W.R. The utilization focused service economy: Resource efficiency. In The Greening of Industrial Ecosystems; Allenby, B.R., Richards, D.J., Eds.; National Academy Press: Washington, DC, USA, 1994; pp. 178–190. [Google Scholar]
- Stahel, W.R. The Performance Economy; Palgrave Macmillan Hampshire: Hampshire, UK, 2010. [Google Scholar]
- Morseletto, P. Targets for a circular economy. Resour. Conserv. Recycl. 2019, 153, 104553. [Google Scholar] [CrossRef]
- Worrell, E.; Reuter, M.A. (Eds.) Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists; Elsevier: Newnes, Australia, 2014. [Google Scholar]
- Migliore, M. Circular economy and upcycling of waste and pre-consumer scraps in construction sector. The role of information to facilitate the exchange of resources through a virtual marketplace. Environ. Eng. Manag. J. 2019, 18, 2297–2303. [Google Scholar]
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Triguero, Á.; Cuerva, M.C.; Sáez-Martínez, F.J. Closing the loop through eco-innovation by European firms: Circular economy for sustainable development. Bus. Strategy Environ. 2022. [Google Scholar] [CrossRef]
- Prendeville, S.; Sanders, C.; Sherry, J.; Costa, F. Circular Economy: Is It Enough. EcoDesign Centre, Wales. 2014. Available online: http://www.edcw.org/en/resources/circulareconomy-it-enough (accessed on 21 July 2014).
- Haupt, M.; Vadenbo, C.; Hellweg, S. Do We Have the Right Performance Indicators for the Circular Economy? Insight into the Swiss Waste Management System. J. Ind. Ecol. 2016, 21, 615–627. [Google Scholar] [CrossRef]
- Brydges, T. Closing the loop on take, make, waste: Investigating circular economy practices in the Swedish fashion industry. J. Clean. Prod. 2021, 293, 126245. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Morioka, S.; de Carvalho, M.M.; Evans, S. Business models and supply chains for the circular economy. J. Clean. Prod. 2018, 190, 712–721. [Google Scholar] [CrossRef]
- Jørgensen, M.S.; Remmen, A. A Methodological Approach to Development of Circular Economy Options in Businesses. Procedia CIRP 2018, 69, 816–821. [Google Scholar] [CrossRef]
- Ellen Mac Arthur Foundation. Toward the Circular Economy—Accelerating the Scale-Up across Global Supply Chains; Ellen Mac Arthur Foundation: Cowes, UK, 2014. [Google Scholar]
- Suárez-Eiroa, B.; Fernández, E.; Méndez-Martínez, G.; Soto-Oñate, D. Operational principles of circular economy for sustainable development: Linking theory and practice. J. Clean. Prod. 2019, 214, 952–961. [Google Scholar] [CrossRef]
- Akhimien, N.G.; Latif, E.; Hou, S.S. Application of circular economy principles in buildings: A systematic review. J. Build. Eng. 2021, 38, 102041. [Google Scholar] [CrossRef]
- Shekarian, E. A review of factors affecting closed-loop supply chain models. J. Clean. Prod. 2019, 253, 119823. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C. Sustainable manufacturing in a closed-loop supply chain considering emission reduction and remanufacturing. Resour. Conserv. Recycl. 2018, 131, 297–304. [Google Scholar] [CrossRef]
- European Commition. First Circular Economy Action Plan. 2015. Available online: https://environment.ec.europa.eu/topics/circular-economy/first-circular-economy-action-plan_en (accessed on 11 April 2022).
- Tomić, T.; Schneider, D.R. The role of energy from waste in circular economy and closing the loop concept—Energy analysis approach. Renew. Sustain. Energy Rev. 2018, 98, 268–287. [Google Scholar] [CrossRef]
- Slowak, A.P.; Regenfelder, M. Creating value, not wasting resources: Sustainable innovation strategies. Innov. Eur. J. Soc. Sci. Res. 2017, 30, 455–475. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, T.; Kronenberg, J. Management of material and product circularity potential as an approach to operationalise circular economy. Prog. Ind. Ecol. Int. J. 2020, 14, 30. [Google Scholar] [CrossRef]
- Niero, M.; Hauschild, M.Z. Closing the Loop for Packaging: Finding a Framework to Operationalize Circular Economy Strategies. Procedia CIRP 2017, 61, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Hazen, B.T.; Russo, I.; Confente, I.; Pellathy, D. Supply chain management for circular economy: Conceptual framework and research agenda. Int. J. Logist. Manag. 2020, 32, 510–537. [Google Scholar] [CrossRef]
- Huysman, S.; Debaveye, S.; Schaubroeck, T.; De Meester, S.; Ardente, F.; Mathieux, F.; Dewulf, J. The recycla-bility benefit rate of closed-loop and open-loop systems: A case study on plastic recycling in Flanders. Resour. Conserv. Recycl. 2015, 101, 53–60. [Google Scholar] [CrossRef]
