The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato (Lycopersicon esculentum Mill.) Seedlings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mycorrhizal Functioning
3.2. Seedlings Growth and Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 April 2022).
- Viskelis, P.; Radzevicius, A.; Urbonaviciene, D.; Viskelis, J.; Karkleliene, R.; Bobinas, C. Biochemical parameters in tomato fruits from different cultivars as functional foods for agricultural, industrial, and pharmaceutical uses. In Plants for the Future; El Shemy, H., Ed.; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Bilalis, D.; Krokida, M.; Roussis, I.; Papastylianou, P.; Travlos, I.; Cheimona, N.; Dede, A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Hortic. 2018, 30, 321333. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europewide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–553. [Google Scholar] [CrossRef] [PubMed]
- Fracasso, A.; Telò, L.; Lanfranco, L.; Bonfante, P.; Amaducci, S. Physiological beneficial effect of Rhizophagus intraradices inoculation on tomato plant yield under water deficit conditions. Agronomy 2020, 10, 71. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.M.; Kinyangi, J.; Nersisyan, A.; Leigh, R.A.; DibbLeigh, J.A.; Zougmoré, R.B.; Seré, S.; Aggarwal, P.K.; Hoefner, P. Perspectives: Legislating change. Nature 2013, 501, S12–S14. [Google Scholar]
- Eisenstein, M. Plant breeding: Discovery in a dry spell. Nature 2013, 501, S7–S9. [Google Scholar] [CrossRef]
- Balliu, A.; Sallaku, G.; Rewald, B. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, saltstressed tomato seedlings. Sustainability 2015, 7, 15967–15981. [Google Scholar] [CrossRef] [Green Version]
- Chialva, M.; Salvioli di Fossalunga, A.; Daghino, S.; Ghignone, S.; Bagnaresi, P.; Chiapello, M.; Novero, M.; Spadaro, D.; Perotto, S.; Bonfante, P. Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol. 2018, 220, 1296–1308. [Google Scholar] [CrossRef] [Green Version]
- Ezawa, T.; Saito, K. How do arbuscular mycorrhizal fungi handle phosphate? New insight into finetuning of phosphate metabolism. New Phytol. 2018, 220, 1116–1121. [Google Scholar] [CrossRef] [Green Version]
- Lanfranco, L.; Fiorilli, V.; Gutjahr, C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol. 2018, 220, 1031–1046. [Google Scholar] [CrossRef]
- Subramanian, K.S.; Santhanakrishnan, P.; Balasubramanian, P. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci. Hortic. 2006, 107, 245–253. [Google Scholar] [CrossRef]
- Rapparini, F.; Penuelas, J. Mycorrhizal fungi to alleviate drought stress on plant growth. In Use of Microbes for the Alleviation of Soil Stresses; Miransari, M., Ed.; Springer: New York, NY, USA, 2014; Volume 1. [Google Scholar]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Chitarra, W.; Pagliarani, C.; Maserti, B.; Lumini, E.; Siciliano, I.; Cascone, P.; Schubert, A.; Gambino, G.; Balestrini, R.; Guerrieri, E. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 2016, 171, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Begum, N.; Ahanger, M.A.; Su, Y.; Lei, Y.; Mustafa, N.S.A.; Ahmad, P.; Zhang, L. Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants 2019, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Fiorilli, V.; Maghrebi, M.; Novero, M.; Votta, C.; Mazzarella, T.; Buffoni, B.; Astolfi, S.; Vigani, G. Arbuscular mycorrhizal symbiosis differentially affects the nutritional status of two durum wheat genotypes under drought conditions. Plants 2022, 11, 804. [Google Scholar] [CrossRef]
