Airborne Nanoparticles (PM0.1) in Southeast Asian Cities: A Review
Abstract
:1. Introduction
2. PM0.1 Mass Concentration in Southeast Asia Atmosphere
Location | Site Description | Period | Concentration (µg/m3) | Reference |
---|---|---|---|---|
Pathumtani, Thailand | Suburban | October 2019 | 13.47 ± 0.79 | [26] |
Suburban | January–February 2020 | 18.88 ± 3.99 | ||
Hat Yai, Thailand | Mixed | January–December 2018 | 10.17 ± 2.23 | [27] |
Hat Yai, Thailand | Mixed | March–April 2016 | 10.90 | [28] |
North Bangkok, Thailand | Urban-traffic | July 2014–June 2015 | 14.80 ± 1.99 | [20] |
North Bangkok, Thailand | Urban-traffic | March–April 2016 | 11.90 | [28] |
Bangkok, Thailand | Urban-traffic | March–April 2016 | 7.70 | [28] |
Chiang Mai, Thailand | Suburban | September 2014–June 2015 | 25.21 ± 4.73 | [20] |
Chiang Mai, Thailand | Suburban | March–April 2016 | 16.50 | [28] |
Riau, Indonesia | Urban | March–April 2016 | 12.40 | [28] |
North Sumatra, Indonesia | Urban-traffic | February 2019 | 13.10 ± 3.80 | [21] |
Rural-volcano | March 2019 | 7.10 ± 2.50 | ||
Industry Area | February–March 2019 | 16.80 ± 4.00 | ||
School Environment | February 2019 | 15.90 ± 1.60 | ||
Padang, Indonesia | Rural | March 2018 | 5.36 | [18] |
August 2018 | 5.57 | |||
Muaro Jambi, Indonesia | Suburban | March 2018 | 9.20 | [18] |
August 2018 | 9.61 | |||
Pekanbaru, Indonesia | Urban | March 2018 | 10.92 | [18] |
August 2018 | 15.16 | |||
Hanoi, Vietnam | Mixed | August–December 2015 | 5.36–5.79 | [30] |
Urban-traffic | August–December 2015 | 6.06–11.90 | ||
Hanoi, Vietnam | Mixed | November–December 2015 | 5.44 ± 2.03 | [31] |
Hanoi, Vietnam | Mixed | July–August 2015 | 1.47 ± 0.54 | [32] |
Mixed | March 2016 | 1.71 ± 0.61 | ||
Hanoi, Vietnam | Mixed | March–April 2016 | 15.40 | [28] |
Hanoi, Vietnam | Residential Area | January 2019 | 8.74 | [33] |
April–May 2019 | 5.28 | |||
Hanoi, Vietnam | Suburban 1 (Rice burning) | November 2019 | 6.50 ± 2.20 | [34] |
Suburban 2 (Rice burning) | November 2019 | 11.50 ± 3.90 | ||
Hanoi, Vietnam | School Environment | November 2019–January 2020 | 17.07 ± 3.70 | [35] |
Urban-traffic | March–April 2016 | 13.10 | [28] | |
Phnom Penh, Cambodia | Urban | March–April 2016 | 18.90 | [28] |
Kuala Lumpur, Malaysia | Suburban | March–April 2016 | 9.30 | [28] |
3. Sources and Characteristics of PM0.1 in Southeast Asia
4. Health Concerns of PM0.1
5. Challenges Study in PM0.1
5.1. Evaluation of PM0.1
5.2. Information on PM0.1 Emission Sources
5.3. Development and Application of New PM0.1 Tools
5.3.1. Measurements of Atmospheric PM0.1 Particles
5.3.2. A High-Volume PM0.1 Air Sampler
5.3.3. The PM0.1 Real-Time Sensor
5.4. Summarizing Facts on PM0.1 for Policy-Making
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buseck, P.R.; Adachi, K. Nanoparticles in the atmosphere. Elements 2008, 4, 389–394. [Google Scholar] [CrossRef]
- Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostal, M. Associations between ultrafine and fine particles and mortality in five central European cities-Results from the UFIREG study. Environ. Int. 2016, 88, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Venecek, M.A.; Yu, X.; Kleeman, M.J. Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events. Atmos. Chem. Phys. 2019, 19, 9399–9412. [Google Scholar] [CrossRef]
- Hata, M.; Chomanee, J.; Thongyen, T.; Bao, L.; Tekasakul, S.; Tekasakul, P.; Otani, Y.; Furuuchi, M. Characteristics of nanoparticles emitted from burning of biomass fuels. J. Environ. Sci. 2014, 26, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Slezakova, K.; Morais, S.; do Carmo Pereira, M. Atmospheric nanoparticles and their impacts on public health. In Current Topics in Public Health; IntechOpen: London, UK, 2013. [Google Scholar]
- Kwon, H.S.; Ryu, M.H.; Carlsten, C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef] [PubMed]
- AQEG. Particulate Matter in the United Kingdom; PB10580; Air Quality Expert Group, UK Department for Environment, Food and Rural Affairs: London, UK, 2005; Available online: http://ukair.defra.gov.uk/library/reports?report_id=269 (accessed on 8 August 2022).
- Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources—A review. Atmos Environ. 2013, 67, 252–277. [Google Scholar] [CrossRef]
- Terzano, C.; Di Stefano, F.; Conti, V.; Graziani, E.; Petroianni, A. Air pollution ultrafine particles: Toxicity beyond the lung. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 809–821. [Google Scholar]
- Xue, J.; Xue, W.; Sowlat, M.H.; Sioutas, C.; Lolinco, A.; Hasson, A.; Kleeman, M.J. Seasonal and annual source appointment of carbonaceous ultrafine particulate matter (PM0.1) in Polluted California Cities. Environ. Sci. Technol. 2018, 53, 39–49. [Google Scholar] [CrossRef]
- De Jesus, A.L.; Rahman, M.M.; Mazaheri, M.; Thompson, H.; Knibbs, L.D.; Jeong, C.; Evans, G.; Nei, W.; Ding, A.; Qiao, L.; et al. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 2019, 129, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Phairuang, W.; Hata, M.; Furuuchi, M. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand. J. Environ. Sci. 2017, 52, 85–97. [Google Scholar] [CrossRef]
- Gautam, S.; Yadav, A.; Tsai, C.J.; Kumar, P. A review on recent progress in observations, sources, classification and regulations of PM2.5 in Asian environments. Environ. Sci. Pollut. Res. 2016, 23, 21165–21175. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Chen, Y.; Zheng, M.; Li, J.; Tang, J.; Han, Y.; Song, D.; Yan, C.; Zhang, F.; Tian, C.; et al. Emissions and characteristics of particulate matter from rainforest burning in the Southeast Asia. Atmos. Environ. 2018, 191, 194–204. [Google Scholar] [CrossRef]
- Vejpongsa, I.; Suvachittanont, S.; Klinklan, N.; Thongyen, T.; Veres, M.; Szymanski, W.W. Deliberation between PM 1 and PM 2.5 as air quality indicators based on comprehensive characterization of urban aerosols in Bangkok, Thailand. Particuology 2017, 35, 1–9. [Google Scholar] [CrossRef]
- WHO. Review of Evidence on Health Aspects of Air Pollution-REVIHAAP Project: Technical Report; World Health Organization: Copenhagen, Denmark, 2013. [Google Scholar]
- Amin, M.; Putri, R.M.; Handika, R.A.; Ullah, A.; Goembira, F.; Phairuang, W.; Ikemori, F.; Hata, M.; Tekasakul, P.; Furuuchi, M. Size-Segregated particulate matter down to PM0.1 and carbon content during the rainy and dry seasons in Sumatra island, Indonesia. Atmosphere 2021, 12, 1441. [Google Scholar] [CrossRef]
- Amin, M.; Handika, R.A.; Putri, R.M.; Phairuang, W.; Hata, M.; Tekasakul, P.; Furuuchi, M. Size-Segregated Particulate Mass and Carbonaceous Components in Roadside and Riverside Environments. Appl. Sci. 2021, 11, 10214. [Google Scholar] [CrossRef]
- Phairuang, W.; Suwattiga, P.; Chetiyanukornkul, T.; Hongtieab, S.; Limpaseni, W.; Ikemori, F.; Hata, M.; Furuuchi, M. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environ. Pollut. 2019, 247, 238–247. [Google Scholar] [CrossRef]
- Putri, R.M.; Amin, M.; Suciari, T.F.; Faisal, M.A.F.; Auliani, R.; Ikemori, F.; Wada, M.; Hata, M.; Tekasakul, P.; Furuuchi, M. Site-specific variation in mass concentration and chemical components in ambient nanoparticles (PM0.1) in North Sumatra Province-Indonesia. Atmos. Pollut. Res. 2021, 12, 101062. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef]
- CEN/TS 16976:2016; Ambient Air-Determination of the Particle Number Concentration of Atmospheric Aerosol. European Committee for Standardization: Brussels, Belgium, 2016.