- Nakatani, J. Life Cycle Inventory Analysis of Recycling: Mathematical and Graphical Frameworks. Sustainability 2014, 6, 6158–6169. [Google Scholar] [CrossRef] [Green Version]
- Souza, G.C. Closed-loop supply chains: A critical review, and future research. Decis. Sci. 2013, 44, 7–38. [Google Scholar] [CrossRef]
- Amin, S.H.; Zhang, G. A proposed mathematical model for closed-loop network configuration based on product life cycle. Int. J. Adv. Manuf. Technol. 2011, 58, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Geyer, R.; Kuczenski, B.; Zink, T.; Henderson, A. Common Misconceptions about Recycling. J. Ind. Ecol. 2015, 20, 1010–1017. [Google Scholar] [CrossRef]
- Camilleri, M.A. The circular economy’s closed loop and product service systems for sustainable development: A review and appraisal. Sustain. Dev. 2019, 27, 530–536. [Google Scholar] [CrossRef]
- Niero, M.; Olsen, S.I. Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resour. Conserv. Recycl. 2016, 114, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Lingaitienė, O.; Burinskienė, A. Core Elements towards Circularity: Evidence from the European Countries. Sustainability 2021, 13, 8742. [Google Scholar] [CrossRef]
- Okorie, O.; Salonitis, K.; Charnley, F.; Moreno, M.; Turner, C.; Tiwari, A. Digitisation and the Circular Economy: A Review of Current Research and Future Trends. Energies 2018, 11, 3009. [Google Scholar] [CrossRef] [Green Version]
- Foster, G. Circular economy strategies for adaptive reuse of cultural heritage buildings to reduce environmental impacts. Resour. Conserv. Recycl. 2019, 152, 104507. [Google Scholar] [CrossRef]
- Chandrasekaran, S.R.; Avasarala, S.; Murali, D.; Rajagopalan, N.; Sharma, B.K. Materials and Energy Recovery from E-Waste Plastics. ACS Sustain. Chem. Eng. 2018, 6, 4594–4602. [Google Scholar] [CrossRef]
- Menikpura, S.N.M.; Gheewala, S.H.; Bonnet, S.; Chiemchaisri, C. Evaluation of the Effect of Recycling on Sustainability of Municipal Solid Waste Management in Thailand. Waste Biomass Valorization 2012, 4, 237–257. [Google Scholar] [CrossRef]
- Moraga, G.; Huysveld, S.; Mathieux, F.; Blengini, G.A.; Alaerts, L.; Van Acker, K.; de Meester, S.; Dewulf, J. Circular economy indicators: What do they measure? Resour. Conserv. Recycl. 2019, 146, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Fellner, J.; Lederer, J. Recycling rate—The only practical metric for a circular economy? Waste Manag. 2020, 113, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Ragossnig, A.M.; Schneider, D.R. Circular economy, recycling and end-of-waste. Waste Manag. Res. 2019, 37, 109–111. [Google Scholar] [CrossRef] [Green Version]
- Turunen, T. The missing link: Regulating waste-based materials in the circular economy. In Handbook of the Circular Economy; Edward Elgar Publishing: Northampton, MA, USA, 2020. [Google Scholar]
- Lucchetti, M.G.; Paolotti, L.; Rocchi, L.; Boggia, A. The Role of Environmental Evaluation within Circular Economy: An Application of Life Cycle Assessment (LCA) Method in the Detergents Sector. Environ. Clim. Technol. 2019, 23, 238–257. [Google Scholar] [CrossRef] [Green Version]
- Hjelmar, O.; van der Sloot, H.A.; Comans, R.N.; Wahlström, M. EoW criteria for waste-derived aggregates. Waste Biomass Valorization 2013, 4, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Zorpas, A.A. Sustainable waste management through end-of-waste criteria development. Environ. Sci. Pollut. Res. 2015, 23, 7376–7389. [Google Scholar] [CrossRef]
- Villanueva, A.; Eder, P. End-of-Waste Criteria for Waste Plastic for Conversion; Institute for Prospective Technological Studies: Seville, Spain, 2014. [Google Scholar]
- den Hollander, M.C.; Bakker, C.A.; Hultink, E.J. Product Design in a Circular Economy: Development of a Typology of Key Concepts and Terms. J. Ind. Ecol. 2017, 21, 517–525. [Google Scholar] [CrossRef]
- Jawahir, I.; Bradley, R. Technological Elements of Circular Economy and the Principles of 6R-Based Closed-loop Material Flow in Sustainable Manufacturing. Procedia CIRP 2016, 40, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Liu, Z.; Bian, Y. Match Circular Economy and Urban Sustainability: Re-investigating Circular Economy Under Sustainable Development Goals (SDGs). Circ. Econ. Sustain. 2021, 1, 243–256. [Google Scholar] [CrossRef]
