Cow Manure Compost Promotes Maize Growth and Ameliorates Soil Quality in Saline-Alkali Soil: Role of Fertilizer Addition Rate and Application Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Crop Management
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Cow Manure Compost on Saline-Alkali Soil Salt Content and pH
3.2. Cow Manure Compost Enhances Soil Organic Matter, Total Nitrogen, Available Phosphorus and Available Potassium of the Surface Soil
3.3. Cow Manure Compost Promotes Maize Growth of Plant Height, Stem Diameter, Fresh Weight of Shoot and Fresh Weight of Root
3.4. Cow Manure Compost Improves Maize Yield
3.5. Redundancy Analysis of Relationships among Fertilizer Regime, Soil Properties, Maize Growth and Maize Yield Parameters in Saline-Alkali Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Q.; Xia, J.B.; Yang, H.J.; Liu, J.T.; Shao, P.S. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.Y.; Zhao, J.J.; Liu, A.H.; Long, X.H.; Rengel, Z. Effects of soil physicochemical properties on microbial communities in different ecological niches in coastal area. Appl. Soil Ecol. 2020, 150, 103486. [Google Scholar] [CrossRef]
- He, K.; He, G.; Wang, C.P.; Zhang, H.P.; Xu, Y.; Wang, S.M.; Kong, Y.Z.; Zhou, G.K.; Hu, R.B. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl. Soil Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Xia, J.B.; Ren, J.Y.; Zhang, S.Y.; Wang, Y.H.; Fang, Y. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma 2019, 349, 25–35. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Liang, J.; Zhao, D.L.; Meng, C.; Xu, Z.C.; Xie, Z.H.; Zhang, C.S. The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in Yellow River Delta saline soils. Microorganisms 2020, 8, 207. [Google Scholar] [CrossRef]
- Liu, M.L.; Wang, C.; Liu, X.L.; Lu, Y.C.; Wang, Y.F. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Li, K.S.; Li, Q.X.; Geng, Y.H.; Liu, C.X. An evaluation of the effects of microstructural characteristics and frost heave on the remediation of saline-alkali soils in the Yellow River Delta, China. Land Degrad. Dev. 2021, 32, 1325–1337. [Google Scholar] [CrossRef]
- D’Hose, T.; Debode, J.; Tender, C.D.; Ruysschaert, G.; Vandecasteele, B. Has compost with biochar applied during the process added value over biochar or compost for increasing soil quality in an arable cropping system? Appl. Soil Ecol. 2020, 156, 103706. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, J.Y.; Wang, J.P. Seasonality of soil respiration under gypsum and straw amendments in an arid saline-alkali soil. J. Environ. Manag. 2021, 277, 111494. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W.; Zhang, S.D.; Zhang, X.T.; Chen, J.H.; He, X.Y.; Zhang, Q.Z. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil. Sci. Total Environ. 2020, 731, 138938. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhou, Q.; Tian, Z.Z.; Cui, Y.T.; Liang, Y.; Wang, H.Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Li, J.J.; Zhang, B.X.; Li, D.Y.; Li, G.X.; Li, Y.Y. Effect of different organic fertilizers application on growth and environmental risk of nitrate under a vegetable field. Sci. Rep. 2017, 7, 17020. [Google Scholar] [CrossRef]
- Guo, G.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Witousek, P.M.; Zhang, F.S. Signifcant acidifcation in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Ozlu, E.; Kumar, S. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Shi, Y.L.; Liu, X.R.; Zhang, Q.W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. Sci. Total Environ. 2019, 686, 199–211. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Fan, P.S.; Mo, Z.W.; Kong, L.L.; Tian, H.; Duan, M.Y.; Li, L.; Wu, L.J.; Wang, Z.M.; Tang, X.R.; et al. Deep placement of nitrogen fertilizer affects grain yield, nitrogen recovery efficiency, and root characteristics in direct-seeded rice in South China. J. Plant Growth Regul. 2021, 40, 379–387. [Google Scholar] [CrossRef]
