Digitalisation as the Indicator of the Evidence of Sustainability in the European Union
Abstract
:1. Introduction
2. Literature Review
2.1. The Link between Digitalisation and SDG 4
2.2. Digitalisation’s Link with SDG 5
2.3. Digitalisation’s Link with SDG 8
2.4. Digitalisation’s Link with SDG 9
2.5. Digitalisation’s Link with SDG 12
3. Methods
- SDG 4—Early leavers from education and training as promoting quality education and convenient skills for the future;
- SDG 5—Positions held by women in senior management positions;
- SDG 8—Employment rate;
- SDG 9—Gross domestic expenditure on research and development activity towards generating innovations for the future;
- SDG 12—Resource productivity and sustainable consumption with focus on business.
- (1)
- Data was selected from the public databases and a correlation matrix was constructed among ICT and five sustainable development indicators, and the results are presented in Appendix A. This analysis examined the existence (or non-existence) of relationships in the pairs. The authors of the dependent variables selected the ICT indicators that had a probability lower than 0.1.
- (2)
- A regression model was formed and presented under Equation (1). The model presents connections with one or two pairs of ICT-based sustainability development indicators. The links among the pairs are presented in Table 5.
- (3)
- Following the regression model, the authors created five Equation (1a–e) between pairs, dedicated to all five ICT-based sustainability development indicators. The authors selected the pair data of correlations presented under the constructed matrix, shown in Appendix A.
- (4)
4. Results
- -
- ICT-based quality education (SDG 4) and ICT-based employment (SDG 8);
- -
- ICT-based gender equality (SDG 5) with ICT-based employment (SDG 8) and ICT-based spending on R&D (SDG 9);
- -
- ICT-based employment (SDG 8) has a link with ICT-based quality education (SDG 4) and ICT-based gender equality (SDG 5);
- -
- ICT-based spending on R&D (SDG 9) has a link with ICT-based responsible consumption (SDG 12) and ICT-based gender equality (SDG 5);
- -
- ICT-based responsible consumption (SDG 12) and ICT-based spending on R&D (SDG 9).
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Groups | Digitalisation Indicators | Abbreviation | Statistics | SDG 4 | SDG 5 | SDG 8 | SDG 9 | SDG 12 |
---|---|---|---|---|---|---|---|---|
Network infrastructure | Households—level of internet access | HIA | Corr. Coefficient | −0.319 | 0.501 | 0.667 | 0.605 | 0.586 |
Probability | 0.0001 | 0 | 0 | 0 | 0 | |||
Availability of computers (percentage of households) | AOC | Corr. Coefficient | −0.327 | 0.423 | 0.660 | 0.653 | 0.586 | |
Probability | 0 | 0 | 0 | 0 | 0 | |||
Households—the type of connection to the internet | HCI | Corr. Coefficient | −0.283 | 0.490 | 0.646 | 0.566 | 0.487 | |
Probability | 0.001 | 0 | 0 | 0 | 0 | |||
Mobile internet access (percentage of individuals) individuals used a mobile phone (or smartphone) to access the internet | IMP | Corr. Coefficient | −0.226 | 0.476 | 0.561 | 0.401 | 0.389 | |
Probability | 0.01 | 0 | 0 | 0 | 0 | |||
Mobile−cellular subscriptions per 100 inhabitants | MCS | Corr. Coefficient | −0.096 | −0.125 | 0.188 | 0.035 | −0.064 | |
Probability | 0.2 | 0.1 | 0.02 | 0.7 | 0.4 | |||
Mobile−cellular sub−basket prices % of GNI | MCS01 | Corr. Coefficient | 0.2955 | −0.257 | −0.386 | −0.393 | −0.342 | |
Probability | 0.0003 | 0.002 | 0 | 0 | 0 | |||
Fixed broadband subscriptions (per 100 people) | FBS | Corr. Coefficient | −0.141 | 0.510 | 0.493 | 0.633 | 0.612 | |
Probability | 0.09 | 0 | 0 | 0 | 0 | |||
Fixed−broadband sub−basket prices % of GNI | FBS01 | Corr. Coefficient | 0.05 | −0.162 | −0.275 | −0.435 | −0.449 | |
Probability | 0.5 | 0.05 | 0.001 | 0 | 0 | |||