- Ciulli, F.; Kolk, A.; Boe-Lillegraven, S. Circularity Brokers: Digital Platform Organizations and Waste Recovery in Food Supply Chains. J. Bus. Ethics 2019, 167, 299–331. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, M.K.; Damgaard, A.; Boldrin, A.; Astrup, T.F. Quality Assessment and Circularity Potential of Recovery Systems for Household Plastic Waste. J. Ind. Ecol. 2018, 23, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Wijewickrama, M.; Rameezdeen, R.; Chileshe, N. Information brokerage for circular economy in the construction industry: A systematic literature review. J. Clean. Prod. 2021, 313, 127938. [Google Scholar] [CrossRef]
- Giugliano, M.; Grosso, M.; Rigamonti, L. Energy recovery from municipal waste: A case study for a middle-sized Italian district. Waste Manag. 2008, 28, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-F.; Wu, C.-H.; Ho, H.-M. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials. Waste Manag. 2006, 26, 970–978. [Google Scholar] [CrossRef]
- Mian, M.; Zeng, X.; Nasry, A.A.N.B.; Al-Hamadani, S.M.Z.F. Municipal solid waste management in China: A comparative analysis. J. Mater. Cycles Waste Manag. 2016, 19, 1127–1135. [Google Scholar] [CrossRef]
- Hysa, E.; Kruja, A.; Rehman, N.U.; Laurenti, R. Circular Economy Innovation and Environmental Sustainability Impact on Economic Growth: An Integrated Model for Sustainable Development. Sustainability 2020, 12, 4831. [Google Scholar] [CrossRef]
- Belaud, J.-P.; Adoue, C.; Vialle, C.; Chorro, A.; Sablayrolles, C. A circular economy and industrial ecology toolbox for developing an eco-industrial park: Perspectives from French policy. Clean Technol. Environ. Policy 2019, 21, 967–985. [Google Scholar] [CrossRef] [Green Version]
- Trica, C.L.; Banacu, C.S.; Busu, M. Environmental Factors and Sustainability of the Circular Economy Model at the European Union Level. Sustainability 2019, 11, 1114. [Google Scholar] [CrossRef] [Green Version]
- Smol, M.; Kulczycka, J.; Avdiushchenko, A. Circular economy indicators in relation to eco-innovation in European regions. Clean Technol. Environ. Policy 2017, 19, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Khatiwada, D.; Golzar, F.; Mainali, B.; Devendran, A.A. Circularity in the Management of Municipal Solid Waste—A Systematic Review. Environ. Clim. Technol. 2021, 25, 491–507. [Google Scholar] [CrossRef]
- Zhang, A. Circularity and Enclosures: Metabolizing Waste with the Black Soldier Fly. Cult. Anthr. 2020, 35, 74–103. [Google Scholar] [CrossRef]
- Cobo, S.; Dominguez-Ramos, A.; Irabien, A. Minimization of Resource Consumption and Carbon Footprint of a Circular Organic Waste Valorization System. ACS Sustain. Chem. Eng. 2018, 6, 3493–3501. [Google Scholar] [CrossRef]
- Aceleanu, M.I.; Serban, A.C.; Suciu, M.-C.; Bitoiu, T.I. The Management of Municipal Waste through Circular Economy in the Context of Smart Cities Development. IEEE Access 2019, 7, 133602–133614. [Google Scholar] [CrossRef]
- Fletcher, C.; Clair, R.S.; Sharmina, M. A framework for assessing the circularity and technological maturity of plastic waste management strategies in hospitals. J. Clean. Prod. 2021, 306, 127169. [Google Scholar] [CrossRef]
- Manfredi, S.; Cristobal, J.; de Matos, C.T.; Giavini, M.; Vasta, A.; Sala, S.; Tuomisto, H. Improving Sustainability and Circularity of European Food Waste Management with a Life Cycle Approach; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Ottoni, M.; Dias, P.; Xavier, L.H. A circular approach to the e-waste valorization through urban mining in Rio de Janeiro, Brazil. J. Clean. Prod. 2020, 261, 120990. [Google Scholar] [CrossRef]
- Rathore, G.J.S. Formality and informality in e-waste economies: Exploring caste-class in urban land and labor practices. Urban Geogr. 2020, 41, 902–906. [Google Scholar] [CrossRef]
- Angelis-Dimakis, A.; Arampatzis, G.; Alexopoulos, A.; Pantazopoulos, A.; Vyrides, I.; Chourdakis, N.; Angelis, V. Waste Management and the Circular Economy in Cyprus—The Case of the SWAN Project. Environments 2022, 9, 16. [Google Scholar] [CrossRef]
- Cano, N.S.d.S.L.; Iacovidou, E.; Rutkowski, E.W. Typology of municipal solid waste recycling value chains: A global perspective. J. Clean. Prod. 2022, 336, 130386. [Google Scholar] [CrossRef]
- Lange, J.P. Managing Plastic Waste—Sorting, Recycling, Disposal, and Product Redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Xavier, L.H.; Ottoni, M.; Lepawsky, J. Circular economy and e-waste management in the Americas: Brazilian and Canadian frameworks. J. Clean. Prod. 2021, 297, 126570. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ozkan-Ozen, Y.D.; Mangla, S.K.; Ram, M. Risk assessment for sustainability in e-waste recycling in circular economy. Clean Technol. Environ. Policy 2020, 24, 1–13. [Google Scholar] [CrossRef]