- Giechaskiel, B.; Lahde, T.; Suarez-Bertoa, R.; Clairotte, M.; Grigoratos, T.; Zardini, A.; Perujo, A.; Martini, G. Particle number measurements in the European legislation and future JRC activities. Combust. Engines 2018, 174, 3–16. [Google Scholar] [CrossRef]
- Li, N.; Georas, S.; Alexis, N.; Fritz, P.; Xia, T.; Williams, M.A.; Horner, E.; Nel, A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J. Allergy Clin. Immunol. 2016, 138, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Boongla, Y.; Chanonmuang, P.; Hata, M.; Furuuchi, M.; Phairuang, W. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. Environ. Pollut. 2020, 272, 115940. [Google Scholar] [CrossRef] [PubMed]
- Phairuang, W.; Inerb, M.; Furuuchi, M.; Hata, M.; Tekasakul, S.; Tekasakul, P. Size-fractionated carbonaceous aerosols down to PM0.1 in southern Thailand: Local and long-range transport effects. Environ. Pollut. 2020, 260, 114031. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Hongtieab, S.; Hata, M.; Furuuchi, M.; Dong, S.; Phairuang, W.; Ge, H.; Zhang, T. Ambient nanoparticles characterization by East and Southeast Asia nanoparticle monitoring network. In Proceedings of the 9th Asian Aerosol Conference, Kanazawa, Japan, 24–26 June 2015. [Google Scholar]
- Othman, M.; Latif, M.T.; Hamid, H.H.A.; Uning, R.; Khumsaeng, T.; Phairuang, W.; Daud, Z.; Idris, J.; Sofwan, N.M.; Lung, S.-C.C. Spatial–temporal variability and health impact of particulate matter during a 2019–2020 biomass burning event in Southeast Asia. Sci. Rep. 2022, 12, 7630. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.T.T.; Dung, N.T.; Sekiguchi, K.; Thuy, L.B.; Hien, N.T.T.; Yamaguchi, R. Mass concentrations and carbonaceous compositions of PM0.1, PM2.5, and PM10 at urban locations in Hanoi, Vietnam. Aerosol Air Qual. Res. 2018, 18, 1591–1605. [Google Scholar] [CrossRef]
- Nghiem, T.D.; Nguyen, T.T.T.; Nguyen, T.T.H.; Ly, B.T.; Sekiguchi, K.; Yamaguchi, R.; Pham, C.T.; Ho, Q.B.; Duong, T.N. Chemical characterization and source apportionment of ambient nanoparticles: A case study in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2020, 27, 30661–30672. [Google Scholar] [CrossRef]
- Huyen, T.T.; Yamaguchi, R.; Kurotsuchi, Y.; Sekiguchi, K.; Dung, N.T.; Thuy, N.T.T.; Thuy, L.B. Characteristics of Chemical Components in Fine Particles (PM2.5) and Ultrafine Particles (PM0.1) in Hanoi, Vietnam: A Case Study in Two Seasons with Different Humidity. Water Air Soil Pollut. 2021, 232, 183. [Google Scholar] [CrossRef]
- Ha, V.T.L.; Anh, V.D.; Hien, N.T.T.; Dung, N.T.; Shimada, Y.; Yoneda, M. Indoor and outdoor relationship of particles with different sizes at an apartment in Hanoi: Mass concentration and respiratory dose estimation. Vietnam. J. Sci. Technol. 2020, 58, 736–746. [Google Scholar] [CrossRef]
- Thuy, P.C.; Le, H.A.; Tuyen, L.H.; Dung, N.T. Size distribution and contribution of particles from rice straw open burning to the atmosphere in Hanoi. Vietnam. J. Sci. Technol. 2020, 58, 94–104. [Google Scholar]
- Tran, T.D.; Nguyen, P.M.; Nghiem, D.T.; Le, T.H.; Tu, M.B.; Alleman, L.Y.; Nguyen, V.M.; Pham, D.T.; Ha, N.M.; Dang, M.N.; et al. Assessment of air quality in school environments in Hanoi, Vietnam: A focus on Mass-Size distribution and elemental composition of indoor-outdoor Ultrafine/Fine/Coarse particles. Atmosphere 2020, 11, 519. [Google Scholar] [CrossRef]