Internet literacy | Individuals using the Internet (% of the population) | IUI | Corr. Coefficient | −0.359 | 0.395 | 0.682 | 0.626 | 0.513 |
Probability | 0 | 0 | 0 | 0 | 0 | |||
Individuals–internet use | IIU | Corr. Coefficient | −0.319 | 0.483 | 0.691 | 0.653 | 0.546 | |
Probability | 0.0001 | 0 | 0 | 0 | 0 | |||
Individuals—mobile internet access | MIA | Corr. Coefficient | −0.179 | 0.349 | 0.494 | 0.568 | 0.423 | |
Probability | 0.03 | 0 | 0 | 0 | 0 | |||
Internet use finding information about goods and services | IFI | Corr. Coefficient | −0.325 | 0.286 | 0.584 | 0.546 | 0.435 | |
Probability | 0.0001 | 0.0004 | 0 | 0 | 0 | |||
Internet use Internet banking | IIB | Corr. Coefficient | −0.341 | 0.478 | 0.703 | 0.633 | 0.434 | |
Probability | 0 | 0 | 0 | 0 | 0 | |||
Internet use participating in social networks | ISN | Corr. Coefficient | −0.154 | 0.334 | 0.513 | 0.268 | 0.239 | |
Probability | 0.06 | 0 | 0 | 0.001 | 0.004 | |||
Internet usage seeking health information | IHI | Corr. Coefficient | −0.275 | 0.338 | 0.600 | 0.607 | 0.386 | |
Probability | 0.0007 | 0 | 0 | 0 | 0 | |||
Internet use telephoning or video calls | ITC | Corr. Coefficient | −0.337 | 0.217 | 0.471 | 0.017 | 0.022 | |
Probability | 0 | 0.008 | 0 | 0.8 | 0.8 | |||
Shopping on−line variables | Last online purchase in the 12 months | IPO | Corr. Coefficient | −0.341 | 0.530 | 0.669 | 0.705 | 0.593 |
Probability | 0 | 0 | 0 | 0 | 0 | |||
Individuals using the internet for ordering goods or services | IOG | Corr. Coefficient | −0.347 | 0.510 | 0.678 | 0.706 | 0.586 | |
Probability | 0 | 0 | 0 | 0 | 0 | |||
Individuals using the internet for selling goods or services, percentage of individuals | ISG | Corr. Coefficient | −0.332 | 0.484 | 0.477 | 0.628 | 0.450 | |
Probability | 0 | 0 | 0 | 0 | 0 |
References
- Ha, L.T. Effects of digitalization on financialization: Empirical evidence from European countries. Technol. Soc. 2022, 68, 101851. [Google Scholar] [CrossRef]
- Ashok, M. Role of digitisation in enabling co-creation of value in KIBS firms. IFIP Adv. Inf. Commun. Technol. 2018, 527, 145–154. [Google Scholar] [CrossRef]
- Gong, C.; Ribiere, V. Developing a unified definition of digital transformation. Technovation 2021, 102, 102217. [Google Scholar] [CrossRef]
- Parida, V.; Sjödin, D.; Reim, W. Reviewing literature on digitalization, business model innovation, and sustainable industry: Past achievements and future promises. Sustainability 2019, 11, 391. [Google Scholar] [CrossRef] [Green Version]
- Madan, R.; Ashok, M. A Public Values Perspective on the Application of Artificial Intelligence in Government Practices: A Synthesis of Case Studies. In Handbook of Research on Artificial Intelligence in Government Practices and Processes; IGI Global: Hershey, PA, USA, 2022; pp. 162–189. [Google Scholar] [CrossRef]
- Ashok, M.; Madan, R.; Joha, A.; Sivarajah, U. Ethical framework for Artificial Intelligence and Digital technologies. Int. J. Inf. Manag. 2022, 62, 102433. [Google Scholar] [CrossRef]
- ElMassah, S.; Mohieldin, M. Digital transformation and localizing the Sustainable Development Goals (SDGs). Ecol. Econ. 2020, 169, 106490. [Google Scholar] [CrossRef]
- Castro, G.D.; Fernández, M.C.G.; Colsa, Á.U. Unleashing the convergence amid digitalization and sustainability towards pursuing the Sustainable Development Goals (SDGs): A holistic review. J. Clean. Prod. 2021, 280, 122204. [Google Scholar] [CrossRef]
- Lo Prete, A. Digital and financial literacy as determinants of digital payments and personal finance. Econ. Lett. 2022, 213, 110378. [Google Scholar] [CrossRef]
- Wang, K.; Wang, D.-H.; Yuan, G.; Bao, L.-P. Digitalization method of microassembly space consisting of trans-scale microparts and microgripper jaws used for digital microassembly. Measurement 2022, 195, 111073. [Google Scholar] [CrossRef]