- Wang, B.; Yao, Z.; Zhao, S.; Guo, K.; Sun, J.; Zhang, H. Arbuscular mycorrhizal fungal application to improve growth and tolerance of processing tomato (Lycopersicum esculentum Miller) under drought stress. J. Food Agric. Environ. 2014, 12, 452–457. [Google Scholar]
- Giananazzi, S.; Schuepp, H.; Barea, J.M.; Haselwandter, K. Mycorrhizal Technology in Agriculture: From Genes to Bioproducts; Birkhauser: Basel, Switzerland, 2001; p. 296. [Google Scholar]
- Leal, R.S. The use of Confidor S in the float, a new tobacco seedling production system in the south of Brazil. PflanzenschutzNachr. Bayer 2001, 54, 337–352. [Google Scholar]
- Rideout, J.W.; Overstreet, L.F. Phosphorus rate in combination with cultural practices reduces excessive growth of tomato seedlings in the float system. HortScience 2003, 38, 524–528. [Google Scholar] [CrossRef]
- Kakabouki, I.; Mavroeidis, A.; Tataridas, A.; Kousta, A.; Efthimiadou, A.; Karydogianni, S.; Katsenios, N.; Roussis, I.; Papastylianou, P. Effect of Rhizophagus irregularis on growth and quality of Cannabis sativa seedlings. Plants 2021, 10, 1333. [Google Scholar] [CrossRef]
- Roberto, K. Howto Hydroponics, 4th ed.; The Futuregarden Press: Farmingdale, NY, USA, 2003; p. 23. [Google Scholar]
- Akoumianaki Ioannidou, A.; Rasouli, M.; Podaropoulou, L.; Bilalis, D. Seedlings production of Mentha × piperita (peppermint) and Mentha spicata (spearmint) in float system with organic and inorganic fertilization. Acta Hortic. 2012, 937, 1307–1311. [Google Scholar] [CrossRef]
- Bilalis, D.; Kanatas, P.; Patsiali, S.; Konstantas, A.; Akoumianakis, K. Comparison between conventional and organic floating systems for lettuce and tomato (Lactuca sativa and Lycopersicon esculentum) seedling production. J. Food Agric. Environ. 2009, 7, 623628. [Google Scholar]
- Kanatas, P. Float system and crucial points of the method for seedling production and crop cultivation with or without organic fertilization. Agron. Res. 2020, 18, 137–147. [Google Scholar]
- Gregory, P.J. Plant Roots: Growth, Activity and Interactions with the Soil; Blackwell Publishing: Oxford, UK, 2008; pp. 108–109. [Google Scholar]
- Akoumianaki Ioannidou, A.; Podaropoulou, L.; Rasouli, M.; Bilalis, D. Seedlings production of Ocimum basilicum in two systems (float and seedbed) with organic and inorganic fertilization. Acta Hortic. 2012, 937, 1301–1306. [Google Scholar] [CrossRef]
- Bantis, F.; Dangitsis, C.; Koukounaras, A. Influence of Light Spectra from LEDs and Scion × Rootstock Genotype Combinations on the Quality of Grafted Watermelon Seedlings. Plants 2021, 10, 353. [Google Scholar] [CrossRef]
- Dodd, J.C.; Boddington, C.L.; Rodríguez, A.; GonzalezChavez, C.; Mansur, I. Mycelium of Arbuscular Mycorrhizal fungi (AMF) from different genera: Form, function and detection. Plant Soil 2000, 226, 131–151. [Google Scholar] [CrossRef]
- Ibiang, S.R.; Sakamoto, K.; Kuwahara, N. Performance of tomato and lettuce to arbuscular mycorrhizal fungi and Penicillium pinophilum EU0013 inoculation varies with soil, culture media of inoculum, and fungal consortium composition. Rhizosphere 2020, 16, 100246. [Google Scholar] [CrossRef]