- Singh, A.; Panchal, R.; Naik, M. Circular economy potential of e-waste collectors, dismantlers, and recyclers of Maharashtra: A case study. Environ. Sci. Pollut. Res. 2020, 27, 22081–22099. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Cucchiella, F.; D’Adamo, I.; Li, J.; Rosa, P.; Terzi, S.; Wei, G.; Zeng, X. Modelling the correlations of e-waste quantity with economic increase. Sci. Total Environ. 2018, 613–614, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Al-Thani, N.A.; Al-Ansari, T. Comparing the convergence and divergence within industrial ecology, circular economy, and the energy-water-food nexus based on resource management objectives. Sustain. Prod. Consum. 2021, 27, 1743–1761. [Google Scholar] [CrossRef]
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor 2017: Quantities, Flows and Resources; United Nations University, International Telecommunication Union, and International Solid Waste Association: Tokyo, Japan, 2017. [Google Scholar]
- Whicher, A.; Harris, C.; Beverley, K.; Swiatek, P. Design for circular economy: Developing an action plan for Scotland. J. Clean. Prod. 2018, 172, 3237–3248. [Google Scholar] [CrossRef]
- Murray, R. Zero Waste; Greenpeace Environmental Trust: London, UK, 2012. [Google Scholar]
- Babbitt, C.W.; Althaf, S.; Rios, F.C.; Bilec, M.M.; Graedel, T. The role of design in circular economy solutions for critical materials. One Earth 2021, 4, 353–362. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y.; Zhu, Q.; Sarkis, J. Green supply chain management and the circular economy: Reviewing theory for advancement of both fields. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 794–817. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Avtar, R.; Singh, D.; Xue, W.; Othman MH, D.; Hwang, G.H.; Kern, A.O. Reforming MSWM in Sukunan (Yogjakarta, Indonesia): A case-study of applying a zero-waste approach based on circular economy paradigm. J. Clean. Prod. 2021, 284, 124775. [Google Scholar] [CrossRef]
- Kerdlap, P.; Low, J.S.C.; Ramakrishna, S. Zero waste manufacturing: A framework and review of technology, research, and implementation barriers for enabling a circular economy transition in Singapore. Resour. Conserv. Recycl. 2019, 151, 104438. [Google Scholar] [CrossRef]
- Kusch, A.; Gasde, J.; Deregowski, C.; Woidasky, J.; Lang-Koetz, C.; Viere, T. Sorting and Recycling of Lightweight Packaging in Germany—Climate Impacts and Options for Increasing Circularity Using Tracer-Based-Sorting. Mater. Circ. Econ. 2021, 3, 1–15. [Google Scholar] [CrossRef]
- Mendoza JM, F.; Sharmina, M.; Gallego-Schmid, A.; Heyes, G.; Azapagic, A. Integrating backcasting and eco-design for the circular economy: The BECE framework. J. Ind. Ecol. 2017, 21, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Sassanelli, C.; Urbinati, A.; Rosa, P.; Chiaroni, D.; Terzi, S. Addressing circular economy through design for X approaches: A systematic literature review. Comput. Ind. 2020, 120, 103245. [Google Scholar] [CrossRef]
- De Koeijer, B.; Wever, R.; Henseler, J. Realizing Product-Packaging Combinations in Circular Systems: Shaping the Research Agenda. Packag. Technol. Sci. 2016, 30, 443–460. [Google Scholar] [CrossRef]
- Thakker, V.; Bakshi, B.R. Toward sustainable circular economies: A computational framework for assessment and design. J. Clean. Prod. 2021, 295, 126353. [Google Scholar] [CrossRef]
- Wastling, T.; Charnley, F.; Moreno, M. Design for Circular Behaviour: Considering Users in a Circular Economy. Sustainability 2018, 10, 1743. [Google Scholar] [CrossRef] [Green Version]
- Sumter, D.; de Koning, J.; Bakker, C.; Balkenende, R. Circular Economy Competencies for Design. Sustainability 2020, 12, 1561. [Google Scholar] [CrossRef] [Green Version]
- Bag, S.; Dhamija, P.; Bryde, D.J.; Singh, R.K. Effect of eco-innovation on green supply chain management, circular economy capability, and performance of small and medium enterprises. J. Bus. Res. 2021, 141, 60–72. [Google Scholar] [CrossRef]
- Van Schalkwyk, R.; Reuter, M.; Gutzmer, J.; Stelter, M. Challenges of digitalizing the circular economy: Assessment of the state-of-the-art of metallurgical carrier metal platform for lead and its associated technology elements. J. Clean. Prod. 2018, 186, 585–601. [Google Scholar] [CrossRef]