- Tang, C.; Mao, S.; Naumann, S.E.; Xing, Z. Improving student creativity through digital technology products: A literature review. Think. Ski. Creat. 2022, 44, 101032. [Google Scholar] [CrossRef]
- Kulkarni, P.M.; Appasaba, L.V.; Gokhale, P.; Tigadi, B. Role of Digital Simulation in Employee Training. Glob. Transit. Proc. 2022, 149–156. [Google Scholar] [CrossRef]
- Bygstad, B.; Øvrelid, E.; Ludvigsen, S.; Dæhlen, M. From dual digitalization to digital learning space: Exploring the digital transformation of higher education. Comput. Educ. 2022, 182, 104463. [Google Scholar] [CrossRef]
- Grover, V.; Tseng, S.L.; Pu, W. A theoretical perspective on organizational culture and digitalization. Inf. Manag. 2022, 59, 103639. [Google Scholar] [CrossRef]
- AlNuaimi, B.K.; Singh, S.K.; Ren, S.; Budhwar, P.; Vorobyev, D. Mastering digital transformation: The nexus between leadership, agility, and digital strategy. J. Bus. Res. 2022, 145, 636–648. [Google Scholar] [CrossRef]
- Ha, L.T.; Huong, T.T.L.; Thanh, T.T. Is digitalization a driver to enhance environmental performance? An empirical investigation of European countries. Sustain. Prod. Consum. 2022, 32, 230–247. [Google Scholar] [CrossRef]
- Chen, X.; Teng, L.; Chen, W. How does FinTech Affect the Development of the Digital Economy? Evidence from China. N. Am. J. Econ. Financ. 2022, 61, 101697. [Google Scholar] [CrossRef]
- Kang, H.Y. Technological engagement of women entrepreneurs on online digital platforms: Evidence from the Apple iOS App Store. Technovation 2022, 114, 102522. [Google Scholar] [CrossRef]
- Chan, K.T. Emergence of the ‘Digitalized Self’ in the Age of Digitalization. Comput. Hum. Behav. Rep. 2022, 6, 100191. [Google Scholar] [CrossRef]
- Tóth, Z.; Sklyar, A.; Kowalkowski, C.; Sörhammar, D.; Tronvoll, B.; Wirths, O. Tensions in digital servitization through a paradox lens. Ind. Mark. Manag. 2022, 102, 438–450. [Google Scholar] [CrossRef]
- Chouaibi, S.; Festa, G.; Quaglia, R.; Rossi, M. The risky impact of digital transformation on organizational performance—evidence from Tunisia. Technol. Forecast. Soc. Change 2022, 178, 121571. [Google Scholar] [CrossRef]
- van Meeteren, M.; Trincado-Munoz, F.; Rubin, T.H.; Vorley, T. Rethinking the digital transformation in knowledge-intensive services: A technology space analysis. Technol. Forecast. Soc. Change 2022, 179, 121631. [Google Scholar] [CrossRef]
- Wu, K.; Fu, Y.; Kong, D. Does the digital transformation of enterprises affect stock price crash risk? Financ. Res. Lett. 2022, 48, 102888. [Google Scholar] [CrossRef]
- Tuukkanen, V.; Wolgsjö, E.; Rusu, L. Cultural Values in Digital Transformation in a Small Company. Procedia Comput. Sci. 2021, 196, 3–12. [Google Scholar] [CrossRef]
- Ghosh, S.; Hughes, M.; Hodgkinson, I. Hughes, P. Digital transformation of industrial businesses: A dynamic capability approach. Technovation 2021, 113, 102414. [Google Scholar] [CrossRef]
- Konopik, J.; Jahn, C.; Schuster, T.; Hoßbach, N.; Pflaum, A. Mastering the digital transformation through organizational capabilities: A conceptual framework. Digit. Bus. 2022, 2, 100019. [Google Scholar] [CrossRef]
- Blanka, C.; Krumay, B.; Rueckel, D. The interplay of digital transformation and employee competency: A design science approach. Technol. Forecast. Soc. Change 2022, 178, 121575. [Google Scholar] [CrossRef]
- Lorentzen, A.C.R. Digital transformation as distributed leadership: Firing the change agent. Procedia Comput. Sci. 2021, 196, 245–254. [Google Scholar] [CrossRef]
- Weber, E.; Büttgen, M.; Bartsch, S. How to take employees on the digital transformation journey: An experimental study on complementary leadership behaviors in managing organizational change. J. Bus. Res. 2022, 143, 225–238. [Google Scholar] [CrossRef]
