The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China
Abstract
:Highlights
- Water shortage has become the main bottleneck restricting the sustainable development of Beijing.
- The temporal evolution of physical water consumption and virtual water flow in Beijing is analyzed.
- The total physical water consumption of various economic departments in Beijing shows an overall decreasing trend.
- There are significant differences in virtual water flow patterns of different departments.
- Inter-regional joint production will be the key to solve the problem of uneven spatial and temporal distribution of water resources.
Abstract
1. Introduction
2. Material and Method
2.1. Study Area
2.2. Data
2.3. Method
2.3.1. Calculation of Physical Water Consumption
2.3.2. Calculation of Virtual Water Flow (Input-Output Method)
2.4. Water Stress Index (WSI) and Assumed Water Stress Index (WSI*)
3. Results
3.1. The Characteristics of Physical Water Consumption
3.2. The Virtual Water Flow Pattern
3.3. Comprehensive Impact of Physical Water Consumption and Virtual Water Flow
4. Discussion
4.1. Comparison Analysis with Previous Studies
4.2. Inter-Regional Joint Production as the Virtual Water Strategy
4.3. How to Alleviate the Water Shortage in Beijing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkenmark, M.; Widstrand, C. Population and water resources: A delicate balance. Popul. Bull. 1992, 47, 1–36. [Google Scholar]
- Ohlsson, L. Water conflicts and social resource scarcity. Phys. Chem. Earth 2000, 25, 213–220. [Google Scholar] [CrossRef]
- Sullivan, C.A. Calculating a water poverty index. World Dev. 2002, 30, 1195–1210. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, K.; Yang, S.; Yu, Y. An input–output approach to evaluate the water footprint and virtual water trade of Beijing, China. J. Clean. Prod. 2013, 42, 172–179. [Google Scholar] [CrossRef]
- Beijing Water Resources Bulletin. Beijing Municipal Bureau of Water Affairs, 2001–2018. Available online: http://swj.beijing.gov.cn/zwgk/szygb/ (accessed on 19 April 2022).
- Zhao, Y.; He, G.; Wang, J.; Gao, X. Water stress assessment integrated with virtual water trade and physical transfer water: A case study of Beijing, China. Sci. Total Environ. 2020, 708, 134578. [Google Scholar] [CrossRef]
- Bai, P.; Liu, C. Evolution law and attribution analysis of water utilization structure in Beijing. South-North Water Transf. Water Sci. 2018, 16, 01–06.34. (In Chinese) [Google Scholar] [CrossRef]
- Ye, Q.; Li, Y. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Water Res. 2018, 129, 264–276. [Google Scholar] [CrossRef]
- Nie, X.; Fan, T.; Wang, B. Optimization of operation safety risk indicator based on grey relational and sensitivity analysis of the south-to-north water diversion project. J. Intell. Fuzzy Syst. 2020, 38, 7787–7793. [Google Scholar] [CrossRef]
- Nir, B.K.; William, E. Water diversions in the great lakes basin analyzed in a game theory framework. Water Resour. Manag. 1995, 9, 221–242. [Google Scholar] [CrossRef]
- Itay, F.; David, Z. Packaging policies to reform the water sector: The case of the Central Valley Project Improvement Act. Water Resour. Res. 2005, 41, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Padowski, J.C.; Gorelick, S.M. Global analysis of urban surface water supply vulnerability. Environ. Res. Lett. 2014, 9, 104004. [Google Scholar] [CrossRef]
- Allan, J.A. Fortunately there are substitutes for water otherwise our hydropolitical futures would be impossible. In ODA, Priorities for Water Resources Allocation and Management; ODA: London, UK, 1993; pp. 13–26. [Google Scholar]
- Hoekstra, A.Y. Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade; Value of Water Research Report Series No. 12. UNESCO-IHE: Delft, The Netherlands, 2003. [Google Scholar]
- Ge, L.; Xie, G.; Li, S. The Analysis of Water Footprint of Production and Water Stress in China. J. Resour. Ecol. 2016, 7, 334–341. [Google Scholar] [CrossRef]
- Allan, J.A. Virtual Water-the water, food, and trade nexus useful concept or misleading metaphor? Water Int. 2003, 28, 106–113. [Google Scholar] [CrossRef]