- Sauerwein, M.; Doubrovski, E.; Balkenende, R.; Bakker, C. Exploring the potential of additive manufacturing for product design in a circular economy. J. Clean. Prod. 2019, 226, 1138–1149. [Google Scholar] [CrossRef]
- Mugge, R. Product Design and Consumer Behaviour in a Circular Economy. Sustainability 2018, 10, 3704. [Google Scholar] [CrossRef] [Green Version]
- Burke, H.; Zhang, A.; Wang, J.X. Integrating product design and supply chain management for a circular economy. Prod. Plan. Control 2021, 1–17. [Google Scholar] [CrossRef]
- Cascini, G.; O’Hare, J.; Dekoninck, E.; Becattini, N.; Boujut, J.-F.; Ben Guefrache, F.; Carli, I.; Caruso, G.; Giunta, L.; Morosi, F. Exploring the use of AR technology for co-creative product and packaging design. Comput. Ind. 2020, 123, 103308. [Google Scholar] [CrossRef]
- Walmsley, T.G.; Ong, B.H.; Klemeš, J.J.; Tan, R.R.; Varbanov, P.S. Circular Integration of processes, industries, and economies. Renew. Sustain. Energy Rev. 2019, 107, 507–515. [Google Scholar] [CrossRef]
- Steenis, N.D.; van Herpen, E.; van der Lans, I.A.; Ligthart, T.N.; van Trijp, H.C. Consumer response to packaging design: The role of packaging materials and graphics in sustainability perceptions and product evaluations. J. Clean. Prod. 2017, 62, 286–298. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Shi, T.; Jiao, W. Green product design with competition and fairness concerns in the circular economy era. Int. J. Prod. Res. 2019, 58, 165–179. [Google Scholar] [CrossRef]
- Da Costa Fernandes, S.; Pigosso, D.C.; McAloone, T.C.; Rozenfeld, H. Towards product-service system ori-ented to circular economy: A systematic review of value proposition design approaches. J. Clean. Prod. 2020, 257, 120507. [Google Scholar] [CrossRef]
- Baldassarre, B.; Schepers, M.; Bocken, N.; Cuppen, E.; Korevaar, G.; Calabretta, G. Industrial Symbiosis: Towards a design process for eco-industrial clusters by integrating Circular Economy and Industrial Ecology perspectives. J. Clean. Prod. 2019, 216, 446–460. [Google Scholar] [CrossRef]
- Walker, A.M.; Vermeulen, W.J.; Simboli, A.; Raggi, A. Sustainability assessment in circular inter-firm networks: An integrated framework of industrial ecology and circular supply chain management approaches. J. Clean. Prod. 2020, 286, 125457. [Google Scholar] [CrossRef]
- Suchek, N.; Fernandes, C.I.; Kraus, S.; Filser, M.; Sjögrén, H. Innovation and the circular economy: A systematic literature review. Bus. Strategy Environ. 2021, 30, 3686–3702. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Leipold, S. Circular economy in cities: Reviewing how environmental research aligns with local practices. J. Clean. Prod. 2018, 195, 1270–1281. [Google Scholar] [CrossRef]
- De Jesus, A.; Antunes, P.; Santos, R.; Mendonça, S. Eco-innovation in the transition to a circular economy: An analytical literature review. J. Clean. Prod. 2018, 172, 2999–3018. [Google Scholar] [CrossRef]
- Maldonado-Guzmán, G.; Garza-Reyes, J.A.; Pinzón-Castro, Y. Eco-innovation and the circular economy in the automotive industry. Benchmark. Int. J. 2020, 28, 621–635. [Google Scholar] [CrossRef]
- Cainelli, G.; D’Amato, A.; Mazzanti, M. Resource efficient eco-innovations for a circular economy: Evidence from EU firms. Res. Policy 2019, 49, 103827. [Google Scholar] [CrossRef]
- Pieroni, M.P.; McAloone, T.C.; Pigosso, D.C. Business model innovation for circular economy and sustainability: A review of approaches. J. Clean. Prod. 2019, 215, 198–216. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Spencer, N. Mu-nicipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Wellesley, L.; Preston, F.; Lehne, J. An Inclusive Circular Economy; Chatham House: London, UK, 2019. [Google Scholar]
- Vega-Quezada, C.; Blanco, M.; Romero, H. Synergies between agriculture and bioenergy in Latin American countries: A circular economy strategy for bioenergy production in Ecuador. New Biotechnol. 2017, 39, 81–89. [Google Scholar] [CrossRef]
- Domenech, T.; Bleischwitz, R.; Doranova, A.; Panayotopoulos, D.; Roman, L. Mapping Industrial Symbiosis Development in Europe typologies of networks, characteristics, performance and contribution to the Circular Economy. Resour. Conserv. Recycl. 2018, 141, 76–98. [Google Scholar] [CrossRef]
- Wasserbaur, R.; Sakao, T.; Milios, L. Interactions of governmental policies and business models for a circular economy: A systematic literature review. J. Clean. Prod. 2022, 337, 130329. [Google Scholar] [CrossRef]