- Busulwa, R.; Pickering, M.; Mao, I. Digital transformation and hospitality management competencies: Toward an integrative framework. Int. J. Hosp. Manag. 2022, 102, 103132. [Google Scholar] [CrossRef]
- Yu, H.; Fletcher, M.; Buck, T. Managing digital transformation during re-internationalization: Trajectories and implications for performance. J. Int. Manag. 2022, 28, 100947. [Google Scholar] [CrossRef]
- He, X.; Ping, Q.; Hu, W. Does digital technology promote the sustainable development of the marine equipment manufacturing industry in China? Mar. Policy 2022, 136, 104868. [Google Scholar] [CrossRef]
- Pan, S.L.; Carter, L.; Tim, Y.; Sandeep, M.S. Digital sustainability, climate change, and information systems solutions: Opportunities for future research. Int. J. Inf. Manag. 2022, 63, 102444. [Google Scholar] [CrossRef]
- Andersen, A.D.; Frenken, K.; Galaz, V.; Kern, F.; Klerkx, L.; Mouthaan, M.; Piscicelli, L.; Schor, J.B.; Vaskelainen, T. On digitalization and sustainability transitions. Environ. Innov. Soc. Transit. 2021, 41, 96–98. [Google Scholar] [CrossRef]
- Martínez, J.M.G.; Puertas, R.; Martín, J.M.M.; Ribeiro-Soriano, D. Digitalization, innovation and environmental policies aimed at achieving sustainable production. Sustain. Prod. Consum. 2022, 32, 92–100. [Google Scholar] [CrossRef]
- Popkova, E.G.; de Bernardi, P.; Tyurina, Y.G.; Sergi, B.S. A theory of digital technology advancement to address the grand challenges of sustainable development. Technol. Soc. 2022, 68, 101831. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Parekh, H.; Mani, V.; Belhadi, A.; Sharma, R. Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework. Technol. Forecast. Soc. Change 2022, 176, 121448. [Google Scholar] [CrossRef]
- Konys, A. How to support digital sustainability assessment? An attempt to knowledge systematization. Procedia Comput. Sci. 2020, 176, 2297–2311. [Google Scholar] [CrossRef]
- Karki, B.R.; Porras, J. Digitalization for sustainable maintenance services: A systematic literature review. Digit. Bus. 2021, 1, 100011. [Google Scholar] [CrossRef]
- Hosan, S.; Karmaker, S.C.; Rahman, M.M.; Chapman, A.J.; Saha, B.B. Dynamic links among the demographic dividend, digitalization, energy intensity and sustainable economic growth: Empirical evidence from emerging economies. J. Clean. Prod. 2022, 330, 129858. [Google Scholar] [CrossRef]
- George, G.; Schillebeeckx, S.J.D. Digital transformation, sustainability, and purpose in the multinational enterprise. J. World Bus. 2022, 57, 101326. [Google Scholar] [CrossRef]
- He, T.; Liu, M.J.; Phang, C.W.; Luo, J. Toward social enterprise sustainability: The role of digital hybridity. Technol. Forecast. Soc. Change 2022, 175, 121360. [Google Scholar] [CrossRef]
- Schiavone, F.; Leone, D.; Caporuscio, A.; Lan, S. Digital servitization and new sustainable configurations of manufacturing systems. Technol. Forecast. Soc. Change 2022, 176, 121441. [Google Scholar] [CrossRef]
- Brevik, L.M.; Gudmundsdottir, G.B.; Lund, A.; Strømme, T.A. Transformative agency in teacher education: Fostering professional digital competence. Teach. Teach. Educ. 2019, 86, 102875. [Google Scholar] [CrossRef]
- Burbules, N.C.; Fan, G.; Repp, P. Five trends of education and technology in a sustainable future. Geogr. Sustain. 2020, 1, 93–97. [Google Scholar] [CrossRef]
- de Sousa, J.; Loizou, E.; Fochi, P. Participatory pedagogies: Instituting children’s rights in day to day pedagogic development. Eur. Early Child. Educ. Res. J. 2019, 27, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.J.; Carmo, M.; Gonçalves, A.C.; Cruz, R.; Martins, J.M. Creating knowledge and entrepreneurial capacity for HE students with digital education methodologies: Differences in the perceptions of students and entrepreneurs. J. Bus. Res. 2019, 94, 227–240. [Google Scholar] [CrossRef]