- Islam, M.S.; Oki, T.; Kanae, S.; Hanasaki, N.; Agata, Y.; Yoshimura, K. A grid-based assessment of global water scarcity including virtual water trading. Water Resour. Manag. 2007, 21, 19–33. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K. Assessment of regional trade and virtual water flows in China. Ecol. Econ. 2007, 61, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, J. Virtual water assessment for Macao, China: Highlighting the role of external trade. J. Clean. Prod. 2015, 93, 308–317. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, W.; Deng, H. The potential role of virtual water in solving water scarcity and food security problems in China. Int. J. Sustain. Dev. World 2005, 12, 419–428. [Google Scholar] [CrossRef]
- Cai, B.; Zhang, W.; Hubacek, K.; Feng, K.; Li, Z.; Liu, Y.; Liu, Y. Drivers of virtual water flows on regional water scarcity in China. J. Clean. Prod. 2019, 207, 1112–1122. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Y.; Gao, X.; Jiang, S.; Lin, L.; An, T. Virtual water output intensifies the water scarcity in Northwest China: Current situation, problem analysis and countermeasures. Sci. Total Environ. 2021, 765, 144276. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J. China and Trans-Pacific Partnership Agreement countries: Estimation of the virtual water trade of agricultural products. J. Clean. Prod. 2017, 140, 1493–1503. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, J.; Zhao, Y. Sustainability of water resources for agriculture considering grain production, trade and consumption in China from 2004 to 2013. J. Clean. Prod. 2017, 149, 1210–1218. [Google Scholar] [CrossRef] [Green Version]
- Sun, S. Temporal Variability of Water Footprint for Maize Production: The Case of Beijing from 1978 to 2008. Water Resour. Manag. 2013, 27, 2447–2463. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L. Virtual water flow pattern of grain trade and its benefits in China. J. Clean. Prod. 2019, 223, 445–455. [Google Scholar] [CrossRef]
- Lu, L.; Chen, Y.; Hua, D. Provincial virtual energy-water use and its flows within China: A multiregional input-output approach. Resour. Conserv. Recycl. 2019, 151, 104486. [Google Scholar] [CrossRef]
- Gao, X.; Chen, Q.; Lu, S.; Wang, Y.; An, T.; Zhuo, L.; Wu, P. Impact of virtual water flow with the energy product transfer on sustainable water resources utilization in the main coal-fired power energy bases of Northern China. Energy Procedia 2018, 152, 293–301. [Google Scholar] [CrossRef]
- Chini, C.M.; Stillwell, A.S. The changing virtual water trade network of the European electric grid. Appl. Energy 2020, 260. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Velazquez, E. Analysing Andalusian virtual water trade in an input-output framework. J. Hydrol.-Plant Sci. 2007, 41, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, E. An input-output model of water consumption: Analyzing inter sectoral water relationships in Andalusia. Ecol. Econ. 2006, 56, 226–240. [Google Scholar] [CrossRef]
- Lenzen, M. Understanding virtual water flows: A multiregion input-output case study of victoria. Water Resour. Res. 2009, 45, W09416. [Google Scholar] [CrossRef] [Green Version]
- Kondo, K. Economic analysis of water resources in Japan: Using factor decomposition analysis based on input-output tables. J. Environ. Econ. Policy Stud. 2005, 7, 109–129. [Google Scholar] [CrossRef]
- Zhang, C.; Laura, D.A. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Gao, X.; Sun, M.; Zhao, Y.; Wu, P.; Jiang, S.; Zhuo, L. The Cognitive Framework of the Interaction between the Physical and Virtual Water and the Strategies for Sustainable Coupling Management. Sustainability 2019, 11, 2567. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, J.; Liu, Q.; Tillotson, M.R.; Guan, D.; Hubacek, K. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl. Acad. Sci. USA 2015, 112, 1031–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, C.; Zeng, W.; Ma, B.; Zhuo, Y.; Xie, Y. Ecological network analysis of an urban water metabolic system: Integrated metabolic processes of physical and virtual water. Sci. Total Environ. 2021, 787, 147432. [Google Scholar]
- Beijing Municipal Commission of Planning and Natural Resources. Completion of Major Statistical Indicators of Natural Resources from January to June 2021. 2021. Available online: http://www.beijing.gov.cn/zhengce/gongbao (accessed on 2 May 2022).