- Kaya, D.I.; Dane, G.; Pintossi, N.; Koot, C.A. Subjective circularity performance analysis of adaptive heritage reuse practices in the Netherlands. Sustain. Cities Soc. 2021, 70, 102869. [Google Scholar] [CrossRef]
- Persis, D.J.; Venkatesh, V.; Sreedharan, V.R.; Shi, Y.; Sankaranarayanan, B. Modelling and analysing the impact of Circular Economy; Internet of Things and ethical business practices in the VUCA world: Evidence from the food processing industry. J. Clean. Prod. 2021, 301, 126871. [Google Scholar] [CrossRef]
- Cisternas, L.A.; Ordóñez, J.I.; Jeldres, R.I.; Serna-Guerrero, R. Toward the Implementation of Circular Economy Strategies: An Overview of the Current Situation in Mineral Processing. Miner. Process. Extr. Met. Rev. 2021, 43, 775–797. [Google Scholar] [CrossRef]
- Narasimmalu, A.; Ramasamy, R. Food Processing Industry Waste and Circular Economy. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 955, p. 012089. [Google Scholar]
- Bressanelli, G.; Pigosso, D.C.; Saccani, N.; Perona, M. Enablers, levers and benefits of Circular Economy in the Electrical and Electronic Equipment supply chain: A literature review. J. Clean. Prod. 2021, 298, 126819. [Google Scholar] [CrossRef]
- Gåvertsson, I.; Milios, L.; Dalhammar, C. Quality Labelling for Re-used ICT Equipment to Support Consumer Choice in the Circular Economy. J. Consum. Policy 2018, 43, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Bressanelli, G.; Saccani, N.; Perona, M.; Baccanelli, I. Towards Circular Economy in the Household Appliance Industry: An Overview of Cases. Resources 2020, 9, 128. [Google Scholar] [CrossRef]
- Sarc, R.; Curtis, A.; Kandlbauer, L.; Khodier, K.; Lorber, K.E.; Pomberger, R. Digitalisation and intelligent robotics in value chain of circular economy oriented waste management—A review. Waste Manag. 2019, 95, 476–492. [Google Scholar] [CrossRef]
- Lotz, M.T.; Barkhausen, R.; Herbst, A.; Pfaff, M.; Durand, A.; Rehfeldt, M. Potentials and Prerequisites on the Way to a Circular Economy: A Value Chain Perspective on Batteries and Buildings. Sustainability 2022, 14, 956. [Google Scholar] [CrossRef]
- Kim, C.H.; Kuah, A.T.; Thirumaran, K. Morphology for circular economy business models in the electrical and electronic equipment sector of Singapore and South Korea: Findings, implications, and future agenda. Sustain. Prod. Consum. 2022, 30, 829–850. [Google Scholar] [CrossRef]
- Osmani, M.; Pollard, J.; Forde, J.; Cole, C.; Grubnic, S.; Horne, J.; Leroy, P. Circular Economy Business Model Opportunities, Challenges, and Enablers in the Electrical and Electronic Equipment Sector: Stakeholders’ Perspectives; CISA Publisher: Padua, Italy, 2021. [Google Scholar]
- Ofori, D.; Mensah, A.O. Sustainable electronic waste management among households: A circular economy perspective from a developing economy. Manag. Environ. Qual. Int. J. 2021, 33, 64–85. [Google Scholar] [CrossRef]
- Glöser-Chahoud, S.; Huster, S.; Rosenberg, S.; Baazouzi, S.; Kiemel, S.; Singh, S.; Schneider, C.; Weeber, M.; Miehe, R.; Schultmann, F. Industrial disassembling as a key enabler of circular economy solutions for obsolete electric vehicle battery systems. Resour. Conserv. Recycl. 2021, 174, 105735. [Google Scholar] [CrossRef]
- Ahuja, J.; Dawson, L.; Lee, R. A circular economy for electric vehicle batteries: Driving the change. J. Prop. Plan. Environ. Law 2020, 12, 235–250. [Google Scholar] [CrossRef]
- Alamerew, Y.A.; Brissaud, D. Modelling reverse supply chain through system dynamics for realizing the transition towards the circular economy: A case study on electric vehicle batteries. J. Clean. Prod. 2020, 254, 120025. [Google Scholar] [CrossRef]
- Boiten, V.J.; Han SL, C.; Tyler, D. Circular Economy Stakeholder Perspectives: Textile Collection Strategies to Support Material Circularity; European Union’s: Brussels, Belgium, 2017. [Google Scholar]
- Mishra, S.; Jain, S.; Malhotra, G. The anatomy of circular economy transition in the fashion industry. Soc. Responsib. J. 2020, 17, 524–542. [Google Scholar] [CrossRef]
- Hou, E.-J.; Huang, C.-S.; Lee, Y.-C.; Chu, H.-T. Upcycled aquaculture waste as textile ingredient for promoting circular economy. Sustain. Mater. Technol. 2021, 31, e00336. [Google Scholar] [CrossRef]
- Karell, E.; Niinimäki, K. Addressing the Dialogue between Design, Sorting and Recycling in a Circular Economy. Des. J. 2019, 22, 997–1013. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics#Municipal_waste_treatment (accessed on 8 August 2021).