- Lindner, C.; Rienow, A.; Jürgens, C. Augmented Reality applications as digital experiments for education—An example in the Earth-Moon System. Acta Astronaut. 2019, 161, 66–74. [Google Scholar] [CrossRef]
- Cullen, M.W.; Geske, J.B.; Anavekar, N.S.; McAdams, J.A.; Beliveau, M.E.; Ommen, S.R.; Nishimura, R.A. Reinvigorating Continuing Medical Education: Meeting the Challenges of the Digital Age. In Mayo Clinic Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 94, pp. 2501–2509. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Khan, N.A.; Hussain, S. The COVID 19 pandemic and digital higher education: Exploring the impact of proactive personality on social capital through internet self-efficacy and online interaction quality. Child. Youth Serv. Rev. 2020, 119, 105694. [Google Scholar] [CrossRef]
- Habibi, F.; Zabardast, M.A. Digitalization, education and economic growth: A comparative analysis of Middle East and OECD countries. Technol. Soc. 2020, 63, 101370. [Google Scholar] [CrossRef]
- Murphy, M.; Costa, C. Digital scholarship, higher education and the future of the public intellectual. Futures 2019, 111, 205–212. [Google Scholar] [CrossRef]
- Georg, P.; Astaburuaga-García, R.; Bonaguro, L.; Brumhard, S.; Michalick, L.; Lippert, L.J.; Kostevc, T.; Gäbel, C.; Schneider, M.; Streitz, M.; et al. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell 2022, 185, 493–512.e25. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. SDG 5—Gender Equality-Statistics Explained. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=SDG_5_-_Gender_equality (accessed on 8 April 2022).
- Fatehkia, M.; Kashyap, R.; Weber, I. Using Facebook ad data to track the global digital gender Gap. World Dev. 2018, 107, 189–209. [Google Scholar] [CrossRef]
- Galperin, H.; Arcidiacono, M. Employment and the gender digital divide in Latin America: A decomposition analysis. Telecommun. Policy 2021, 45, 102166. [Google Scholar] [CrossRef]
- Luo, Y.; Chan, R.C.K. Gendered digital entrepreneurship in gendered coworking spaces: Evidence from Shenzhen, China. Cities 2021, 119, 103411. [Google Scholar] [CrossRef]
- Domini, G.; Grazzi, M.; Moschella, D.; Treibich, T. Threats and opportunities in the digital era: Automation spikes and employment dynamics. Res. Policy 2021, 50, 104137. [Google Scholar] [CrossRef]
- Cirillo, V.; Evangelista, R.; Guarascio, D.; Sostero, M. Digitalization, routineness and employment: An exploration on Italian task-based data. Res. Policy 2021, 50, 104079. [Google Scholar] [CrossRef]
- Ndubuisi, G.; Otioma, C.; Tetteh, G.K. Digital infrastructure and employment in services: Evidence from Sub-Saharan African countries. Telecommun. Policy 2021, 45, 102153. [Google Scholar] [CrossRef]
- Ballestar, M.T.; Camiña, E.; Díaz-Chao, Á.; Torrent-Sellens, J. Productivity and employment effects of digital complementarities. J. Innov. Knowl. 2021, 6, 177–190. [Google Scholar] [CrossRef]
- Fossen, F.M.; Sorgner, A. New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data. Technol. Forecast. Soc. Change 2022, 175, 121381. [Google Scholar] [CrossRef]
- Enciso-Santocildes, M.; Echaniz-Barrondo, A.; Gómez-Urquijo, L. Social innovation and employment in the digital age: The case of the connect employment shuttles in Spain. Int. J. Innov. Stud. 2021, 5, 175–189. [Google Scholar] [CrossRef]
- Vītola, L.; Eriņa, J. R&D Expenditures by Higher Education Sector and Analysis of Performance Indicators of Baltic States. Procedia-Soc. Behav. Sci. 2015, 213, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, C.; Tou, Y.; Neittaanmäki, P. The productivity paradox and the limitations of GDP in measuring the digital economy. Transform. Socio Econ. Digit. Innov. 2021, 19–35. [Google Scholar] [CrossRef]