- Jiang, S.; Qing, C.H.; Zhu, W.H. Analysis of virtual water consumption and trade in Beijing. South-North Water Transf. Water Sci. Technol. 2021, 19, 853–861. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, M.; Wei, X.; Ping, Y. Water resource accounting and statistical analysis of water use in Beijing. J. Stat. Manag. Syst. 2012, 15, 457–481. [Google Scholar] [CrossRef]
- Beijing Municipal Bureau of Statistics, 2002, 2007, 2012, 2017. Input-Output Tables for 42 Sectors. Survey Office of the National Bureau of Statistics in Beijing. Available online: http://tjj.beijing.gov.cn/ztzl/trccdc/dcsj/index.html (accessed on 14 April 2022).
- National Bureau of Statistics of China. China Water Resources Bulletin; China Water & Power Press: Beijing, China, 2001–2018. Available online: http://www.mwr.gov.cn/sj/tjgb/szygb/ (accessed on 9 March 2022).
- National Bureau of Statistics of China. China Census Yearbook (2002–2019); China Statistical Publishing House: Beijing, China, 2002–2019. Available online: http://www.stats.gov.cn/tjsj/pcsj/ (accessed on 13 March 2022).
- National Bureau of Statistics of China. China Statistical Yearbook 2009; China Statistical Publishing House: Beijing, China, 2009. [Google Scholar]
- Zhang, Z.; Shi, M.; Yang, H. Understanding Beijing’s water challenge: A decomposition analysis of changes in Beijing’s water footprint between 1997 and 2007. Environ. Sci. Technol. 2012, 46, 12373–12380. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Han, Y.; Zhang, D. Study on agricultural virtual water flow and its influence on regional water resource pressure in Beijing-Tianjin-Hebei Region. South-North Water Transf. Water Sci. Technol. 2019, 17, 40–48. (In Chinese) [Google Scholar] [CrossRef]
- Wei, Y.; Shao, L.; Zhang, B. Virtual water consumption and trade in Beijing. J. Nat. Resour. 2019, 34, 1962–1973. (In Chinese) [Google Scholar]
- Liu, Y.; Wang, S.; Chen, B. Virtual water accounting in Beijing based on input-output analysis. Acta Ecol. Sin. 2018, 38, 1930–1940. [Google Scholar]
- Han, Y.; Li, X.; Su, X.; Huang, H.; Lin, R.; Zhang, J. Analysis of Virtual Water Trade in Beijing Tianjin Hebei Region Based on Multi Regional Input-Output Model[J/OL]. NCU of WR&HY (NSE): 1-9 [23 July 2022]. 2022. Available online: http://kns.cnki.net/kcms/detail/41.1432.tv.20220518.1317.003.html (accessed on 25 May 2022). (In Chinese).
- Yang, S. Study on the evolution and driving factors of water use structure in Beijing. Pearl River 2018, 39, 50–53. (In Chinese) [Google Scholar]
- Zhang, S. Quantification and trend analysis of water resource pressure in Beijing. Econ. Vis. 2013, 1, 4–6. (In Chinese) [Google Scholar]
- Tian, P.; Lu, H.; Liu, J.; Feng, K.; Heijungs, R.; Li, D.; Fan, X. The pattern of virtual water transfer in China: From the perspective of the virtual water hypothesis. J. Clean. Prod. 2022, 2022, 346. [Google Scholar] [CrossRef]
- Zhuo, L.; Li, M.; Zhang, G.; Mekonnen, M.M.; Hoekstra, A.Y.; Wada, Y.; Wu, P. Volume versus value of crop-related water footprints and virtual water flows: A case study for the Yellow River Basin. J. Hydrol. 2022, 608, 127674. [Google Scholar] [CrossRef]
- Lin, L.; Gao, X.; Zhao, Y.; Wang, L.; An, T.; Liu, C.; Qiao, Y.; Wu, P. Evaluation of the water consumption of animal products and the virtual water flow pattern associated with interprovincial trade in China. J. Clean. Prod. 2021, 328, 129599. [Google Scholar] [CrossRef]
- Wang, F.; Cai, B.; Hu, X.; Liu, Y.; Zhang, W. Exploring solutions to alleviate the regional water stress from virtual water flows in China. Sci. Total Environ. 2021, 796, 148971. [Google Scholar] [CrossRef]
- Deng, G.Y.; Lu, F.Y.; Wu, L.P.; Xu, C. Social network analysis of virtual water trade among major countries in the world. Sci. Total Environ. 2021, 753, 142043. [Google Scholar] [CrossRef]
- Cai, Z. The formation path of regional economic layout with high-quality development: From the perspective of regional complementary advantages. Reform 2020, 8, 132–146. (In Chinese) [Google Scholar]