- Petris, G.; Petrone, S.; Campagnoli, P. Dynamic linear models. In Dynamic Linear Models with R; Springer: New York, NY, USA, 2009; pp. 31–84. [Google Scholar]
Theme of Material Circularity | |||
---|---|---|---|
Year | Literature on Recycling | Literature on Material Circularity | Under the Literature of Recycling |
2016–2020 | 16,000 | 24 | 0.15% |
2021–2022 | 7040 | 45 | 0.64% |
Total | 23,040 | 69 | 0.30% |
Closing the Resource Loop | Slowing the Resource Loop | Narrowing the Resource Loop | |
---|---|---|---|
Features | Recycling; Product repairing and remanufacturing | Product life extension; Product reuse and repair | Increased material productivity; Improved asset utilization; Individual behavior changes |
Main effects | Decreased demand for primary materials; Increased use of secondary materials | Decreased demand for primary materials; Better quality and durability of materials in goods | Decreased demand for primary materials; Expanded sharing |
Solution examples | Subsidies for the retrieval of secondary materials through recycling | Extended producer responsibility; Implemented product design standards | Implemented resource efficiency standards |
Type of Waste | Effect of Waste | Authors |
---|---|---|
Municipal waste | The effect is defined via interactions with municipal waste management to use waste for energy, improvement of urban environment | [3,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94] |
E-waste or WEEE (waste electrical and electronic equipment) | E-waste is a hazardous for human health and environment. Circularity reduces harmful effects of e-waste | [3,90,91,95,96,97,98,99,100] |
Inorganic waste (paper/cardboard, plastic, metal, glass rubber, leather, textile) | Minimizes inorganic waste which issues inorganic pollution, greenhouse effect and other environmental pollutions | [1,11,19,86,94,101,102,103,104,105,106,107] |
Organic waste (food, wood, agricultural) | Effect is positive and associated with the additional organic load supplied for composting | [1,11,12,19,29,84,85,86,87,89,91,92,93,94,95,108] |
Group | Effect of Elements’ Group on Material Circularity | Elements Affecting Circularity | Authors |
---|---|---|---|
Designing | Ensures product and packaging integrity and longevity | Eco-designing | [71,79,81,103,104,108,109,110,111,112,113,114] |
Product designing | [71,72,79,99,101,103,108,109,112,113,115,116,117,118,119,120] | ||
Designing for environment | [109,110,114,121] | ||
Green product designing | [110,121,122] | ||
Designing for product integrity | [71,112] | ||
Designing for sustainability | [79,99,108,109,110,111,113,116,120,121] | ||
Closed-loop sustainable product design | [72,108,118] | ||
Designing for multiple use cycle | [113] | ||
Circularity supporting designing | [71,72,101,103,109,112,113,116,117,118,123] | ||
Designing driven innovation | [101,108,118] | ||
Future proof designing | [112] | ||
Designing for disassembly | [112,118] | ||
Designing for maintenance | [103,108,112,116] | ||
Designing for durability | [103,108,112,116,117] | ||
Packaging designing | [110,118,119,121] | ||
Product-service system designing (PSS) | [109,112,123] | ||
Designing for recovery | [103,113,116] | ||
Designing for remake and recycling | [103,108,112,115,116,124] | ||
Environmentally friendly | Ensures innovations and approaches have a positive effect on environment | Eco-industrial approach | [80,81,83,99,120,124,125,126] |
Industrial and territorial ecology approach | [81,99,104,120,124,125,127,128] | ||
Sustainable circular activity | [80,82,83,111,120,124,125,126,127,129] | ||
Zero waste orientation | [1,95,99,101,102,103,104,105,106] | ||
Green (circular) economy focus | [99,130] | ||
Green supply chain management | [104,114,122,125,126,128,129] | ||
Eco-innovation approach | [83,104,110,114,126,127,128,129,130] | ||
Environmental innovation implementation | [80,82,126,128] | ||
Sustainable innovation implementation | [114,126,128,131] | ||
Green innovation implementation | [104,114,122,127,128,129] | ||
Ecological economic | Ensures investments and recycling | Circular activity system/model application | [71,79,80,81,82,83,103,110,111,112,115,118,125] |
Private investment | [80,132,133,134,135,136,137] | ||
Circular business model | [103,108,109,112,113,116,123,124,125,126,128,131] | ||
Resource/responsible consumption | [80,81,82,83,99,104,108,114,120,122,125,126,128,130,131] | ||
Extending the duration of use/prolonging product life cycle | [71,103,108,109,112,116,128,130] | ||
Processing industry | [115,138,139,140] | ||
Recycling | [71,79,80,81,82,83,99,103,104,108,110,112,115,117,118,124,128,129,130,139] | ||
Renewable energy/resources/ materials | [71,79,80,81,82,83,99,103,108,114,115,116,118,122,128,129,139,140] |
Category | Essential Description | Authors |
---|---|---|
Electronics and ICT | The current annual growth rate of electrical and electronic equipment is the fastest growing waste stream in the EU, at 2%, and less than 40% of electronic waste is recycled. The value is lost if fully or partially functional products are discarded because they cannot be repaired. | [56,141,142,143,144,145,146,147,148,149,150] |
Batteries and vehicle | The increase of battery circulation in the transport sector is the key to future mobility | [56,144,145,149,150,151] |
Packaging | Packaging waste in 2017 in Europe reached a record 173 kg per capita. To reap the economic benefits of packaging, by 2030 the aim is for all packaging on the EU market to be reused or recycled. | [56,144,145,146] |