- Hulla, M.; Herstätter, P.; Wolf, M.; Ramsauer, C. Towards digitalization in production in SMEs—A qualitative study of challenges, competencies and requirements for trainings. Procedia CIRP 2021, 104, 887–892. [Google Scholar] [CrossRef]
- Schumacher, S.; Bildstein, A.; Bauernhansl, T. The Impact of the Digital Transformation on Lean Production Systems. Procedia CIRP 2020, 93, 783–788. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Pouri, M.J. Eight impacts of the digital sharing economy on resource consumption. Resour. Conserv. Recycl. 2021, 168, 105434. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Noussan, M.; Tagliapietra, S. The effect of digitalization in the energy consumption of passenger transport: An analysis of future scenarios for Europe. J. Clean. Prod. 2020, 258, 120926. [Google Scholar] [CrossRef]
- Thordsen, T.; Murawski, M.; Bick, M. How to Measure Digitalization? A Critical Evaluation of Digital Maturity Models. In Conference on e-Business, e-Services and e-Society; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.; Amorim, M.; Melão, N.; Cohen, Y.; Rodrigues, M. Digitalization: A Literature Review and Research Agenda. In Conference on e-Business, e-Services and e-Society; Springer: Cham, Switzerland, 2019; pp. 443–456. [Google Scholar] [CrossRef]
- Hellsten, P.; Paunu, A. Digitalization: A Concept Easier to Talk about than to Understand. In Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2020)—Volume 3: KMIS, Budapest, Hungary, 2–4 November 2020; pp. 226–233. [Google Scholar] [CrossRef]
- Sacco, P.; Gargano, E.R.; Cornella, A. Sustainable Digitalization: A Systematic Literature Review to Identify How to Make Digitalization More Sustainable. IFIP Adv. Inf. Commun. Technol. 2021, 635, 14–29. [Google Scholar] [CrossRef]
- Rao, B.V.A.N.S.S.P.; Singh, R.K. Disruptive intelligent system in engineering education for sustainable development. Procedia Comput. Sci. 2020, 172, 1059–1065. [Google Scholar] [CrossRef]
- Hustad, E.; Olsen, D.H. Creating a sustainable digital infrastructure: The role of service-oriented architecture. Procedia Comput. Sci. 2021, 181, 597–604. [Google Scholar] [CrossRef]
- Chaiyasoonthorn, W.; Khalid, B.; Chaveesuk, S. Success of Smart Cities Development with Community’s Acceptance of New Technologies: Thailand Perspective. In Proceedings of the 9th International Conference on Information Communication and Management, Prague, Czech Republic, 23–26 August 2019. [Google Scholar] [CrossRef]
- Chaveesuk, S.; Chaiyasoonthorn, W.; Khalid, B. Understanding the Model of User Adoption and Acceptance of Technology by Thai Farmers: A Conceptual Framework. In Proceedings of the 2020 2nd International Conference on Management Science and Industrial Engineering, Osaka, Japan, 7–9 April 2020. [Google Scholar] [CrossRef]
- Zoppelletto, A.; Orlandi, L.B. Cultural and digital collaboration infrastructures as sustainability enhancing factors: A configurational approach. Technol. Forecast. Soc. Change 2022, 179, 121645. [Google Scholar] [CrossRef]
- Agrawal, R.; Wankhede, V.A.; Kumar, A.; Upadhyay, A.; Garza-Reyes, J.A. Nexus of circular economy and sustainable business performance in the era of digitalization. Int. J. Product. Perform. Manag. 2021, 71, 748–774. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S. Study on the Relations of Supply Chain Digitization, Flexibility and Sustainable Development—A Moderated Multiple Mediation Model. Sustainability 2021, 13, 10043. [Google Scholar] [CrossRef]
- Wang, Y.; Sarkis, J. Emerging digitalisation technologies in freight transport and logistics: Current trends and future directions. Transp. Res. Part E Logist. Transp. Rev. 2021, 148, 102291. [Google Scholar] [CrossRef]