- Chen, S.C.; Tsai, C.J.; Chou, C.C.K.; Roam, G.D.; Cheng, S.S.; Wang, Y.N. Ultrafine particles at three different sampling locations in Taiwan. Atmos Environ. 2010, 44, 533–540. [Google Scholar] [CrossRef]
- Zhu, C.S.; Chen, C.C.; Cao, J.J.; Tsai, C.J.; Chou Charles, C.K.; Liu, S.C.; Roam, G.D. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmos Environ. 2010, 44, 2668–2673. [Google Scholar] [CrossRef]
- Hata, M.; Zhang, T.; Bao, L.; Otani, Y.; Bai, Y.; Furuuchi, M. Characteristics of the nanoparticles in a Road Tunnel. Aerosol. Air Qual. Res. 2012, 13, 194–200. [Google Scholar] [CrossRef]
- Ding, X.; Kong, L.; Du, C.; Zhanzakova, A.; Wang, L.; Fu, H.; Chen, J.; Yang, X.; Cheng, T. Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai. Sci. Total. Environ. 2017, 583, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Beddows, D.C.; Harrison, R.M. Comparison of average particle number emission factors for heavy and light duty Vehicles derived from rolling chassis dynamometer and field studies. Atmos Environ. 2008, 42, 7954–7966. [Google Scholar] [CrossRef]
- Phairuang, W.; Tekasakul, T.; Hata, M.; Tekasakul, S.; Chomanee, J.; Otani, Y.; Furuuchi, M. Estimation of air pollution from ribbed smoked sheet rubber in Thailand exports to Japan as a pre-product of tires. Atmos. Pollut. Res. 2019, 10, 642–650. [Google Scholar] [CrossRef]
- Chomanee, J.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Effect of irradiation energy and residence time on decomposition efficiency of polycyclic aromatic hydrocarbons (PAHs) from rubber wood combustion emission using soft X-rays. Chemosphere 2018, 210, 417–423. [Google Scholar] [CrossRef]
- Rimnacova, D.; Zdímal, V.; Schwarz, J.; Smolík, J.; Rimnac, M. Atmospheric aerosols in suburb of Prague: The dynamics of particle size distributions. Atmos. Res. 2011, 101, 539–552. [Google Scholar] [CrossRef]
- Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez, S.; González, Y.; Fernández-Camacho, R.; de la Rosa, J.; et al. New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Phys. 2011, 11, 6207–6227. [Google Scholar] [CrossRef]
- HEI. Understanding the health effects of ambient ultrafine particles. In HEI Perspectives 3. HEI Review Panel on Ultrafine Particles; Health Effects Institute: Boston, MA, USA, 2013. [Google Scholar]
- Phairuang, W.; Inerb, M.; Hata, M.; Furuuchi, M. Characteristics of trace elements bound to ambient nanoparticles (PM0.1) and a health risk assessment in southern Thailand. J. Hazard. Mater. 2021, 425, 127986. [Google Scholar] [CrossRef]
- Phairuang, W.; Suwattiga, P.; Hongtieab, S.; Inerb, M.; Furuuchi, M.; Hata, M. Characteristics, sources, and health risks of ambient nanoparticles (PM0.1) bound metal in Bangkok, Thailand. Atmos. Environ. X 2021, 12, 100141. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, G.; Cheng, Z.; Yan, B.; Hou, L. Air pollutant emissions from straw open burning: A case study in Tianjin. Atmos. Environ. 2017, 171, 155–164. [Google Scholar] [CrossRef]
- Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G.B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D.V. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 2016, 6, 37074. [Google Scholar] [CrossRef] [PubMed]
- Samae, H.; Tekasakul, S.; Tekasakul, P.; Phairuang, W.; Furuuchi, M.; Hongtieab, S. Particle-bound organic and elemental carbons for source identification of PM < 0.1 µm from biomass combustion. J. Environ. Sci. 2022, 113, 385–393. [Google Scholar]