- Guo, L.W.; Ning, T.Y.; Nie, L.P.; Li, Z.J.; Lal, R. Interaction of deep placed controlled-release urea and water retention agent on nitrogen and water use and maize yield. Eur. J. Agron. 2016, 75, 118–129. [Google Scholar] [CrossRef]
- Su, W.; Liu, B.; Liu, X.W.; Li, X.K.; Ren, T.; Cong, R.H.; Lu, J.W. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). Eur. J. Agron. 2015, 62, 38–45. [Google Scholar] [CrossRef]
- Wang, X.K.; Wang, N.; Xing, Y.Y.; Yun, J.; Zhang, H.H. Effects of plastic mulching and basal nitrogen application depth on nitrogen use efficiency and yield in maize. Front. Plant Sci. 2018, 9, 1446. [Google Scholar] [CrossRef]
- Roberts, T.L.; Normon, R.J.; Fulford, A.; Slaton, N. Assimilation of 15N labeled fertilizer injected at various depths by delayed-flood rice. Soil Sci. Soc. Am. J. 2013, 77, 2039–2044. [Google Scholar] [CrossRef]
- Szulc, P.; Barlog, P.; Ambrozy-Deregowska, K.; Mejza, I.; Kobus-Cisowska, J. In-soil application of NP mineral fertilizer as a method of improving nitrogen yielding efficiency. Agronomy 2020, 10, 1488. [Google Scholar] [CrossRef]
- Szulc, P.; Wilczewska, W.; Ambrozy-Deregowska, K.; Mejza, I.; Szymanowska, D.; Kobus-Cisowska, J. Influence of the depth of nitrogen-phosphorus fertiliser placement in soil on maize yielding. Plant Soil Environ. 2020, 66, 14–21. [Google Scholar] [CrossRef]
- Rychel, K.; Meurer, K.H.E.; Borjesson, G.; Stromgren, M.; Getahun, G.T.; Kirchmann, H.; Katterer, T. Deep N fertilizer placement mitigated N2O emissions in a Swedish field trial with cereals. Nutr. Cycl. Agroecosyst. 2020, 118, 133–148. [Google Scholar] [CrossRef]
- Zhu, T.S.; Shao, T.Y.; Liu, J.Y.; Li, N.; Long, X.H.; Gao, X.M.; Rengel, Z. Improvement of physico-chemical properties and microbiome in different salinity soils by incorporating Jerusalem artichoke residues. Appl. Soil Ecol. 2021, 158, 103791. [Google Scholar] [CrossRef]
- Xie, W.J.; Wu, L.F.; Zhang, Y.P.; Wu, T.; Li, X.P.; Ouyang, Z. Effects of straw application on coastal saline topsoil salinity and wheat yield trend. Soil Till. Res. 2017, 169, 1–6. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, X.H.; Perfect, E.; Xiao, T.Q.; Peng, G.Y. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma 2013, 195, 23–30. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, D.Y.; Li, J.J.; Li, G.X.; Zhang, B.X. Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates. Bioresour. Technol. 2017, 245, 1299–1302. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xie, S.Y.; Bao, Z.Y.; Tian, H.; Carranza, E.J.M.; Xiang, W.; Yao, L.Y.; Zhang, H. Underlying dynamics and effects of humic acid on selenium and cadmium uptake in rice seedlings. J. Soils Sediments 2020, 20, 109–121. [Google Scholar] [CrossRef]
- Zhang, H.H.; Li, X.; Chen, Y.H.; Wang, Y.; Li, B.; Yang, R.Y.; Xu, N.; Sun, G.Y. A study on the effects of salinity and pH on PSII function in mulberry seedling leaves under saline-alkali mixed stress. Trees 2020, 34, 693–760. [Google Scholar]
- Stagg, C.L.; Baustian, M.M.; Perry, C.L.; Carruthers, T.J.B.; Hall, C.T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 2018, 106, 655–670. [Google Scholar] [CrossRef]
- Oo, A.N.; Iwai, C.B.; Saenjan, P. Soil properties and maize growth in saline and non-saline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad. Dev. 2015, 26, 300–310. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Pang, H.C.; Lu, C.; Zhang, X.; Li, Y.Y. Subsurface organic amendment plus plastic mulching promotes salt leaching and yield of sunflower. Agron. J. 2019, 111, 457–466. [Google Scholar] [CrossRef]