- Pashkevich, N.; Haftor, D.; Karlsson, M.; Chowdhury, S. Sustainability through the digitalization of industrial machines: Complementary factors of fuel consumption and productivity for forklifts with sensors. Sustainability 2019, 11, 6708. [Google Scholar] [CrossRef] [Green Version]
- Delgosha, M.S.; Saheb, T.; Hajiheydari, N. Modelling the Asymmetrical Rela-tionships between Digitalisation and Sustainable Competitiveness: A Cross-Country Configurational Analysis. Inf. Syst. Front. 2021, 23, 1317–1337. [Google Scholar] [CrossRef]
- Jamwal, A.; Agrawal, R.; Sharma, M.; Kumar, V.; Kumar, S. Developing A sustainability framework for Industry 4.0. Procedia CIRP 2021, 98, 430–435. [Google Scholar] [CrossRef]
- Junge, A.L. Prospects of Digital Transformation Technologies (DTT) for Sustainable Logistics and Supply Chain Processes in Manufacturing. In Proceedings of the International Conference on Production and Operations Management Society, Rio de Janiero, Brazil, 10–12 December 2018; Springer: Cham, Switzerland, 2018; pp. 713–720. [Google Scholar]
- Liu, Q.; Yang, L.; Yang, M. Digitalisation for water sustainability: Barriers to implementing circular economy in smart water management. Sustainability 2021, 13, 11868. [Google Scholar] [CrossRef]
- Bag, S.; Sahu, A.K.; Kilbourn, P.; Pisa, N.; Dhamija, P.; Sahu, A.K. Modeling barriers of digital manufacturing in a circular economy for enhancing sustainability. Prod. Perform. Manag. 2021, 71, 833–869. [Google Scholar] [CrossRef]
- Murphy, K.M.; Topel, R.H. Estimation and inference in two-step econometric models. J. Bus. Econ. Stat. 2002, 20, 88–97. [Google Scholar] [CrossRef]
- Achen, C.H. Two-step hierarchical estimation: Beyond regression analysis. Political Anal. 2005, 13, 447–456. [Google Scholar] [CrossRef]
- Anderson, J.A.; Senthilselvan, A. A two step regression model for hazard functions. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1982, 31, 44–51. [Google Scholar] [CrossRef]
- Thomson, J.B. Modeling the bank regulator’s closure option: A two-step logit regression approach. J. Financ. Serv. Res. 1992, 6, 5–23. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Grijalvo Martín, M.; Pacios Álvarez, A.; Ordieres-Meré, J.; Villalba-Díez, J.; Morales-Alonso, G. New business models from prescriptive maintenance strategies aligned with sustainable development goals. Sustainability 2020, 13, 216. [Google Scholar] [CrossRef]
- Van der Velden, M. Digitalisation and the UN Sustainable Development Goals: What role for design. IDA Interact. Des. Archit. Sci. 2018, 37, 160–174. [Google Scholar] [CrossRef]
- Ufua, D.E.; Emielu, E.T.; Olujobi, O.J.; Lakhani, F.; Borishade, T.T.; Ibidunni, A.S.; Osabuohien, E.S. Digital transformation: A conceptual framing for attaining Sustainable Development Goals 4 and 9 in Nigeria. J. Manag. Organ. 2021, 27, 836–849. [Google Scholar] [CrossRef]
- Shung-King, M.; Gilson, L.; Mbachu, C.; Molyneux, S.; Muraya, K.W.; Uguru, N.; Govender, V. Leadership experiences and practices of South African health managers: What is the influence of gender?–A qualitative, exploratory study. Int. J. Equity Health 2018, 17, 148. [Google Scholar] [CrossRef]
- Conway, N.; Hainoun, A. Regional energy demand analysis portal (REDAP) digitalisation: Enabling better government decision-making in the building & transport sectors. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 588, p. 032008. [Google Scholar]
- Kunkel, S.; Tyfield, D. Digitalisation, sustainable industrialisation and digital rebound–Asking the right questions for a strategic research agenda. Energy Res. Soc. Sci. 2021, 82, 102295. [Google Scholar] [CrossRef]
- Chaveesuk, S.; Khalid, B.; Chaiyasoonthorn, W. Continuance intention to use digital payments in mitigating the spread of COVID-19 virus. Int. J. Data Netw. Sci. 2022, 6, 527–536. [Google Scholar] [CrossRef]