- Jamiołkowska, A.; Thanoon, A.H.; Skwarylo, B.; Patkowska, E.; Mielniczuk, E. Mycorrhizal inoculation as an alternative for the ecological production of tomato (Lycopersicon esculentum Mill.). Int. Agrophys. 2020, 34, 253–264. [Google Scholar] [CrossRef]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron. 1960, 36, 1013. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Latef, A.A.H.A.; Hashem, A.; Rasool, S.; Abd–Allah, E.F.; Alqarawi, A.A.; Egamberdieva, D.; Jan, S.; Anjum, N.A.; Ahmad, P. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. J. Plant Biol. 2016, 59, 407–426. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Sheng, M.; Tang, M. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Front. Plant Sci. 2017, 8, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, N.; Armada, E.; Duque, E.; Roldán, A.; Azcón, R. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. J. Plant Physiol. 2015, 174, 87–96. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Zhon, J.; Wang, G.; Dong, Y. Effects of AM fungi on the growth and yield of cucumber plants. Commun. Soil Sci. Plant Anal. 2008, 39, 499–509. [Google Scholar] [CrossRef]
- Nacoon, S.; Ekprasert, J.; Riddech, N.; Mongkolthanaruk, W.; Jogloy, S.; Vorasoot, N.; Cooper, J.; Boonlue, S. Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition. Rhizosphere 2021, 17, 100308. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. In Phosphorus in Action; Bünemann, E., Oberson, A., Frossard, E., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 26, pp. 215–243. [Google Scholar]
- White, P.J.; Hammond, J.P. Phosphorus nutrition of terrestrial plants. In The Ecophysiology of Plant Phosphorus Interactions, 1st ed.; White, P.J., Hammond, J.P., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 7, pp. 51–81. [Google Scholar]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 135–189. [Google Scholar]
- Jin, H.; Pfeffer, P.E.; Douds, D.D.; Piotrowski, E.; Lammers, P.J.; Shachar Hill, Y. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol. 2005, 168, 687–696. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yano, Y. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ. 2005, 28, 1247–1254. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tyagi, S.R.; Wani, M.R.; Ahmad, P. Drought tolerance: Role of organic osmolytes, growth regulators, and mineral nutrients. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment; Ahmad, P., Wani, M.R., Eds.; Springer: New York, NY, USA, 2014; Volume 1, pp. 125–155. [Google Scholar]
- Hameed, A.; Dilfuza, E.; Abd_Allah, E.F.; Hashem, A.; Kumar, A.; Ahmad, P. Salinity stress and arbuscular mycorrhizal symbiosis in plants. In Use of Microbes for the Alleviation of Soil Stresses; Miransari, M., Ed.; Springer Science + Business Media: New York, NY, USA, 2014; Volume 1, pp. 139–159. [Google Scholar]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; AlArjani, A.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd_Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef]
- De Andrade, S.A.L.; Domingues, A.P.; Mazzafera, P. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere 2015, 134, 141–149. [Google Scholar] [CrossRef]
- Herold, A.; Walker, D.A. Transport across Chloroplast Envelopes the Role of Phosphate. In Transport Across Single Biological Membranes, 1st ed.; Tosteson, D.C., Ed.; Springer: Berlin, Germany, 1979; Volume 2, pp. 411–439. [Google Scholar]
- Nemec, S.; Vu, J.C.V. Effects of soil phosphorus and Glomus Intraradices on growth, nonstructural carbohydrates, and photosynthetic activity of Citrus aurantium. Plant Soil 1990, 128, 257–263. [Google Scholar] [CrossRef]
- Andrino, A.; Guggenberger, G.; Kernchen, S.; Mikutta, R.; Sauheitl, L.; Boy, J. Production of organic acids by arbuscular mycorrhizal fungi and their contribution in the mobilization of phosphorus bound to iron oxides. Front. Plant Sci. 2021, 12, 661842. [Google Scholar] [CrossRef]