- Hata, M.; Linfa, B.; Otani, Y.; Furuuchi, M. Performance evaluation of an Andersen cascade impactor with an additional stage for nanoparticle sampling. Aerosol Air Qual. Res. 2012, 12, 1041–1048. [Google Scholar] [CrossRef]
- Furuuchi, M.; Eryu, K.; Nagura, M.; Hata, M.; Kato, T.; Tajima, N.; Sekiguchi, K.; Ehara, K.; Seto, T.; Otani, Y. Development and Performance Evaluation of Air Sampler with Inertial Filter for Nanoparticle Sampling. Aerosol Air Qual. Res. 2010, 10, 185–192. [Google Scholar] [CrossRef]
- Kumsanlas, N.; Piriyakarnsakul, S.; Sok, P.; Hongtieab, S.; Ikemori, F.; Szymanski, W.W.; Hata, M.; Otani, Y.; Furuuchi, M. A Cascade Air Sampler with Multi-nozzle Inertial Filters for PM0.1. Aerosol Air Qual. Res. 2019, 19, 1666–1677. [Google Scholar] [CrossRef]
- Liu, C.-N.; Awasthi, A.; Hung, Y.-H.; Tsai, C.-J. Collection efficiency and interstage loss of nanoparticles in micro-orifice-based cascade impactors. Atmos. Environ. 2013, 69, 325–333. [Google Scholar] [CrossRef]
- Otani, Y.; Eryu, K.; Furuuchi, M.; Tajima, N.; Tekasakul, P. Inertial Classification of Nanoparticles with Fibrous Filters. Aerosol Air Qual. Res. 2007, 7, 343–352. [Google Scholar] [CrossRef]
- Furuuchi, M.; Choosong, T.; Hata, M.; Otani, Y.; Tekasakul, P.; Takizawa, M.; Nagura, M. Development of a personal sampler for evaluating exposure to ultrafine particles. Aerosol Air Qual. Res. 2010, 10, 30–37. [Google Scholar] [CrossRef]
- Thongyen, T.; Hata, M.; Toriba, A.; Ikeda, T.; Koyama, H.; Otani, Y.; Furuuchi, M. Development of PM0.1 personal sampler for evaluation of personal exposure to aerosol nanoparticles. Aerosol Air Qual. Res. 2015, 15, 180–187. [Google Scholar] [CrossRef]
- Hata, M.; Thongyen, T.; Bao, L.; Hoshino, A.; Otani, Y.; Ikeda, T.; Furuuchi, M. Development of a high-volume air sampler for nanoparticles. Environ. Sci. Process Impacts 2013, 15, 454–462. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, T.; Takahashi, H.; Hata, M.; Torib, A.; Ikeda, T.; Otani, Y.; Furuuchi, M. High volume air sampler for environmental nano-particles using a sharp-cut inertial filter combined with an impactor. Meas. Sci. Technol. 2017, 28, 025801. [Google Scholar] [CrossRef]
- Kanabkaew, T.; Mekbungwan, P.; Raksakietisak, S.; Kanchanasut, K. Detection of PM2.5 plume movement from IoTground level monitoring data. Environ. Pollut. 2019, 252, 543–552. [Google Scholar] [CrossRef]
- Inerb, M.; Phairuang, W.; Paluang, P.; Hata, M.; Furuuchi, M.; Wangpakapattanawong, P. Carbon and Trace element compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in ambient air of Southern Thailand and Characterization of Their Sources. Atmosphere 2022, 13, 626. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phairuang, W.; Amin, M.; Hata, M.; Furuuchi, M. Airborne Nanoparticles (PM0.1) in Southeast Asian Cities: A Review. Sustainability 2022, 14, 10074. https://doi.org/10.3390/su141610074
Phairuang W, Amin M, Hata M, Furuuchi M. Airborne Nanoparticles (PM0.1) in Southeast Asian Cities: A Review. Sustainability. 2022; 14(16):10074. https://doi.org/10.3390/su141610074
Chicago/Turabian StylePhairuang, Worradorn, Muhammad Amin, Mitsuhiko Hata, and Masami Furuuchi. 2022. "Airborne Nanoparticles (PM0.1) in Southeast Asian Cities: A Review" Sustainability 14, no. 16: 10074. https://doi.org/10.3390/su141610074
APA StylePhairuang, W., Amin, M., Hata, M., & Furuuchi, M. (2022). Airborne Nanoparticles (PM0.1) in Southeast Asian Cities: A Review. Sustainability, 14(16), 10074. https://doi.org/10.3390/su141610074