- Chaveesuk, S.; Khalid, B.; Chaiyasoonthorn, W. Digital payment system innovations: A marketing perspective on intention and actual use in the retail sector. Innov. Mark. 2021, 17, 109–123. [Google Scholar] [CrossRef]
Thematic of Sustainability | |||
---|---|---|---|
Years | Publications on Digitalisation | Inside the Publication on Sustainability | Inside the Publication on SDG |
1994–1998 | 195 | 26 | 1 |
1999–2003 | 536 | 146 | 4 |
2004–2008 | 1060 | 371 | 7 |
2009–2013 | 1750 | 699 | 8 |
2014–2018 | 5550 | 2810 | 298 |
2019–2022 | 12,700 | 8990 | 208 |
Total | 21,791 | 13,042 | 526 |
% | 100% | 59.8% | 2.4% |
Join Studies on Digitalisation, Sustainability and SDGs | Sources |
---|---|
Digitalisation & Sustainability | [32,33,34,35,36,37,38,39,40,41,42,43] |
Digitalisation & SDG 4 (Quality Education) | [8,44,45,46,47,48,49,50,51,52,53] |
Digitalisation & SDG 5 (Gender Equality) | [54,55,56,57] |
Digitalisation & SDG 8 (Decent Work and Economic Growth) | [58,59,60,61,62,63] |
Digitalisation & SDG 9 (Industry, Innovation, and Infrastructure) | [1,64,65] |
Digitalisation & SDG 12 (Responsible Consumption and Production) | [66,67,68,69,70,71] |
Model Type | Model Technique | Solution Method | Authors Researching Digitalisation |
---|---|---|---|
Mathematical programming method | Multiple objectives | Mixed-integer linear programming Analysis of hierarchical regression Stochastic dynamic programming Non-linear programming | [81,82,83,84] |
Time series | Multiple regression Two-step regression analysis | [85] This paper | |
Causal models | Causality identification methods | Diagram of causal systems | [86] |
Heuristic methods | Artificial intelligence techniques | Object-oriented Petri nets Fuzzy logic | [87,88] |
Analytical models | Multi-criteria decision making | DEMATEL | [89] |
Systematic models | Delphi method | [88] |
Stages | Approach | Technique |
---|---|---|
The first-stage | ||
Revision of ICT and SDG indicators and construction of pairs | Identification of relationships between ICT and five sustainable development indicators (SDGs) | Construction of correlation matrix and pairs |
The second-stage | ||
Revision of relationships among pairs | Identification of relationships between pairs constructed under the first-stage | Formation of five equations among pairs |
ICT-Based Sustainability Indicators | ICT-Based SDG 4 | ICT-Based SDG 5 | ICT-Based SDG 8 | ICT-Based SDG 9 | ICT-Based SDG 12 |
---|---|---|---|---|---|
ICT-based SDG 4 | X | ||||
ICT-based SDG 5 | X | X | |||
ICT-based SDG 8 | X | X | |||
ICT-based SDG 9 | X | X | |||
ICT-based SDG 12 | X |
Indicators of Statistics | Equation (1a) | Equation (1b) | Equation (1c) | Equation (1d) | Equation (1e) |
---|---|---|---|---|---|
Durbin Watson statistics | 1.52 | 1.92 | 2.04 | 2.14 | 1.79 |
Determination coefficient | 0.66 | 0.86 | 0.82 | 0.93 | 0.87 |
Adjusted R2 | 0.65 | 0.85 | 0.81 | 0.92 | 0.86 |
F-statistics | 59 | 86 | 64 | 177 | 185 |
Probability of F-statistics | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burinskienė, A.; Seržantė, M. Digitalisation as the Indicator of the Evidence of Sustainability in the European Union. Sustainability 2022, 14, 8371. https://doi.org/10.3390/su14148371
Burinskienė A, Seržantė M. Digitalisation as the Indicator of the Evidence of Sustainability in the European Union. Sustainability. 2022; 14(14):8371. https://doi.org/10.3390/su14148371
Chicago/Turabian StyleBurinskienė, Aurelija, and Milena Seržantė. 2022. "Digitalisation as the Indicator of the Evidence of Sustainability in the European Union" Sustainability 14, no. 14: 8371. https://doi.org/10.3390/su14148371
APA StyleBurinskienė, A., & Seržantė, M. (2022). Digitalisation as the Indicator of the Evidence of Sustainability in the European Union. Sustainability, 14(14), 8371. https://doi.org/10.3390/su14148371