- Al Arjani, A.B.F.; Hashem, A.; Abd_Allah, E.F. Arbuscular mycorrhizal fungi modulate dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi J. Biol. Sci. 2020, 27, 380–394. [Google Scholar] [CrossRef]
- López Ráez, J.A.; Verhage, A.; Fernández, I.; García, J.M.; Azcón Aguilar, C.; Flors, V.; Pozo, M.J. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J. Exp. Bot. 2010, 61, 2589–2601. [Google Scholar] [CrossRef] [Green Version]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [Green Version]
- Bolandnazar, S.; Neyshabouri, M.R.; Aliasgharzad, N.; Chaparzadeh, N. Effects of mycorrhizal colonization on growth parameters of onion under different irrigation and soil conditions. Pak. J. Biol. Sci. 2007, 10, 1491–1495. [Google Scholar]
- Krishna, H.; Singh, S.K.; Minakshi; Patel, V.B.; Khawale, R.N.; Deshmukh, P.S.; Jindal, P.C. Arbuscular mycorrhizal fungi alleviate transplantation shock in micropropagated grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol. 2006, 81, 259–263. [Google Scholar] [CrossRef]
- Ruiz Lozano, J.M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 2003, 13, 309–317. [Google Scholar] [CrossRef]
- Kishor, P.B.K.; Kumari, P.H.; Sunita, M.S.L.; Sreenivasulu, N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 2015, 6, 544. [Google Scholar] [CrossRef] [Green Version]
- Castillo, C.R.; Sotomayor, L.S.; Ortiz, C.O.; Leonelli, G.C.; Borie, F.B.; Rubio, R.H. Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annum L.). Chilean J. Agric. Res. 2009, 69, 79–87. [Google Scholar] [CrossRef]
- Balota, E.L.; Machineski, O.; Truber, P.V.; Scherer, A.; De Souza, F.S. Physic nut plants present high mycorrhizal dependency under conditions of low phosphate availability. Braz. J. Plant Physiol. 2011, 23, 33–44. [Google Scholar] [CrossRef]
- Carmo, É.R.D.; Da Silva, C.F.; Freitas, M.S.M.; Lima, K.B.; Martins, M.A. Production of Australian cedar seedlings inoculated with arbuscular mycorrhizal fungi in different types of containers. Rev. Árvore 2016, 40, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, E.E.Q.; Montoya Martínez, A.C.; Rincón Enriquez, G.; Lobit, P.; López Pérez, L. Effectiveness of native arbuscular mycorrhizal consortia on the growth of Agave inaequidens. J. Soil Sci. Plant Nutr. 2016, 16, 1052–1064. [Google Scholar]
- Almeida, U.O.; Carvalho Andrade Neto, R.; Pereira Lunz, A.M.; Nogueira, S.R.; Costa, D.A.; Araújo, J.M. Environment and slow-release fertilizer in the production of Euterpe precatoria seedlings. Pesq. Agropec. Trop. 2018, 48, 382–389. [Google Scholar] [CrossRef]
Treatment | MycoPlant® Polvo Grow Dose (g per L of Nutrient Solution) | Applied Fungal Spores per L of Nutrient Solution | Total Applied Fungal Spores in Nutrient Solution of Each Trough |
---|---|---|---|
Control | - | - | - |
AMF1 | 0.1 | 40 | 2000 |
AMF2 | 0.2 | 80 | 4000 |
AMF3 | 0.3 | 120 | 6000 |
Chemical Characteristics | Values |
---|---|
pH | 6.70 ± 0.20 |
Nitrogen (N % w/w) | 2.00 ± 0.10 |
Phosphorus (P2O5 % w/w) | 4.00 ± 0.02 |
Potassium (K2O % w/w) | 0.20 ± 0.02 |
Calcium (CaO % w/w) | 0.60 ± 0.04 |
Magnesium (MgO % w/w) | 0.09 ± 0.01 |
Sulphur (S %) | 0.10 ± 0.02 |
Iron (Fe mg kg−1) | 26.0 ± 1.05 |
Copper (Cu mg kg−1) | 1.0 ± 0.08 |
Zinc (Zn mg kg−1) | 13.0 ± 0.05 |
Manganese (Mn mg kg−1) | 3.0 ± 0.03 |
Amino acids (% w/w) | 55.00 ± 1.80 |
Total Root Length (cm) | Root Dry Weight (g) | Shoot Length (cm) | Stem Diameter (cm) | Shoot Dry Weight (g) | Root/Shoot Ratio | Seedling Total Dry Weight (g) | |
---|---|---|---|---|---|---|---|