- He, S.; Zhang, J.; Zhang, J.; Cheng, T. Production/inventory competition between firms with fixed-proportions co-production systems. Eur. J. Oper. Res. 2022, 299, 497–509. [Google Scholar] [CrossRef]
- Giovanna, S.; Stefani, G.; Romano, D.; Nocella, G. Consumer renaissance in Alternative Agri-Food Networks between collective action and co-production. Sustain. Prod. Consum. 2022, 29, 311–327. [Google Scholar]
- Nadejda, K.; Sonata, N.; Elvis, N. Public attitudes, co-production and polycentric governance in energy policy. Energy Policy 2021, 153, e112241. [Google Scholar]
- Yang, X.; Feng, K.; Su, B.; Zhang, W.; Huang, S. Environmental efficiency and equality embodied in China’s inter-regional trade. Sci. Total Environ. 2019, 672, 150–161. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, Z. Assessment of coupling coordination degree and water resources carrying capacity of Hebei Province (China) based on WRESP2D2P framework and GTWR approach. Sustain. Cities Soc. 2022, 82, 103862. [Google Scholar] [CrossRef]
- Guo, S.; Ma, H. Can the Spatial Function Division of Urbanization Promote Regional Coordinated Development? Evidence from the Yangtze River Economic Belt in China. Sustainability 2022, 14, 7115. [Google Scholar] [CrossRef]
- Chen, Y. Transportation and quantitative analysis of socio-economic development of relations. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012179. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L. The relationship between industrial structure and water consumption structure in Beijing-Tianjin-Hebei Region. South-North Water Transf. Water Sci. Technol. 2019, 17, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Peng, Z. Ecological Compensation Standard of a Water-Receiving Area in an Inter-Basin Water Diversion Based on Ecosystem Service Value and Public Willingness: A Case Study of Beijing. Sustainability 2021, 13, 5236. [Google Scholar] [CrossRef]
- Duan, W. Beijing water resources and the south to north water diversion project. Can. J. Civ. Eng. 2005, 32, 159–163. [Google Scholar] [CrossRef]
- Larsen, T.A. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef]
Type | Data Sources |
---|---|
Agricultural water consumption data | Water Resources Bulletin [5] |
Economic input-output table | Beijing Municipal Bureau of Statistics [41] |
Per capita domestic water consumption data | China Water Resources Bulletin [42] |
Rural and urban populations | China Census yearbook [43] |
Industrial departments water consumption data | China Economic Census Yearbook [44] |
Total industrial water consumption data | Beijing Water Resources Bulletin [5] |
Domestic water consumption data | Beijing Water Resources Bulletin [5] |
Water supply sources data | Beijing Water Resources Bulletin [5] |
Industry | Intermediate Use | Final Use | Import | Total Output | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sector 1 | … | Sector n | Subtotal | Consumption | Capital Formation | Export | Subtotal | ||||
Intermediate input | Sector 1 | … | |||||||||
… | … | … | … | … | … | … | … | … | … | … | |
Sector n | … | ||||||||||
Subtotal | … | ||||||||||
Value Added | … | ||||||||||
Total input | … | ||||||||||
Water consumption | … |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Jiang, S.; Gao, X.; Zhao, Y.; Lin, L.; Wang, J.; Han, X. The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China. Sustainability 2022, 14, 9596. https://doi.org/10.3390/su14159596
Huang H, Jiang S, Gao X, Zhao Y, Lin L, Wang J, Han X. The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China. Sustainability. 2022; 14(15):9596. https://doi.org/10.3390/su14159596
Chicago/Turabian StyleHuang, Hongwei, Shan Jiang, Xuerui Gao, Yong Zhao, Lixing Lin, Jichao Wang, and Xinxueqi Han. 2022. "The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China" Sustainability 14, no. 15: 9596. https://doi.org/10.3390/su14159596
APA StyleHuang, H., Jiang, S., Gao, X., Zhao, Y., Lin, L., Wang, J., & Han, X. (2022). The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China. Sustainability, 14(15), 9596. https://doi.org/10.3390/su14159596