Plastics | Trends show that plastic waste will double over the next 20 years, leading to a global response to plastic pollution through the initiatives in the circular activity strategy. | [56,96,144,145,148] |
Textiles | Only less than 1% of all textiles worldwide are recycled into new textiles. Given the complexity of the textile value chain, the aim is to strengthen industrial competitiveness and innovation, promote the EU market for sustainable and circular textiles, the market for textile reuse, and develop new business models. | [56,96,145,152,153,154,155] |
Construction and buildings | More than 35% of all waste in the EU is generated in the construction sector. A total of 5–12% of total EU GHG emissions come from extraction, construction products, building construction, and renovation materials. | [56,144,145,151] |
Food, water and nutrients | The circular activity can significantly reduce the negative environmental impact of extraction and exploitation of natural resources. | [56,144,148,154] |
Level of Analysis | Relationship to the Circularity of Materials | Description of the Circularity of Materials | Application of Methods | Link with Sustainability Approach |
---|---|---|---|---|
1st level Use of circular materials | The physical system supports the production and the increase of the circularity of materials. | Choice of methods is followed to prolong the shelf life of substances. | Review of literature; Investigations. | Such a solution helps to reduce the negative effect towards environment. |
2nd level Effect of private investments | The private investments are used to support the circularity. | Involvement of private investments is required to support the development of circularity. | Panel data analysis; Regression analysis. | Investments supporting sustainability. |
3rd level Evidence in waste | The physical system supports circularity via waste collection. | We are sorting during the collection of waste. | Panel data analysis; Regression analysis; Comparison. | Allows to return for reuse and to save natural resources |
Indicators | Abbreviation | Statistical Indicators | Circular Material Use Rate |
---|---|---|---|
Patents related to recycling and secondary raw materials | DLOG(PATNTS) | Corr. Coefficient | −0.174 |
Probability | 0.282 | ||
DLOG(PATNTS(-1)) | Corr. Coefficient | −0.085 | |
Probability | 0.601 | ||
Private investment, jobs, and gross value added related to economy sectors | DLOG(PRINV_CIRC) | Corr. Coefficient | −0.057 |
Probability | 0.725 | ||
DLOG(PRINV_CIRC(-1)) | Corr. Coefficient | −0.279 | |
Probability | 0.081 | ||
Recycling of biowaste | DLOG(REC_BIOW) | Corr. Coefficient | −0.072 |
Probability | 0.659 | ||
Recycling rate of e-waste | DLOG(REC_EW(-1)) | Corr. Coefficient | −0.474 |
Probability | 0.002 | ||
Recycling rate of municipal waste | DLOG(REC_MU) | Corr. Coefficient | 0.021 |
Probability | 0.897 | ||
DLOG(REC_MU(-1)) | Corr. Coefficient | −0.034 | |
Probability | 0.834 | ||
DLOG(REC_MU(-2)) | Corr. Coefficient | −0.371 | |
Probability | 0.019 | ||
The recycling rate of packaging waste by type of packaging | DLOG(REC_PCW) | Corr. Coefficient | 0.130 |
Probability | 0.424 | ||
DLOG(REC_PCW(-1)) | Corr. Coefficient | 0.110 | |
Probability | 0.500 | ||
Recovery rate of construction and demolition waste | DLOG(RECOV_CNSTR) | Corr. Coefficient | −0.213 |
Probability | 0.186 | ||
DLOG(RECOV_CNSTR(-2)) | Corr. Coefficient | 0.042 | |
Probability | 0.799 | ||
Trade-in recyclable raw material | DLOG(TRD_REC(-1)) | Probability | −0.039 |
Corr. Coefficient | 0.809 | ||
Generation of municipal waste per capita | DLOG(MUNW) | Probability | 0.024 |
Corr. Coefficient | 0.884 | ||
DLOG(MUNW(-1)) | Probability | −0.94 | |
Corr. Coefficient | 0.565 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
C | 0.030 | 0.009 | 3.202 | 0.002 |
DLOG(PRINV_CIRC(-1)) | −0.261 | 0.107 | −2.435 | 0.016 |
DLOG(REC_EW(-3)) | 0.105 | 0.050 | 2.114 | 0.037 |
DLOG(REC_MU(-2)) | −0.115 | 0.048 | −2.367 | 0.020 |
Root MSE | 0.081 | R-squared | 0.332 | |
Mean dependent var | 0.022 | Adjusted R-squared | 0.149 | |
S.D. dependent var | 0.099 | S.E. of regression | 0.092 | |
Akaike info criterion | −1.751 | Sum squared resid | 1.041 | |
Schwarz criterion | −1.075 | Log likelihood | 174,187 | |
Hannan-Quinn criter. | −1.476 | F-statistic | 1.815 | |
Durbin-Watson stat | 1.759 | Prob(F-statistic) | 0.010 |
Effects Test | Statistic | d.f. | Prob. |
---|---|---|---|
Cross-section F | 1.565 | −24.124 | 0.060 |
Cross-section Chi-square | 42.081 | 24 | 0.013 |
Period F | 0.885 | −71.24 | 0.520 |
Period Chi-square | 7.754 | 7 | 0.355 |
Cross-Section/Period F | 1.457 | −31.124 | 0.077 |
Cross-Section/Period Chi-square | 49.395 | 31 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burinskienė, A.; Lingaitienė, O.; Jakubavičius, A. Core Elements Affecting the Circularity of Materials. Sustainability 2022, 14, 8367. https://doi.org/10.3390/su14148367
Burinskienė A, Lingaitienė O, Jakubavičius A. Core Elements Affecting the Circularity of Materials. Sustainability. 2022; 14(14):8367. https://doi.org/10.3390/su14148367
Chicago/Turabian StyleBurinskienė, Aurelija, Olga Lingaitienė, and Artūras Jakubavičius. 2022. "Core Elements Affecting the Circularity of Materials" Sustainability 14, no. 14: 8367. https://doi.org/10.3390/su14148367
APA StyleBurinskienė, A., Lingaitienė, O., & Jakubavičius, A. (2022). Core Elements Affecting the Circularity of Materials. Sustainability, 14(14), 8367. https://doi.org/10.3390/su14148367