Control | 22.84 c | 0.179 c | 7.89 a | 2.69 a | 0.675 b | 0.267 a | 0.855 b |
AMF1 | 28.88 b | 0.207 bc | 7.94 a | 2.73 a | 0.892 ab | 0.233 a | 1.097 ab |
AMF2 | 32.31 ab | 0.251 ab | 8.13 a | 2.71 a | 0.956 ab | 0.264 a | 1.206 ab |
AMF3 | 35.34 a | 0.276 a | 8.22 a | 2.78 a | 1.113 a | 0.248 a | 1.386 a |
FAMF | 12.289 * | 13.712 * | 2.293 ns | 1.224 ns | 11.570 * | 1.993 ns | 12.808 * |
Dickson’s Quality Index (DQI) | N Content (mg 100 g−1 DW) | P Content (mg 100 g−1 DW) | Survival Rate (%) | |
---|---|---|---|---|
Control | 0.128 c | 2.714 c | 0.373 c | 89.87 b |
AMF1 | 0.152 bc | 2.883 bc | 0.434 b | 90.91 b |
AMF2 | 0.177 ab | 3.165 ab | 0.463 ab | 93.74 a |
AMF3 | 0.198 a | 3.376 a | 0.497 a | 94.78 a |
FAMF | 16.034 * | 21.189 ** | 20.828 ** | 32.307 ** |
Trait | Coefficient of Correlation (r) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMF Colonization 25 DAE | Total Root Length | Root Dry Weight | Shoot Length | Stem Diameter | Shoot Dry Weight | Root/Shoot Ratio | Seedling Total Dry Weight | Dickson’s Quality Index (DQI) | N Content | P Content | |
Total Root Length | 0.9590 *** | ||||||||||
Root Dry Weight | 0.8916 ** | 0.9588 *** | |||||||||
Shoot Length | 0.7287 * | 0.8881 ** | 0.9226 ** | ||||||||
Stem Diameter | 0.5631 ns | 0.5666 ns | 0.5312 ns | 0.4831 ns | |||||||
Shoot Dry Weight | 0.8995 ** | 0.9143 ** | 0.9358 *** | 0.7916 * | 0.6598 ns | ||||||
Root/Shoot Ratio | –0.2465 ns | –0.1209 ns | –0.0622 ns | 0.1319 ns | –0.5313 ns | –0.4068 ns | |||||
Seedling Total Dry Weight | 0.9071 ** | 0.9322 *** | 0.9577 *** | 0.8249 * | 0.6416 ns | 0.9977 *** | 0.3442 ns | ||||
Dickson’s quality index (DQI) | 0.9080 ** | 0.9558 *** | 0.9917 *** | 0.8877 ** | 0.6036 ns | 0.9717 *** | 0.1846 ns | 0.9854 *** | |||
N content | 0.9077 ** | 0.8946 ** | 0.9028 ** | 0.7412 * | 0.5585 ns | 0.8581 ** | 0.0716 ns | 0.8754 ** | 0.9084 ** | ||
P content | 0.9239 ** | 0.8816 ** | 0.9061 ** | 0.6880 ns | 0.5493 ns | 0.9595 *** | 0.3692 ns | 0.9589 *** | 0.9381 *** | 0.8680 ** | |
Survival Rate | 0.8672 ** | 0.9053 ** | 0.9702 *** | 0.8369 ** | 0.5549 ns | 0.9189 ** | 0.0849 ns | 0.9381 *** | 0.9711 *** | 0.9474 *** | 0.9136 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roussis, I.; Beslemes, D.; Kosma, C.; Triantafyllidis, V.; Zotos, A.; Tigka, E.; Mavroeidis, A.; Karydogianni, S.; Kouneli, V.; Travlos, I.; et al. The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato (Lycopersicon esculentum Mill.) Seedlings. Sustainability 2022, 14, 9001. https://doi.org/10.3390/su14159001
Roussis I, Beslemes D, Kosma C, Triantafyllidis V, Zotos A, Tigka E, Mavroeidis A, Karydogianni S, Kouneli V, Travlos I, et al. The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato (Lycopersicon esculentum Mill.) Seedlings. Sustainability. 2022; 14(15):9001. https://doi.org/10.3390/su14159001
Chicago/Turabian StyleRoussis, Ioannis, Dimitrios Beslemes, Chariklia Kosma, Vassilios Triantafyllidis, Anastasios Zotos, Evangelia Tigka, Antonios Mavroeidis, Stella Karydogianni, Varvara Kouneli, Ilias Travlos, and et al. 2022. "The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato (Lycopersicon esculentum Mill.) Seedlings" Sustainability 14, no. 15: 9001. https://doi.org/10.3390/su14159001
APA StyleRoussis, I., Beslemes, D., Kosma, C., Triantafyllidis, V., Zotos, A., Tigka, E., Mavroeidis, A., Karydogianni, S., Kouneli, V., Travlos, I., & Kakabouki, I. (2022). The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato (Lycopersicon esculentum Mill.) Seedlings. Sustainability, 14(15), 9001. https://doi.org/10.3390/su14159001