- Liu, T.Q.; Fan, D.J.; Zhang, X.X.; Chen, J.; Li, C.F.; Cao, C.G. Deep placement of nitrogen fertilizer reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res. 2015, 184, 80–90. [Google Scholar] [CrossRef]
- Yao, Y.L.; Zhang, M.; Tian, Y.H.; Zhao, M.; Zhang, B.W.; Zhao, M.; Zeng, K.; Yin, B. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crops Res. 2018, 218, 254–266. [Google Scholar] [CrossRef]
- Giehl, R.F.H.; Gruber, B.D.; Von Wiren, N. Its time to make changes: Modulation of root system architecture by nutrient signals. J. Exp. Bot. 2014, 65, 769–778. [Google Scholar] [CrossRef] [PubMed]
No. | Treatment | Compost Addition Rate (t·ha−1) | Compost Application Depth (cm) | Mineral Fertilizer Addition Rate (t·ha−1) |
---|---|---|---|---|
1 | CK | - | - | 0.6 |
2 | L1 | 6 | 5 | 0.6 |
3 | L2 | 12 | 5 | 0.6 |
4 | L3 | 18 | 5 | 0.6 |
5 | L4 | 24 | 5 | 0.6 |
6 | H1 | 6 | 20 | 0.6 |
7 | H2 | 12 | 20 | 0.6 |
8 | H3 | 18 | 20 | 0.6 |
9 | H4 | 24 | 20 | 0.6 |
Compost Addition Rate | Compost Application Depth | Soil Salt Content | Soil pH | Soil Organic Matter | Total Nitrogen | Available Phosphorus | Available Potassium | |
---|---|---|---|---|---|---|---|---|
Plant height | 0.956 ** | 0.375 | −0.887 ** | −0.951 ** | 0.953 ** | 0.925 ** | 0.756 * | 0.921 ** |
Stem diameter | 0.843 ** | 0.537 | −0.955 ** | −0.750 * | 0.842 ** | 0.937 ** | 0.634 | 0.737 * |
Fresh weight of shoot | 0.929 ** | 0.488 | −0.918 ** | −0.847 ** | 0.854 ** | 0.927 ** | 0.691 * | 0.869 ** |
Fresh weight of root | 0.636 | 0.758 * | −0.646 | −0.886 ** | 0.764 * | 0.704 * | 0.190 | 0.654 |
Compost Application Rate | Compost Application Depth | Salt Content | pH | Soil Organic Matter | Total Nitrogen | Available Phosphorus | Available Potassium | Plant Height | Stem Diameter | Fresh Weight of Shoot | Fresh Weight of Root | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ear length | 0.792 * | 0.653 | −0.801 ** | −0.775 * | 0.828 ** | 0.788 * | 0.507 | 0.832 ** | 0.777 * | 0.759 * | 0.876 ** | 0.728 * |
Ear diameter | 0.918 ** | 0.346 | −0.815 ** | −0.917 ** | 0.933 ** | 0.861 ** | 0.748 * | 0.940 ** | 0.959 ** | 0.686 * | 0.803 ** | 0.686 * |
Number of kernels per ear | 0.980 ** | 0.351 | −0.916 ** | −0.947 ** | 0.946 ** | 0.950 ** | 0.791 * | 0.950 ** | 0.976 ** | 0.804 ** | 0.901 ** | 0.737 * |
Maize yield | 0.935 ** | 0.714 * | −0.913 ** | −0.932 ** | 0.919 ** | 0.939 ** | 0.653 | 0.905 ** | 0.926 ** | 0.864 ** | 0.978 ** | 0.834 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, Z.; Li, J.; Liu, Z.; Gu, X.; Shi, L. Cow Manure Compost Promotes Maize Growth and Ameliorates Soil Quality in Saline-Alkali Soil: Role of Fertilizer Addition Rate and Application Depth. Sustainability 2022, 14, 10088. https://doi.org/10.3390/su141610088
Li S, Liu Z, Li J, Liu Z, Gu X, Shi L. Cow Manure Compost Promotes Maize Growth and Ameliorates Soil Quality in Saline-Alkali Soil: Role of Fertilizer Addition Rate and Application Depth. Sustainability. 2022; 14(16):10088. https://doi.org/10.3390/su141610088
Chicago/Turabian StyleLi, Shuyan, Zhijun Liu, Jiao Li, Zhanwei Liu, Xuhan Gu, and Lianhui Shi. 2022. "Cow Manure Compost Promotes Maize Growth and Ameliorates Soil Quality in Saline-Alkali Soil: Role of Fertilizer Addition Rate and Application Depth" Sustainability 14, no. 16: 10088. https://doi.org/10.3390/su141610088
APA StyleLi, S., Liu, Z., Li, J., Liu, Z., Gu, X., & Shi, L. (2022). Cow Manure Compost Promotes Maize Growth and Ameliorates Soil Quality in Saline-Alkali Soil: Role of Fertilizer Addition Rate and Application Depth. Sustainability, 14(16), 10088. https://doi.org/10.3390/su141610088